]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: Implement continue with signal (C pkt) with new infra
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/ctype.h"
25 #include "qemu/cutils.h"
26 #include "qemu/module.h"
27 #include "trace-root.h"
28 #ifdef CONFIG_USER_ONLY
29 #include "qemu.h"
30 #else
31 #include "monitor/monitor.h"
32 #include "chardev/char.h"
33 #include "chardev/char-fe.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #include "hw/cpu/cluster.h"
37 #endif
38
39 #define MAX_PACKET_LENGTH 4096
40
41 #include "qemu/sockets.h"
42 #include "sysemu/hw_accel.h"
43 #include "sysemu/kvm.h"
44 #include "hw/semihosting/semihost.h"
45 #include "exec/exec-all.h"
46
47 #ifdef CONFIG_USER_ONLY
48 #define GDB_ATTACHED "0"
49 #else
50 #define GDB_ATTACHED "1"
51 #endif
52
53 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
54 uint8_t *buf, int len, bool is_write)
55 {
56 CPUClass *cc = CPU_GET_CLASS(cpu);
57
58 if (cc->memory_rw_debug) {
59 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
60 }
61 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
62 }
63
64 /* Return the GDB index for a given vCPU state.
65 *
66 * For user mode this is simply the thread id. In system mode GDB
67 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
68 */
69 static inline int cpu_gdb_index(CPUState *cpu)
70 {
71 #if defined(CONFIG_USER_ONLY)
72 TaskState *ts = (TaskState *) cpu->opaque;
73 return ts->ts_tid;
74 #else
75 return cpu->cpu_index + 1;
76 #endif
77 }
78
79 enum {
80 GDB_SIGNAL_0 = 0,
81 GDB_SIGNAL_INT = 2,
82 GDB_SIGNAL_QUIT = 3,
83 GDB_SIGNAL_TRAP = 5,
84 GDB_SIGNAL_ABRT = 6,
85 GDB_SIGNAL_ALRM = 14,
86 GDB_SIGNAL_IO = 23,
87 GDB_SIGNAL_XCPU = 24,
88 GDB_SIGNAL_UNKNOWN = 143
89 };
90
91 #ifdef CONFIG_USER_ONLY
92
93 /* Map target signal numbers to GDB protocol signal numbers and vice
94 * versa. For user emulation's currently supported systems, we can
95 * assume most signals are defined.
96 */
97
98 static int gdb_signal_table[] = {
99 0,
100 TARGET_SIGHUP,
101 TARGET_SIGINT,
102 TARGET_SIGQUIT,
103 TARGET_SIGILL,
104 TARGET_SIGTRAP,
105 TARGET_SIGABRT,
106 -1, /* SIGEMT */
107 TARGET_SIGFPE,
108 TARGET_SIGKILL,
109 TARGET_SIGBUS,
110 TARGET_SIGSEGV,
111 TARGET_SIGSYS,
112 TARGET_SIGPIPE,
113 TARGET_SIGALRM,
114 TARGET_SIGTERM,
115 TARGET_SIGURG,
116 TARGET_SIGSTOP,
117 TARGET_SIGTSTP,
118 TARGET_SIGCONT,
119 TARGET_SIGCHLD,
120 TARGET_SIGTTIN,
121 TARGET_SIGTTOU,
122 TARGET_SIGIO,
123 TARGET_SIGXCPU,
124 TARGET_SIGXFSZ,
125 TARGET_SIGVTALRM,
126 TARGET_SIGPROF,
127 TARGET_SIGWINCH,
128 -1, /* SIGLOST */
129 TARGET_SIGUSR1,
130 TARGET_SIGUSR2,
131 #ifdef TARGET_SIGPWR
132 TARGET_SIGPWR,
133 #else
134 -1,
135 #endif
136 -1, /* SIGPOLL */
137 -1,
138 -1,
139 -1,
140 -1,
141 -1,
142 -1,
143 -1,
144 -1,
145 -1,
146 -1,
147 -1,
148 #ifdef __SIGRTMIN
149 __SIGRTMIN + 1,
150 __SIGRTMIN + 2,
151 __SIGRTMIN + 3,
152 __SIGRTMIN + 4,
153 __SIGRTMIN + 5,
154 __SIGRTMIN + 6,
155 __SIGRTMIN + 7,
156 __SIGRTMIN + 8,
157 __SIGRTMIN + 9,
158 __SIGRTMIN + 10,
159 __SIGRTMIN + 11,
160 __SIGRTMIN + 12,
161 __SIGRTMIN + 13,
162 __SIGRTMIN + 14,
163 __SIGRTMIN + 15,
164 __SIGRTMIN + 16,
165 __SIGRTMIN + 17,
166 __SIGRTMIN + 18,
167 __SIGRTMIN + 19,
168 __SIGRTMIN + 20,
169 __SIGRTMIN + 21,
170 __SIGRTMIN + 22,
171 __SIGRTMIN + 23,
172 __SIGRTMIN + 24,
173 __SIGRTMIN + 25,
174 __SIGRTMIN + 26,
175 __SIGRTMIN + 27,
176 __SIGRTMIN + 28,
177 __SIGRTMIN + 29,
178 __SIGRTMIN + 30,
179 __SIGRTMIN + 31,
180 -1, /* SIGCANCEL */
181 __SIGRTMIN,
182 __SIGRTMIN + 32,
183 __SIGRTMIN + 33,
184 __SIGRTMIN + 34,
185 __SIGRTMIN + 35,
186 __SIGRTMIN + 36,
187 __SIGRTMIN + 37,
188 __SIGRTMIN + 38,
189 __SIGRTMIN + 39,
190 __SIGRTMIN + 40,
191 __SIGRTMIN + 41,
192 __SIGRTMIN + 42,
193 __SIGRTMIN + 43,
194 __SIGRTMIN + 44,
195 __SIGRTMIN + 45,
196 __SIGRTMIN + 46,
197 __SIGRTMIN + 47,
198 __SIGRTMIN + 48,
199 __SIGRTMIN + 49,
200 __SIGRTMIN + 50,
201 __SIGRTMIN + 51,
202 __SIGRTMIN + 52,
203 __SIGRTMIN + 53,
204 __SIGRTMIN + 54,
205 __SIGRTMIN + 55,
206 __SIGRTMIN + 56,
207 __SIGRTMIN + 57,
208 __SIGRTMIN + 58,
209 __SIGRTMIN + 59,
210 __SIGRTMIN + 60,
211 __SIGRTMIN + 61,
212 __SIGRTMIN + 62,
213 __SIGRTMIN + 63,
214 __SIGRTMIN + 64,
215 __SIGRTMIN + 65,
216 __SIGRTMIN + 66,
217 __SIGRTMIN + 67,
218 __SIGRTMIN + 68,
219 __SIGRTMIN + 69,
220 __SIGRTMIN + 70,
221 __SIGRTMIN + 71,
222 __SIGRTMIN + 72,
223 __SIGRTMIN + 73,
224 __SIGRTMIN + 74,
225 __SIGRTMIN + 75,
226 __SIGRTMIN + 76,
227 __SIGRTMIN + 77,
228 __SIGRTMIN + 78,
229 __SIGRTMIN + 79,
230 __SIGRTMIN + 80,
231 __SIGRTMIN + 81,
232 __SIGRTMIN + 82,
233 __SIGRTMIN + 83,
234 __SIGRTMIN + 84,
235 __SIGRTMIN + 85,
236 __SIGRTMIN + 86,
237 __SIGRTMIN + 87,
238 __SIGRTMIN + 88,
239 __SIGRTMIN + 89,
240 __SIGRTMIN + 90,
241 __SIGRTMIN + 91,
242 __SIGRTMIN + 92,
243 __SIGRTMIN + 93,
244 __SIGRTMIN + 94,
245 __SIGRTMIN + 95,
246 -1, /* SIGINFO */
247 -1, /* UNKNOWN */
248 -1, /* DEFAULT */
249 -1,
250 -1,
251 -1,
252 -1,
253 -1,
254 -1
255 #endif
256 };
257 #else
258 /* In system mode we only need SIGINT and SIGTRAP; other signals
259 are not yet supported. */
260
261 enum {
262 TARGET_SIGINT = 2,
263 TARGET_SIGTRAP = 5
264 };
265
266 static int gdb_signal_table[] = {
267 -1,
268 -1,
269 TARGET_SIGINT,
270 -1,
271 -1,
272 TARGET_SIGTRAP
273 };
274 #endif
275
276 #ifdef CONFIG_USER_ONLY
277 static int target_signal_to_gdb (int sig)
278 {
279 int i;
280 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
281 if (gdb_signal_table[i] == sig)
282 return i;
283 return GDB_SIGNAL_UNKNOWN;
284 }
285 #endif
286
287 static int gdb_signal_to_target (int sig)
288 {
289 if (sig < ARRAY_SIZE (gdb_signal_table))
290 return gdb_signal_table[sig];
291 else
292 return -1;
293 }
294
295 typedef struct GDBRegisterState {
296 int base_reg;
297 int num_regs;
298 gdb_reg_cb get_reg;
299 gdb_reg_cb set_reg;
300 const char *xml;
301 struct GDBRegisterState *next;
302 } GDBRegisterState;
303
304 typedef struct GDBProcess {
305 uint32_t pid;
306 bool attached;
307
308 char target_xml[1024];
309 } GDBProcess;
310
311 enum RSState {
312 RS_INACTIVE,
313 RS_IDLE,
314 RS_GETLINE,
315 RS_GETLINE_ESC,
316 RS_GETLINE_RLE,
317 RS_CHKSUM1,
318 RS_CHKSUM2,
319 };
320 typedef struct GDBState {
321 CPUState *c_cpu; /* current CPU for step/continue ops */
322 CPUState *g_cpu; /* current CPU for other ops */
323 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
324 enum RSState state; /* parsing state */
325 char line_buf[MAX_PACKET_LENGTH];
326 int line_buf_index;
327 int line_sum; /* running checksum */
328 int line_csum; /* checksum at the end of the packet */
329 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
330 int last_packet_len;
331 int signal;
332 #ifdef CONFIG_USER_ONLY
333 int fd;
334 int running_state;
335 #else
336 CharBackend chr;
337 Chardev *mon_chr;
338 #endif
339 bool multiprocess;
340 GDBProcess *processes;
341 int process_num;
342 char syscall_buf[256];
343 gdb_syscall_complete_cb current_syscall_cb;
344 } GDBState;
345
346 /* By default use no IRQs and no timers while single stepping so as to
347 * make single stepping like an ICE HW step.
348 */
349 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
350
351 static GDBState *gdbserver_state;
352
353 bool gdb_has_xml;
354
355 #ifdef CONFIG_USER_ONLY
356 /* XXX: This is not thread safe. Do we care? */
357 static int gdbserver_fd = -1;
358
359 static int get_char(GDBState *s)
360 {
361 uint8_t ch;
362 int ret;
363
364 for(;;) {
365 ret = qemu_recv(s->fd, &ch, 1, 0);
366 if (ret < 0) {
367 if (errno == ECONNRESET)
368 s->fd = -1;
369 if (errno != EINTR)
370 return -1;
371 } else if (ret == 0) {
372 close(s->fd);
373 s->fd = -1;
374 return -1;
375 } else {
376 break;
377 }
378 }
379 return ch;
380 }
381 #endif
382
383 static enum {
384 GDB_SYS_UNKNOWN,
385 GDB_SYS_ENABLED,
386 GDB_SYS_DISABLED,
387 } gdb_syscall_mode;
388
389 /* Decide if either remote gdb syscalls or native file IO should be used. */
390 int use_gdb_syscalls(void)
391 {
392 SemihostingTarget target = semihosting_get_target();
393 if (target == SEMIHOSTING_TARGET_NATIVE) {
394 /* -semihosting-config target=native */
395 return false;
396 } else if (target == SEMIHOSTING_TARGET_GDB) {
397 /* -semihosting-config target=gdb */
398 return true;
399 }
400
401 /* -semihosting-config target=auto */
402 /* On the first call check if gdb is connected and remember. */
403 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
404 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
405 : GDB_SYS_DISABLED);
406 }
407 return gdb_syscall_mode == GDB_SYS_ENABLED;
408 }
409
410 /* Resume execution. */
411 static inline void gdb_continue(GDBState *s)
412 {
413
414 #ifdef CONFIG_USER_ONLY
415 s->running_state = 1;
416 trace_gdbstub_op_continue();
417 #else
418 if (!runstate_needs_reset()) {
419 trace_gdbstub_op_continue();
420 vm_start();
421 }
422 #endif
423 }
424
425 /*
426 * Resume execution, per CPU actions. For user-mode emulation it's
427 * equivalent to gdb_continue.
428 */
429 static int gdb_continue_partial(GDBState *s, char *newstates)
430 {
431 CPUState *cpu;
432 int res = 0;
433 #ifdef CONFIG_USER_ONLY
434 /*
435 * This is not exactly accurate, but it's an improvement compared to the
436 * previous situation, where only one CPU would be single-stepped.
437 */
438 CPU_FOREACH(cpu) {
439 if (newstates[cpu->cpu_index] == 's') {
440 trace_gdbstub_op_stepping(cpu->cpu_index);
441 cpu_single_step(cpu, sstep_flags);
442 }
443 }
444 s->running_state = 1;
445 #else
446 int flag = 0;
447
448 if (!runstate_needs_reset()) {
449 if (vm_prepare_start()) {
450 return 0;
451 }
452
453 CPU_FOREACH(cpu) {
454 switch (newstates[cpu->cpu_index]) {
455 case 0:
456 case 1:
457 break; /* nothing to do here */
458 case 's':
459 trace_gdbstub_op_stepping(cpu->cpu_index);
460 cpu_single_step(cpu, sstep_flags);
461 cpu_resume(cpu);
462 flag = 1;
463 break;
464 case 'c':
465 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
466 cpu_resume(cpu);
467 flag = 1;
468 break;
469 default:
470 res = -1;
471 break;
472 }
473 }
474 }
475 if (flag) {
476 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
477 }
478 #endif
479 return res;
480 }
481
482 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
483 {
484 #ifdef CONFIG_USER_ONLY
485 int ret;
486
487 while (len > 0) {
488 ret = send(s->fd, buf, len, 0);
489 if (ret < 0) {
490 if (errno != EINTR)
491 return;
492 } else {
493 buf += ret;
494 len -= ret;
495 }
496 }
497 #else
498 /* XXX this blocks entire thread. Rewrite to use
499 * qemu_chr_fe_write and background I/O callbacks */
500 qemu_chr_fe_write_all(&s->chr, buf, len);
501 #endif
502 }
503
504 static inline int fromhex(int v)
505 {
506 if (v >= '0' && v <= '9')
507 return v - '0';
508 else if (v >= 'A' && v <= 'F')
509 return v - 'A' + 10;
510 else if (v >= 'a' && v <= 'f')
511 return v - 'a' + 10;
512 else
513 return 0;
514 }
515
516 static inline int tohex(int v)
517 {
518 if (v < 10)
519 return v + '0';
520 else
521 return v - 10 + 'a';
522 }
523
524 /* writes 2*len+1 bytes in buf */
525 static void memtohex(char *buf, const uint8_t *mem, int len)
526 {
527 int i, c;
528 char *q;
529 q = buf;
530 for(i = 0; i < len; i++) {
531 c = mem[i];
532 *q++ = tohex(c >> 4);
533 *q++ = tohex(c & 0xf);
534 }
535 *q = '\0';
536 }
537
538 static void hextomem(uint8_t *mem, const char *buf, int len)
539 {
540 int i;
541
542 for(i = 0; i < len; i++) {
543 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
544 buf += 2;
545 }
546 }
547
548 static void hexdump(const char *buf, int len,
549 void (*trace_fn)(size_t ofs, char const *text))
550 {
551 char line_buffer[3 * 16 + 4 + 16 + 1];
552
553 size_t i;
554 for (i = 0; i < len || (i & 0xF); ++i) {
555 size_t byte_ofs = i & 15;
556
557 if (byte_ofs == 0) {
558 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
559 line_buffer[3 * 16 + 4 + 16] = 0;
560 }
561
562 size_t col_group = (i >> 2) & 3;
563 size_t hex_col = byte_ofs * 3 + col_group;
564 size_t txt_col = 3 * 16 + 4 + byte_ofs;
565
566 if (i < len) {
567 char value = buf[i];
568
569 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
570 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
571 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
572 ? value
573 : '.';
574 }
575
576 if (byte_ofs == 0xF)
577 trace_fn(i & -16, line_buffer);
578 }
579 }
580
581 /* return -1 if error, 0 if OK */
582 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
583 {
584 int csum, i;
585 uint8_t *p;
586
587 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
588 hexdump(buf, len, trace_gdbstub_io_binaryreply);
589 }
590
591 for(;;) {
592 p = s->last_packet;
593 *(p++) = '$';
594 memcpy(p, buf, len);
595 p += len;
596 csum = 0;
597 for(i = 0; i < len; i++) {
598 csum += buf[i];
599 }
600 *(p++) = '#';
601 *(p++) = tohex((csum >> 4) & 0xf);
602 *(p++) = tohex((csum) & 0xf);
603
604 s->last_packet_len = p - s->last_packet;
605 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
606
607 #ifdef CONFIG_USER_ONLY
608 i = get_char(s);
609 if (i < 0)
610 return -1;
611 if (i == '+')
612 break;
613 #else
614 break;
615 #endif
616 }
617 return 0;
618 }
619
620 /* return -1 if error, 0 if OK */
621 static int put_packet(GDBState *s, const char *buf)
622 {
623 trace_gdbstub_io_reply(buf);
624
625 return put_packet_binary(s, buf, strlen(buf), false);
626 }
627
628 /* Encode data using the encoding for 'x' packets. */
629 static int memtox(char *buf, const char *mem, int len)
630 {
631 char *p = buf;
632 char c;
633
634 while (len--) {
635 c = *(mem++);
636 switch (c) {
637 case '#': case '$': case '*': case '}':
638 *(p++) = '}';
639 *(p++) = c ^ 0x20;
640 break;
641 default:
642 *(p++) = c;
643 break;
644 }
645 }
646 return p - buf;
647 }
648
649 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
650 {
651 /* TODO: In user mode, we should use the task state PID */
652 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
653 /* Return the default process' PID */
654 return s->processes[s->process_num - 1].pid;
655 }
656 return cpu->cluster_index + 1;
657 }
658
659 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
660 {
661 int i;
662
663 if (!pid) {
664 /* 0 means any process, we take the first one */
665 return &s->processes[0];
666 }
667
668 for (i = 0; i < s->process_num; i++) {
669 if (s->processes[i].pid == pid) {
670 return &s->processes[i];
671 }
672 }
673
674 return NULL;
675 }
676
677 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
678 {
679 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
680 }
681
682 static CPUState *find_cpu(uint32_t thread_id)
683 {
684 CPUState *cpu;
685
686 CPU_FOREACH(cpu) {
687 if (cpu_gdb_index(cpu) == thread_id) {
688 return cpu;
689 }
690 }
691
692 return NULL;
693 }
694
695 static CPUState *get_first_cpu_in_process(const GDBState *s,
696 GDBProcess *process)
697 {
698 CPUState *cpu;
699
700 CPU_FOREACH(cpu) {
701 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
702 return cpu;
703 }
704 }
705
706 return NULL;
707 }
708
709 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
710 {
711 uint32_t pid = gdb_get_cpu_pid(s, cpu);
712 cpu = CPU_NEXT(cpu);
713
714 while (cpu) {
715 if (gdb_get_cpu_pid(s, cpu) == pid) {
716 break;
717 }
718
719 cpu = CPU_NEXT(cpu);
720 }
721
722 return cpu;
723 }
724
725 /* Return the cpu following @cpu, while ignoring unattached processes. */
726 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
727 {
728 cpu = CPU_NEXT(cpu);
729
730 while (cpu) {
731 if (gdb_get_cpu_process(s, cpu)->attached) {
732 break;
733 }
734
735 cpu = CPU_NEXT(cpu);
736 }
737
738 return cpu;
739 }
740
741 /* Return the first attached cpu */
742 static CPUState *gdb_first_attached_cpu(const GDBState *s)
743 {
744 CPUState *cpu = first_cpu;
745 GDBProcess *process = gdb_get_cpu_process(s, cpu);
746
747 if (!process->attached) {
748 return gdb_next_attached_cpu(s, cpu);
749 }
750
751 return cpu;
752 }
753
754 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
755 {
756 GDBProcess *process;
757 CPUState *cpu;
758
759 if (!pid && !tid) {
760 /* 0 means any process/thread, we take the first attached one */
761 return gdb_first_attached_cpu(s);
762 } else if (pid && !tid) {
763 /* any thread in a specific process */
764 process = gdb_get_process(s, pid);
765
766 if (process == NULL) {
767 return NULL;
768 }
769
770 if (!process->attached) {
771 return NULL;
772 }
773
774 return get_first_cpu_in_process(s, process);
775 } else {
776 /* a specific thread */
777 cpu = find_cpu(tid);
778
779 if (cpu == NULL) {
780 return NULL;
781 }
782
783 process = gdb_get_cpu_process(s, cpu);
784
785 if (pid && process->pid != pid) {
786 return NULL;
787 }
788
789 if (!process->attached) {
790 return NULL;
791 }
792
793 return cpu;
794 }
795 }
796
797 static const char *get_feature_xml(const GDBState *s, const char *p,
798 const char **newp, GDBProcess *process)
799 {
800 size_t len;
801 int i;
802 const char *name;
803 CPUState *cpu = get_first_cpu_in_process(s, process);
804 CPUClass *cc = CPU_GET_CLASS(cpu);
805
806 len = 0;
807 while (p[len] && p[len] != ':')
808 len++;
809 *newp = p + len;
810
811 name = NULL;
812 if (strncmp(p, "target.xml", len) == 0) {
813 char *buf = process->target_xml;
814 const size_t buf_sz = sizeof(process->target_xml);
815
816 /* Generate the XML description for this CPU. */
817 if (!buf[0]) {
818 GDBRegisterState *r;
819
820 pstrcat(buf, buf_sz,
821 "<?xml version=\"1.0\"?>"
822 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
823 "<target>");
824 if (cc->gdb_arch_name) {
825 gchar *arch = cc->gdb_arch_name(cpu);
826 pstrcat(buf, buf_sz, "<architecture>");
827 pstrcat(buf, buf_sz, arch);
828 pstrcat(buf, buf_sz, "</architecture>");
829 g_free(arch);
830 }
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
833 pstrcat(buf, buf_sz, "\"/>");
834 for (r = cpu->gdb_regs; r; r = r->next) {
835 pstrcat(buf, buf_sz, "<xi:include href=\"");
836 pstrcat(buf, buf_sz, r->xml);
837 pstrcat(buf, buf_sz, "\"/>");
838 }
839 pstrcat(buf, buf_sz, "</target>");
840 }
841 return buf;
842 }
843 if (cc->gdb_get_dynamic_xml) {
844 char *xmlname = g_strndup(p, len);
845 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
846
847 g_free(xmlname);
848 if (xml) {
849 return xml;
850 }
851 }
852 for (i = 0; ; i++) {
853 name = xml_builtin[i][0];
854 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
855 break;
856 }
857 return name ? xml_builtin[i][1] : NULL;
858 }
859
860 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
861 {
862 CPUClass *cc = CPU_GET_CLASS(cpu);
863 CPUArchState *env = cpu->env_ptr;
864 GDBRegisterState *r;
865
866 if (reg < cc->gdb_num_core_regs) {
867 return cc->gdb_read_register(cpu, mem_buf, reg);
868 }
869
870 for (r = cpu->gdb_regs; r; r = r->next) {
871 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
872 return r->get_reg(env, mem_buf, reg - r->base_reg);
873 }
874 }
875 return 0;
876 }
877
878 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
879 {
880 CPUClass *cc = CPU_GET_CLASS(cpu);
881 CPUArchState *env = cpu->env_ptr;
882 GDBRegisterState *r;
883
884 if (reg < cc->gdb_num_core_regs) {
885 return cc->gdb_write_register(cpu, mem_buf, reg);
886 }
887
888 for (r = cpu->gdb_regs; r; r = r->next) {
889 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
890 return r->set_reg(env, mem_buf, reg - r->base_reg);
891 }
892 }
893 return 0;
894 }
895
896 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
897 specifies the first register number and these registers are included in
898 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
899 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
900 */
901
902 void gdb_register_coprocessor(CPUState *cpu,
903 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
904 int num_regs, const char *xml, int g_pos)
905 {
906 GDBRegisterState *s;
907 GDBRegisterState **p;
908
909 p = &cpu->gdb_regs;
910 while (*p) {
911 /* Check for duplicates. */
912 if (strcmp((*p)->xml, xml) == 0)
913 return;
914 p = &(*p)->next;
915 }
916
917 s = g_new0(GDBRegisterState, 1);
918 s->base_reg = cpu->gdb_num_regs;
919 s->num_regs = num_regs;
920 s->get_reg = get_reg;
921 s->set_reg = set_reg;
922 s->xml = xml;
923
924 /* Add to end of list. */
925 cpu->gdb_num_regs += num_regs;
926 *p = s;
927 if (g_pos) {
928 if (g_pos != s->base_reg) {
929 error_report("Error: Bad gdb register numbering for '%s', "
930 "expected %d got %d", xml, g_pos, s->base_reg);
931 } else {
932 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 }
934 }
935 }
936
937 #ifndef CONFIG_USER_ONLY
938 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
939 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
940 {
941 static const int xlat[] = {
942 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
943 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
944 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
945 };
946
947 CPUClass *cc = CPU_GET_CLASS(cpu);
948 int cputype = xlat[gdbtype];
949
950 if (cc->gdb_stop_before_watchpoint) {
951 cputype |= BP_STOP_BEFORE_ACCESS;
952 }
953 return cputype;
954 }
955 #endif
956
957 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
958 {
959 CPUState *cpu;
960 int err = 0;
961
962 if (kvm_enabled()) {
963 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
964 }
965
966 switch (type) {
967 case GDB_BREAKPOINT_SW:
968 case GDB_BREAKPOINT_HW:
969 CPU_FOREACH(cpu) {
970 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
971 if (err) {
972 break;
973 }
974 }
975 return err;
976 #ifndef CONFIG_USER_ONLY
977 case GDB_WATCHPOINT_WRITE:
978 case GDB_WATCHPOINT_READ:
979 case GDB_WATCHPOINT_ACCESS:
980 CPU_FOREACH(cpu) {
981 err = cpu_watchpoint_insert(cpu, addr, len,
982 xlat_gdb_type(cpu, type), NULL);
983 if (err) {
984 break;
985 }
986 }
987 return err;
988 #endif
989 default:
990 return -ENOSYS;
991 }
992 }
993
994 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
995 {
996 CPUState *cpu;
997 int err = 0;
998
999 if (kvm_enabled()) {
1000 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1001 }
1002
1003 switch (type) {
1004 case GDB_BREAKPOINT_SW:
1005 case GDB_BREAKPOINT_HW:
1006 CPU_FOREACH(cpu) {
1007 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1008 if (err) {
1009 break;
1010 }
1011 }
1012 return err;
1013 #ifndef CONFIG_USER_ONLY
1014 case GDB_WATCHPOINT_WRITE:
1015 case GDB_WATCHPOINT_READ:
1016 case GDB_WATCHPOINT_ACCESS:
1017 CPU_FOREACH(cpu) {
1018 err = cpu_watchpoint_remove(cpu, addr, len,
1019 xlat_gdb_type(cpu, type));
1020 if (err)
1021 break;
1022 }
1023 return err;
1024 #endif
1025 default:
1026 return -ENOSYS;
1027 }
1028 }
1029
1030 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1031 {
1032 cpu_breakpoint_remove_all(cpu, BP_GDB);
1033 #ifndef CONFIG_USER_ONLY
1034 cpu_watchpoint_remove_all(cpu, BP_GDB);
1035 #endif
1036 }
1037
1038 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1039 {
1040 CPUState *cpu = get_first_cpu_in_process(s, p);
1041
1042 while (cpu) {
1043 gdb_cpu_breakpoint_remove_all(cpu);
1044 cpu = gdb_next_cpu_in_process(s, cpu);
1045 }
1046 }
1047
1048 static void gdb_breakpoint_remove_all(void)
1049 {
1050 CPUState *cpu;
1051
1052 if (kvm_enabled()) {
1053 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1054 return;
1055 }
1056
1057 CPU_FOREACH(cpu) {
1058 gdb_cpu_breakpoint_remove_all(cpu);
1059 }
1060 }
1061
1062 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1063 {
1064 CPUState *cpu = s->c_cpu;
1065
1066 cpu_synchronize_state(cpu);
1067 cpu_set_pc(cpu, pc);
1068 }
1069
1070 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1071 char *buf, size_t buf_size)
1072 {
1073 if (s->multiprocess) {
1074 snprintf(buf, buf_size, "p%02x.%02x",
1075 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1076 } else {
1077 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1078 }
1079
1080 return buf;
1081 }
1082
1083 typedef enum GDBThreadIdKind {
1084 GDB_ONE_THREAD = 0,
1085 GDB_ALL_THREADS, /* One process, all threads */
1086 GDB_ALL_PROCESSES,
1087 GDB_READ_THREAD_ERR
1088 } GDBThreadIdKind;
1089
1090 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1091 uint32_t *pid, uint32_t *tid)
1092 {
1093 unsigned long p, t;
1094 int ret;
1095
1096 if (*buf == 'p') {
1097 buf++;
1098 ret = qemu_strtoul(buf, &buf, 16, &p);
1099
1100 if (ret) {
1101 return GDB_READ_THREAD_ERR;
1102 }
1103
1104 /* Skip '.' */
1105 buf++;
1106 } else {
1107 p = 1;
1108 }
1109
1110 ret = qemu_strtoul(buf, &buf, 16, &t);
1111
1112 if (ret) {
1113 return GDB_READ_THREAD_ERR;
1114 }
1115
1116 *end_buf = buf;
1117
1118 if (p == -1) {
1119 return GDB_ALL_PROCESSES;
1120 }
1121
1122 if (pid) {
1123 *pid = p;
1124 }
1125
1126 if (t == -1) {
1127 return GDB_ALL_THREADS;
1128 }
1129
1130 if (tid) {
1131 *tid = t;
1132 }
1133
1134 return GDB_ONE_THREAD;
1135 }
1136
1137 static int is_query_packet(const char *p, const char *query, char separator)
1138 {
1139 unsigned int query_len = strlen(query);
1140
1141 return strncmp(p, query, query_len) == 0 &&
1142 (p[query_len] == '\0' || p[query_len] == separator);
1143 }
1144
1145 /**
1146 * gdb_handle_vcont - Parses and handles a vCont packet.
1147 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1148 * a format error, 0 on success.
1149 */
1150 static int gdb_handle_vcont(GDBState *s, const char *p)
1151 {
1152 int res, signal = 0;
1153 char cur_action;
1154 char *newstates;
1155 unsigned long tmp;
1156 uint32_t pid, tid;
1157 GDBProcess *process;
1158 CPUState *cpu;
1159 GDBThreadIdKind kind;
1160 #ifdef CONFIG_USER_ONLY
1161 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1162
1163 CPU_FOREACH(cpu) {
1164 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1165 }
1166 #endif
1167 /* uninitialised CPUs stay 0 */
1168 newstates = g_new0(char, max_cpus);
1169
1170 /* mark valid CPUs with 1 */
1171 CPU_FOREACH(cpu) {
1172 newstates[cpu->cpu_index] = 1;
1173 }
1174
1175 /*
1176 * res keeps track of what error we are returning, with -ENOTSUP meaning
1177 * that the command is unknown or unsupported, thus returning an empty
1178 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1179 * or incorrect parameters passed.
1180 */
1181 res = 0;
1182 while (*p) {
1183 if (*p++ != ';') {
1184 res = -ENOTSUP;
1185 goto out;
1186 }
1187
1188 cur_action = *p++;
1189 if (cur_action == 'C' || cur_action == 'S') {
1190 cur_action = qemu_tolower(cur_action);
1191 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1192 if (res) {
1193 goto out;
1194 }
1195 signal = gdb_signal_to_target(tmp);
1196 } else if (cur_action != 'c' && cur_action != 's') {
1197 /* unknown/invalid/unsupported command */
1198 res = -ENOTSUP;
1199 goto out;
1200 }
1201
1202 if (*p == '\0' || *p == ';') {
1203 /*
1204 * No thread specifier, action is on "all threads". The
1205 * specification is unclear regarding the process to act on. We
1206 * choose all processes.
1207 */
1208 kind = GDB_ALL_PROCESSES;
1209 } else if (*p++ == ':') {
1210 kind = read_thread_id(p, &p, &pid, &tid);
1211 } else {
1212 res = -ENOTSUP;
1213 goto out;
1214 }
1215
1216 switch (kind) {
1217 case GDB_READ_THREAD_ERR:
1218 res = -EINVAL;
1219 goto out;
1220
1221 case GDB_ALL_PROCESSES:
1222 cpu = gdb_first_attached_cpu(s);
1223 while (cpu) {
1224 if (newstates[cpu->cpu_index] == 1) {
1225 newstates[cpu->cpu_index] = cur_action;
1226 }
1227
1228 cpu = gdb_next_attached_cpu(s, cpu);
1229 }
1230 break;
1231
1232 case GDB_ALL_THREADS:
1233 process = gdb_get_process(s, pid);
1234
1235 if (!process->attached) {
1236 res = -EINVAL;
1237 goto out;
1238 }
1239
1240 cpu = get_first_cpu_in_process(s, process);
1241 while (cpu) {
1242 if (newstates[cpu->cpu_index] == 1) {
1243 newstates[cpu->cpu_index] = cur_action;
1244 }
1245
1246 cpu = gdb_next_cpu_in_process(s, cpu);
1247 }
1248 break;
1249
1250 case GDB_ONE_THREAD:
1251 cpu = gdb_get_cpu(s, pid, tid);
1252
1253 /* invalid CPU/thread specified */
1254 if (!cpu) {
1255 res = -EINVAL;
1256 goto out;
1257 }
1258
1259 /* only use if no previous match occourred */
1260 if (newstates[cpu->cpu_index] == 1) {
1261 newstates[cpu->cpu_index] = cur_action;
1262 }
1263 break;
1264 }
1265 }
1266 s->signal = signal;
1267 gdb_continue_partial(s, newstates);
1268
1269 out:
1270 g_free(newstates);
1271
1272 return res;
1273 }
1274
1275 typedef union GdbCmdVariant {
1276 const char *data;
1277 uint8_t opcode;
1278 unsigned long val_ul;
1279 unsigned long long val_ull;
1280 struct {
1281 GDBThreadIdKind kind;
1282 uint32_t pid;
1283 uint32_t tid;
1284 } thread_id;
1285 } GdbCmdVariant;
1286
1287 static const char *cmd_next_param(const char *param, const char delimiter)
1288 {
1289 static const char all_delimiters[] = ",;:=";
1290 char curr_delimiters[2] = {0};
1291 const char *delimiters;
1292
1293 if (delimiter == '?') {
1294 delimiters = all_delimiters;
1295 } else if (delimiter == '0') {
1296 return strchr(param, '\0');
1297 } else if (delimiter == '.' && *param) {
1298 return param + 1;
1299 } else {
1300 curr_delimiters[0] = delimiter;
1301 delimiters = curr_delimiters;
1302 }
1303
1304 param += strcspn(param, delimiters);
1305 if (*param) {
1306 param++;
1307 }
1308 return param;
1309 }
1310
1311 static int cmd_parse_params(const char *data, const char *schema,
1312 GdbCmdVariant *params, int *num_params)
1313 {
1314 int curr_param;
1315 const char *curr_schema, *curr_data;
1316
1317 *num_params = 0;
1318
1319 if (!schema) {
1320 return 0;
1321 }
1322
1323 curr_schema = schema;
1324 curr_param = 0;
1325 curr_data = data;
1326 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1327 switch (curr_schema[0]) {
1328 case 'l':
1329 if (qemu_strtoul(curr_data, &curr_data, 16,
1330 &params[curr_param].val_ul)) {
1331 return -EINVAL;
1332 }
1333 curr_param++;
1334 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1335 break;
1336 case 'L':
1337 if (qemu_strtou64(curr_data, &curr_data, 16,
1338 (uint64_t *)&params[curr_param].val_ull)) {
1339 return -EINVAL;
1340 }
1341 curr_param++;
1342 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1343 break;
1344 case 's':
1345 params[curr_param].data = curr_data;
1346 curr_param++;
1347 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1348 break;
1349 case 'o':
1350 params[curr_param].opcode = *(uint8_t *)curr_data;
1351 curr_param++;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1353 break;
1354 case 't':
1355 params[curr_param].thread_id.kind =
1356 read_thread_id(curr_data, &curr_data,
1357 &params[curr_param].thread_id.pid,
1358 &params[curr_param].thread_id.tid);
1359 curr_param++;
1360 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1361 break;
1362 case '?':
1363 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1364 break;
1365 default:
1366 return -EINVAL;
1367 }
1368 curr_schema += 2;
1369 }
1370
1371 *num_params = curr_param;
1372 return 0;
1373 }
1374
1375 typedef struct GdbCmdContext {
1376 GDBState *s;
1377 GdbCmdVariant *params;
1378 int num_params;
1379 uint8_t mem_buf[MAX_PACKET_LENGTH];
1380 char str_buf[MAX_PACKET_LENGTH + 1];
1381 } GdbCmdContext;
1382
1383 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1384
1385 /*
1386 * cmd_startswith -> cmd is compared using startswith
1387 *
1388 *
1389 * schema definitions:
1390 * Each schema parameter entry consists of 2 chars,
1391 * the first char represents the parameter type handling
1392 * the second char represents the delimiter for the next parameter
1393 *
1394 * Currently supported schema types:
1395 * 'l' -> unsigned long (stored in .val_ul)
1396 * 'L' -> unsigned long long (stored in .val_ull)
1397 * 's' -> string (stored in .data)
1398 * 'o' -> single char (stored in .opcode)
1399 * 't' -> thread id (stored in .thread_id)
1400 * '?' -> skip according to delimiter
1401 *
1402 * Currently supported delimiters:
1403 * '?' -> Stop at any delimiter (",;:=\0")
1404 * '0' -> Stop at "\0"
1405 * '.' -> Skip 1 char unless reached "\0"
1406 * Any other value is treated as the delimiter value itself
1407 */
1408 typedef struct GdbCmdParseEntry {
1409 GdbCmdHandler handler;
1410 const char *cmd;
1411 bool cmd_startswith;
1412 const char *schema;
1413 } GdbCmdParseEntry;
1414
1415 static inline int startswith(const char *string, const char *pattern)
1416 {
1417 return !strncmp(string, pattern, strlen(pattern));
1418 }
1419
1420 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1421 const GdbCmdParseEntry *cmds, int num_cmds)
1422 {
1423 int i, schema_len, max_num_params = 0;
1424 GdbCmdContext gdb_ctx;
1425
1426 if (!cmds) {
1427 return -1;
1428 }
1429
1430 for (i = 0; i < num_cmds; i++) {
1431 const GdbCmdParseEntry *cmd = &cmds[i];
1432 g_assert(cmd->handler && cmd->cmd);
1433
1434 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1435 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1436 continue;
1437 }
1438
1439 if (cmd->schema) {
1440 schema_len = strlen(cmd->schema);
1441 if (schema_len % 2) {
1442 return -2;
1443 }
1444
1445 max_num_params = schema_len / 2;
1446 }
1447
1448 gdb_ctx.params =
1449 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1450 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1451
1452 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1453 gdb_ctx.params, &gdb_ctx.num_params)) {
1454 return -1;
1455 }
1456
1457 gdb_ctx.s = s;
1458 cmd->handler(&gdb_ctx, user_ctx);
1459 return 0;
1460 }
1461
1462 return -1;
1463 }
1464
1465 static void run_cmd_parser(GDBState *s, const char *data,
1466 const GdbCmdParseEntry *cmd)
1467 {
1468 if (!data) {
1469 return;
1470 }
1471
1472 /* In case there was an error during the command parsing we must
1473 * send a NULL packet to indicate the command is not supported */
1474 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1475 put_packet(s, "");
1476 }
1477 }
1478
1479 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1480 {
1481 GDBProcess *process;
1482 GDBState *s = gdb_ctx->s;
1483 uint32_t pid = 1;
1484
1485 if (s->multiprocess) {
1486 if (!gdb_ctx->num_params) {
1487 put_packet(s, "E22");
1488 return;
1489 }
1490
1491 pid = gdb_ctx->params[0].val_ul;
1492 }
1493
1494 process = gdb_get_process(s, pid);
1495 gdb_process_breakpoint_remove_all(s, process);
1496 process->attached = false;
1497
1498 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1499 s->c_cpu = gdb_first_attached_cpu(s);
1500 }
1501
1502 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1503 s->g_cpu = gdb_first_attached_cpu(s);
1504 }
1505
1506 if (!s->c_cpu) {
1507 /* No more process attached */
1508 gdb_syscall_mode = GDB_SYS_DISABLED;
1509 gdb_continue(s);
1510 }
1511 put_packet(s, "OK");
1512 }
1513
1514 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1515 {
1516 CPUState *cpu;
1517
1518 if (!gdb_ctx->num_params) {
1519 put_packet(gdb_ctx->s, "E22");
1520 return;
1521 }
1522
1523 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1524 put_packet(gdb_ctx->s, "E22");
1525 return;
1526 }
1527
1528 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1529 gdb_ctx->params[0].thread_id.tid);
1530 if (!cpu) {
1531 put_packet(gdb_ctx->s, "E22");
1532 return;
1533 }
1534
1535 put_packet(gdb_ctx->s, "OK");
1536 }
1537
1538 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1539 {
1540 if (gdb_ctx->num_params) {
1541 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1542 }
1543
1544 gdb_ctx->s->signal = 0;
1545 gdb_continue(gdb_ctx->s);
1546 }
1547
1548 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1549 {
1550 unsigned long signal = 0;
1551
1552 /*
1553 * Note: C sig;[addr] is currently unsupported and we simply
1554 * omit the addr parameter
1555 */
1556 if (gdb_ctx->num_params) {
1557 signal = gdb_ctx->params[0].val_ul;
1558 }
1559
1560 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1561 if (gdb_ctx->s->signal == -1) {
1562 gdb_ctx->s->signal = 0;
1563 }
1564 gdb_continue(gdb_ctx->s);
1565 }
1566
1567 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1568 {
1569 CPUState *cpu;
1570 GDBProcess *process;
1571 CPUClass *cc;
1572 const char *p;
1573 uint32_t pid, tid;
1574 int ch, reg_size, type, res;
1575 uint8_t mem_buf[MAX_PACKET_LENGTH];
1576 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1577 char thread_id[16];
1578 uint8_t *registers;
1579 target_ulong addr, len;
1580 GDBThreadIdKind thread_kind;
1581 const GdbCmdParseEntry *cmd_parser = NULL;
1582
1583 trace_gdbstub_io_command(line_buf);
1584
1585 p = line_buf;
1586 ch = *p++;
1587 switch(ch) {
1588 case '!':
1589 put_packet(s, "OK");
1590 break;
1591 case '?':
1592 /* TODO: Make this return the correct value for user-mode. */
1593 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1594 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1595 put_packet(s, buf);
1596 /* Remove all the breakpoints when this query is issued,
1597 * because gdb is doing and initial connect and the state
1598 * should be cleaned up.
1599 */
1600 gdb_breakpoint_remove_all();
1601 break;
1602 case 'c':
1603 {
1604 static const GdbCmdParseEntry continue_cmd_desc = {
1605 .handler = handle_continue,
1606 .cmd = "c",
1607 .cmd_startswith = 1,
1608 .schema = "L0"
1609 };
1610 cmd_parser = &continue_cmd_desc;
1611 }
1612 break;
1613 case 'C':
1614 {
1615 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
1616 .handler = handle_cont_with_sig,
1617 .cmd = "C",
1618 .cmd_startswith = 1,
1619 .schema = "l0"
1620 };
1621 cmd_parser = &cont_with_sig_cmd_desc;
1622 }
1623 break;
1624 case 'v':
1625 if (strncmp(p, "Cont", 4) == 0) {
1626 p += 4;
1627 if (*p == '?') {
1628 put_packet(s, "vCont;c;C;s;S");
1629 break;
1630 }
1631
1632 res = gdb_handle_vcont(s, p);
1633
1634 if (res) {
1635 if ((res == -EINVAL) || (res == -ERANGE)) {
1636 put_packet(s, "E22");
1637 break;
1638 }
1639 goto unknown_command;
1640 }
1641 break;
1642 } else if (strncmp(p, "Attach;", 7) == 0) {
1643 unsigned long pid;
1644
1645 p += 7;
1646
1647 if (qemu_strtoul(p, &p, 16, &pid)) {
1648 put_packet(s, "E22");
1649 break;
1650 }
1651
1652 process = gdb_get_process(s, pid);
1653
1654 if (process == NULL) {
1655 put_packet(s, "E22");
1656 break;
1657 }
1658
1659 cpu = get_first_cpu_in_process(s, process);
1660
1661 if (cpu == NULL) {
1662 /* Refuse to attach an empty process */
1663 put_packet(s, "E22");
1664 break;
1665 }
1666
1667 process->attached = true;
1668
1669 s->g_cpu = cpu;
1670 s->c_cpu = cpu;
1671
1672 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1673 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1674
1675 put_packet(s, buf);
1676 break;
1677 } else if (strncmp(p, "Kill;", 5) == 0) {
1678 /* Kill the target */
1679 put_packet(s, "OK");
1680 error_report("QEMU: Terminated via GDBstub");
1681 exit(0);
1682 } else {
1683 goto unknown_command;
1684 }
1685 case 'k':
1686 /* Kill the target */
1687 error_report("QEMU: Terminated via GDBstub");
1688 exit(0);
1689 case 'D':
1690 {
1691 static const GdbCmdParseEntry detach_cmd_desc = {
1692 .handler = handle_detach,
1693 .cmd = "D",
1694 .cmd_startswith = 1,
1695 .schema = "?.l0"
1696 };
1697 cmd_parser = &detach_cmd_desc;
1698 }
1699 break;
1700 case 's':
1701 if (*p != '\0') {
1702 addr = strtoull(p, (char **)&p, 16);
1703 gdb_set_cpu_pc(s, addr);
1704 }
1705 cpu_single_step(s->c_cpu, sstep_flags);
1706 gdb_continue(s);
1707 return RS_IDLE;
1708 case 'F':
1709 {
1710 target_ulong ret;
1711 target_ulong err;
1712
1713 ret = strtoull(p, (char **)&p, 16);
1714 if (*p == ',') {
1715 p++;
1716 err = strtoull(p, (char **)&p, 16);
1717 } else {
1718 err = 0;
1719 }
1720 if (*p == ',')
1721 p++;
1722 type = *p;
1723 if (s->current_syscall_cb) {
1724 s->current_syscall_cb(s->c_cpu, ret, err);
1725 s->current_syscall_cb = NULL;
1726 }
1727 if (type == 'C') {
1728 put_packet(s, "T02");
1729 } else {
1730 gdb_continue(s);
1731 }
1732 }
1733 break;
1734 case 'g':
1735 cpu_synchronize_state(s->g_cpu);
1736 len = 0;
1737 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1738 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1739 len += reg_size;
1740 }
1741 memtohex(buf, mem_buf, len);
1742 put_packet(s, buf);
1743 break;
1744 case 'G':
1745 cpu_synchronize_state(s->g_cpu);
1746 registers = mem_buf;
1747 len = strlen(p) / 2;
1748 hextomem((uint8_t *)registers, p, len);
1749 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1750 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1751 len -= reg_size;
1752 registers += reg_size;
1753 }
1754 put_packet(s, "OK");
1755 break;
1756 case 'm':
1757 addr = strtoull(p, (char **)&p, 16);
1758 if (*p == ',')
1759 p++;
1760 len = strtoull(p, NULL, 16);
1761
1762 /* memtohex() doubles the required space */
1763 if (len > MAX_PACKET_LENGTH / 2) {
1764 put_packet (s, "E22");
1765 break;
1766 }
1767
1768 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1769 put_packet (s, "E14");
1770 } else {
1771 memtohex(buf, mem_buf, len);
1772 put_packet(s, buf);
1773 }
1774 break;
1775 case 'M':
1776 addr = strtoull(p, (char **)&p, 16);
1777 if (*p == ',')
1778 p++;
1779 len = strtoull(p, (char **)&p, 16);
1780 if (*p == ':')
1781 p++;
1782
1783 /* hextomem() reads 2*len bytes */
1784 if (len > strlen(p) / 2) {
1785 put_packet (s, "E22");
1786 break;
1787 }
1788 hextomem(mem_buf, p, len);
1789 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1790 true) != 0) {
1791 put_packet(s, "E14");
1792 } else {
1793 put_packet(s, "OK");
1794 }
1795 break;
1796 case 'p':
1797 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1798 This works, but can be very slow. Anything new enough to
1799 understand XML also knows how to use this properly. */
1800 if (!gdb_has_xml)
1801 goto unknown_command;
1802 addr = strtoull(p, (char **)&p, 16);
1803 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1804 if (reg_size) {
1805 memtohex(buf, mem_buf, reg_size);
1806 put_packet(s, buf);
1807 } else {
1808 put_packet(s, "E14");
1809 }
1810 break;
1811 case 'P':
1812 if (!gdb_has_xml)
1813 goto unknown_command;
1814 addr = strtoull(p, (char **)&p, 16);
1815 if (*p == '=')
1816 p++;
1817 reg_size = strlen(p) / 2;
1818 hextomem(mem_buf, p, reg_size);
1819 gdb_write_register(s->g_cpu, mem_buf, addr);
1820 put_packet(s, "OK");
1821 break;
1822 case 'Z':
1823 case 'z':
1824 type = strtoul(p, (char **)&p, 16);
1825 if (*p == ',')
1826 p++;
1827 addr = strtoull(p, (char **)&p, 16);
1828 if (*p == ',')
1829 p++;
1830 len = strtoull(p, (char **)&p, 16);
1831 if (ch == 'Z')
1832 res = gdb_breakpoint_insert(addr, len, type);
1833 else
1834 res = gdb_breakpoint_remove(addr, len, type);
1835 if (res >= 0)
1836 put_packet(s, "OK");
1837 else if (res == -ENOSYS)
1838 put_packet(s, "");
1839 else
1840 put_packet(s, "E22");
1841 break;
1842 case 'H':
1843 type = *p++;
1844
1845 thread_kind = read_thread_id(p, &p, &pid, &tid);
1846 if (thread_kind == GDB_READ_THREAD_ERR) {
1847 put_packet(s, "E22");
1848 break;
1849 }
1850
1851 if (thread_kind != GDB_ONE_THREAD) {
1852 put_packet(s, "OK");
1853 break;
1854 }
1855 cpu = gdb_get_cpu(s, pid, tid);
1856 if (cpu == NULL) {
1857 put_packet(s, "E22");
1858 break;
1859 }
1860 switch (type) {
1861 case 'c':
1862 s->c_cpu = cpu;
1863 put_packet(s, "OK");
1864 break;
1865 case 'g':
1866 s->g_cpu = cpu;
1867 put_packet(s, "OK");
1868 break;
1869 default:
1870 put_packet(s, "E22");
1871 break;
1872 }
1873 break;
1874 case 'T':
1875 {
1876 static const GdbCmdParseEntry thread_alive_cmd_desc = {
1877 .handler = handle_thread_alive,
1878 .cmd = "T",
1879 .cmd_startswith = 1,
1880 .schema = "t0"
1881 };
1882 cmd_parser = &thread_alive_cmd_desc;
1883 }
1884 break;
1885 case 'q':
1886 case 'Q':
1887 /* parse any 'q' packets here */
1888 if (!strcmp(p,"qemu.sstepbits")) {
1889 /* Query Breakpoint bit definitions */
1890 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1891 SSTEP_ENABLE,
1892 SSTEP_NOIRQ,
1893 SSTEP_NOTIMER);
1894 put_packet(s, buf);
1895 break;
1896 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1897 /* Display or change the sstep_flags */
1898 p += 10;
1899 if (*p != '=') {
1900 /* Display current setting */
1901 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1902 put_packet(s, buf);
1903 break;
1904 }
1905 p++;
1906 type = strtoul(p, (char **)&p, 16);
1907 sstep_flags = type;
1908 put_packet(s, "OK");
1909 break;
1910 } else if (strcmp(p,"C") == 0) {
1911 /*
1912 * "Current thread" remains vague in the spec, so always return
1913 * the first thread of the current process (gdb returns the
1914 * first thread).
1915 */
1916 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1917 snprintf(buf, sizeof(buf), "QC%s",
1918 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1919 put_packet(s, buf);
1920 break;
1921 } else if (strcmp(p,"fThreadInfo") == 0) {
1922 s->query_cpu = gdb_first_attached_cpu(s);
1923 goto report_cpuinfo;
1924 } else if (strcmp(p,"sThreadInfo") == 0) {
1925 report_cpuinfo:
1926 if (s->query_cpu) {
1927 snprintf(buf, sizeof(buf), "m%s",
1928 gdb_fmt_thread_id(s, s->query_cpu,
1929 thread_id, sizeof(thread_id)));
1930 put_packet(s, buf);
1931 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1932 } else
1933 put_packet(s, "l");
1934 break;
1935 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1936 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1937 put_packet(s, "E22");
1938 break;
1939 }
1940 cpu = gdb_get_cpu(s, pid, tid);
1941 if (cpu != NULL) {
1942 cpu_synchronize_state(cpu);
1943
1944 if (s->multiprocess && (s->process_num > 1)) {
1945 /* Print the CPU model and name in multiprocess mode */
1946 ObjectClass *oc = object_get_class(OBJECT(cpu));
1947 const char *cpu_model = object_class_get_name(oc);
1948 char *cpu_name =
1949 object_get_canonical_path_component(OBJECT(cpu));
1950 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1951 "%s %s [%s]", cpu_model, cpu_name,
1952 cpu->halted ? "halted " : "running");
1953 g_free(cpu_name);
1954 } else {
1955 /* memtohex() doubles the required space */
1956 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1957 "CPU#%d [%s]", cpu->cpu_index,
1958 cpu->halted ? "halted " : "running");
1959 }
1960 trace_gdbstub_op_extra_info((char *)mem_buf);
1961 memtohex(buf, mem_buf, len);
1962 put_packet(s, buf);
1963 }
1964 break;
1965 }
1966 #ifdef CONFIG_USER_ONLY
1967 else if (strcmp(p, "Offsets") == 0) {
1968 TaskState *ts = s->c_cpu->opaque;
1969
1970 snprintf(buf, sizeof(buf),
1971 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1972 ";Bss=" TARGET_ABI_FMT_lx,
1973 ts->info->code_offset,
1974 ts->info->data_offset,
1975 ts->info->data_offset);
1976 put_packet(s, buf);
1977 break;
1978 }
1979 #else /* !CONFIG_USER_ONLY */
1980 else if (strncmp(p, "Rcmd,", 5) == 0) {
1981 int len = strlen(p + 5);
1982
1983 if ((len % 2) != 0) {
1984 put_packet(s, "E01");
1985 break;
1986 }
1987 len = len / 2;
1988 hextomem(mem_buf, p + 5, len);
1989 mem_buf[len++] = 0;
1990 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1991 put_packet(s, "OK");
1992 break;
1993 }
1994 #endif /* !CONFIG_USER_ONLY */
1995 if (is_query_packet(p, "Supported", ':')) {
1996 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1997 cc = CPU_GET_CLASS(first_cpu);
1998 if (cc->gdb_core_xml_file != NULL) {
1999 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2000 }
2001
2002 if (strstr(p, "multiprocess+")) {
2003 s->multiprocess = true;
2004 }
2005 pstrcat(buf, sizeof(buf), ";multiprocess+");
2006
2007 put_packet(s, buf);
2008 break;
2009 }
2010 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2011 const char *xml;
2012 target_ulong total_len;
2013
2014 process = gdb_get_cpu_process(s, s->g_cpu);
2015 cc = CPU_GET_CLASS(s->g_cpu);
2016 if (cc->gdb_core_xml_file == NULL) {
2017 goto unknown_command;
2018 }
2019
2020 gdb_has_xml = true;
2021 p += 19;
2022 xml = get_feature_xml(s, p, &p, process);
2023 if (!xml) {
2024 snprintf(buf, sizeof(buf), "E00");
2025 put_packet(s, buf);
2026 break;
2027 }
2028
2029 if (*p == ':')
2030 p++;
2031 addr = strtoul(p, (char **)&p, 16);
2032 if (*p == ',')
2033 p++;
2034 len = strtoul(p, (char **)&p, 16);
2035
2036 total_len = strlen(xml);
2037 if (addr > total_len) {
2038 snprintf(buf, sizeof(buf), "E00");
2039 put_packet(s, buf);
2040 break;
2041 }
2042 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2043 len = (MAX_PACKET_LENGTH - 5) / 2;
2044 if (len < total_len - addr) {
2045 buf[0] = 'm';
2046 len = memtox(buf + 1, xml + addr, len);
2047 } else {
2048 buf[0] = 'l';
2049 len = memtox(buf + 1, xml + addr, total_len - addr);
2050 }
2051 put_packet_binary(s, buf, len + 1, true);
2052 break;
2053 }
2054 if (is_query_packet(p, "Attached", ':')) {
2055 put_packet(s, GDB_ATTACHED);
2056 break;
2057 }
2058 /* Unrecognised 'q' command. */
2059 goto unknown_command;
2060
2061 default:
2062 unknown_command:
2063 /* put empty packet */
2064 buf[0] = '\0';
2065 put_packet(s, buf);
2066 break;
2067 }
2068
2069 run_cmd_parser(s, line_buf, cmd_parser);
2070
2071 return RS_IDLE;
2072 }
2073
2074 void gdb_set_stop_cpu(CPUState *cpu)
2075 {
2076 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2077
2078 if (!p->attached) {
2079 /*
2080 * Having a stop CPU corresponding to a process that is not attached
2081 * confuses GDB. So we ignore the request.
2082 */
2083 return;
2084 }
2085
2086 gdbserver_state->c_cpu = cpu;
2087 gdbserver_state->g_cpu = cpu;
2088 }
2089
2090 #ifndef CONFIG_USER_ONLY
2091 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2092 {
2093 GDBState *s = gdbserver_state;
2094 CPUState *cpu = s->c_cpu;
2095 char buf[256];
2096 char thread_id[16];
2097 const char *type;
2098 int ret;
2099
2100 if (running || s->state == RS_INACTIVE) {
2101 return;
2102 }
2103 /* Is there a GDB syscall waiting to be sent? */
2104 if (s->current_syscall_cb) {
2105 put_packet(s, s->syscall_buf);
2106 return;
2107 }
2108
2109 if (cpu == NULL) {
2110 /* No process attached */
2111 return;
2112 }
2113
2114 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2115
2116 switch (state) {
2117 case RUN_STATE_DEBUG:
2118 if (cpu->watchpoint_hit) {
2119 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2120 case BP_MEM_READ:
2121 type = "r";
2122 break;
2123 case BP_MEM_ACCESS:
2124 type = "a";
2125 break;
2126 default:
2127 type = "";
2128 break;
2129 }
2130 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2131 (target_ulong)cpu->watchpoint_hit->vaddr);
2132 snprintf(buf, sizeof(buf),
2133 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2134 GDB_SIGNAL_TRAP, thread_id, type,
2135 (target_ulong)cpu->watchpoint_hit->vaddr);
2136 cpu->watchpoint_hit = NULL;
2137 goto send_packet;
2138 } else {
2139 trace_gdbstub_hit_break();
2140 }
2141 tb_flush(cpu);
2142 ret = GDB_SIGNAL_TRAP;
2143 break;
2144 case RUN_STATE_PAUSED:
2145 trace_gdbstub_hit_paused();
2146 ret = GDB_SIGNAL_INT;
2147 break;
2148 case RUN_STATE_SHUTDOWN:
2149 trace_gdbstub_hit_shutdown();
2150 ret = GDB_SIGNAL_QUIT;
2151 break;
2152 case RUN_STATE_IO_ERROR:
2153 trace_gdbstub_hit_io_error();
2154 ret = GDB_SIGNAL_IO;
2155 break;
2156 case RUN_STATE_WATCHDOG:
2157 trace_gdbstub_hit_watchdog();
2158 ret = GDB_SIGNAL_ALRM;
2159 break;
2160 case RUN_STATE_INTERNAL_ERROR:
2161 trace_gdbstub_hit_internal_error();
2162 ret = GDB_SIGNAL_ABRT;
2163 break;
2164 case RUN_STATE_SAVE_VM:
2165 case RUN_STATE_RESTORE_VM:
2166 return;
2167 case RUN_STATE_FINISH_MIGRATE:
2168 ret = GDB_SIGNAL_XCPU;
2169 break;
2170 default:
2171 trace_gdbstub_hit_unknown(state);
2172 ret = GDB_SIGNAL_UNKNOWN;
2173 break;
2174 }
2175 gdb_set_stop_cpu(cpu);
2176 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2177
2178 send_packet:
2179 put_packet(s, buf);
2180
2181 /* disable single step if it was enabled */
2182 cpu_single_step(cpu, 0);
2183 }
2184 #endif
2185
2186 /* Send a gdb syscall request.
2187 This accepts limited printf-style format specifiers, specifically:
2188 %x - target_ulong argument printed in hex.
2189 %lx - 64-bit argument printed in hex.
2190 %s - string pointer (target_ulong) and length (int) pair. */
2191 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2192 {
2193 char *p;
2194 char *p_end;
2195 target_ulong addr;
2196 uint64_t i64;
2197 GDBState *s;
2198
2199 s = gdbserver_state;
2200 if (!s)
2201 return;
2202 s->current_syscall_cb = cb;
2203 #ifndef CONFIG_USER_ONLY
2204 vm_stop(RUN_STATE_DEBUG);
2205 #endif
2206 p = s->syscall_buf;
2207 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2208 *(p++) = 'F';
2209 while (*fmt) {
2210 if (*fmt == '%') {
2211 fmt++;
2212 switch (*fmt++) {
2213 case 'x':
2214 addr = va_arg(va, target_ulong);
2215 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2216 break;
2217 case 'l':
2218 if (*(fmt++) != 'x')
2219 goto bad_format;
2220 i64 = va_arg(va, uint64_t);
2221 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2222 break;
2223 case 's':
2224 addr = va_arg(va, target_ulong);
2225 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2226 addr, va_arg(va, int));
2227 break;
2228 default:
2229 bad_format:
2230 error_report("gdbstub: Bad syscall format string '%s'",
2231 fmt - 1);
2232 break;
2233 }
2234 } else {
2235 *(p++) = *(fmt++);
2236 }
2237 }
2238 *p = 0;
2239 #ifdef CONFIG_USER_ONLY
2240 put_packet(s, s->syscall_buf);
2241 /* Return control to gdb for it to process the syscall request.
2242 * Since the protocol requires that gdb hands control back to us
2243 * using a "here are the results" F packet, we don't need to check
2244 * gdb_handlesig's return value (which is the signal to deliver if
2245 * execution was resumed via a continue packet).
2246 */
2247 gdb_handlesig(s->c_cpu, 0);
2248 #else
2249 /* In this case wait to send the syscall packet until notification that
2250 the CPU has stopped. This must be done because if the packet is sent
2251 now the reply from the syscall request could be received while the CPU
2252 is still in the running state, which can cause packets to be dropped
2253 and state transition 'T' packets to be sent while the syscall is still
2254 being processed. */
2255 qemu_cpu_kick(s->c_cpu);
2256 #endif
2257 }
2258
2259 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2260 {
2261 va_list va;
2262
2263 va_start(va, fmt);
2264 gdb_do_syscallv(cb, fmt, va);
2265 va_end(va);
2266 }
2267
2268 static void gdb_read_byte(GDBState *s, uint8_t ch)
2269 {
2270 uint8_t reply;
2271
2272 #ifndef CONFIG_USER_ONLY
2273 if (s->last_packet_len) {
2274 /* Waiting for a response to the last packet. If we see the start
2275 of a new command then abandon the previous response. */
2276 if (ch == '-') {
2277 trace_gdbstub_err_got_nack();
2278 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2279 } else if (ch == '+') {
2280 trace_gdbstub_io_got_ack();
2281 } else {
2282 trace_gdbstub_io_got_unexpected(ch);
2283 }
2284
2285 if (ch == '+' || ch == '$')
2286 s->last_packet_len = 0;
2287 if (ch != '$')
2288 return;
2289 }
2290 if (runstate_is_running()) {
2291 /* when the CPU is running, we cannot do anything except stop
2292 it when receiving a char */
2293 vm_stop(RUN_STATE_PAUSED);
2294 } else
2295 #endif
2296 {
2297 switch(s->state) {
2298 case RS_IDLE:
2299 if (ch == '$') {
2300 /* start of command packet */
2301 s->line_buf_index = 0;
2302 s->line_sum = 0;
2303 s->state = RS_GETLINE;
2304 } else {
2305 trace_gdbstub_err_garbage(ch);
2306 }
2307 break;
2308 case RS_GETLINE:
2309 if (ch == '}') {
2310 /* start escape sequence */
2311 s->state = RS_GETLINE_ESC;
2312 s->line_sum += ch;
2313 } else if (ch == '*') {
2314 /* start run length encoding sequence */
2315 s->state = RS_GETLINE_RLE;
2316 s->line_sum += ch;
2317 } else if (ch == '#') {
2318 /* end of command, start of checksum*/
2319 s->state = RS_CHKSUM1;
2320 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2321 trace_gdbstub_err_overrun();
2322 s->state = RS_IDLE;
2323 } else {
2324 /* unescaped command character */
2325 s->line_buf[s->line_buf_index++] = ch;
2326 s->line_sum += ch;
2327 }
2328 break;
2329 case RS_GETLINE_ESC:
2330 if (ch == '#') {
2331 /* unexpected end of command in escape sequence */
2332 s->state = RS_CHKSUM1;
2333 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2334 /* command buffer overrun */
2335 trace_gdbstub_err_overrun();
2336 s->state = RS_IDLE;
2337 } else {
2338 /* parse escaped character and leave escape state */
2339 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2340 s->line_sum += ch;
2341 s->state = RS_GETLINE;
2342 }
2343 break;
2344 case RS_GETLINE_RLE:
2345 /*
2346 * Run-length encoding is explained in "Debugging with GDB /
2347 * Appendix E GDB Remote Serial Protocol / Overview".
2348 */
2349 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2350 /* invalid RLE count encoding */
2351 trace_gdbstub_err_invalid_repeat(ch);
2352 s->state = RS_GETLINE;
2353 } else {
2354 /* decode repeat length */
2355 int repeat = ch - ' ' + 3;
2356 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2357 /* that many repeats would overrun the command buffer */
2358 trace_gdbstub_err_overrun();
2359 s->state = RS_IDLE;
2360 } else if (s->line_buf_index < 1) {
2361 /* got a repeat but we have nothing to repeat */
2362 trace_gdbstub_err_invalid_rle();
2363 s->state = RS_GETLINE;
2364 } else {
2365 /* repeat the last character */
2366 memset(s->line_buf + s->line_buf_index,
2367 s->line_buf[s->line_buf_index - 1], repeat);
2368 s->line_buf_index += repeat;
2369 s->line_sum += ch;
2370 s->state = RS_GETLINE;
2371 }
2372 }
2373 break;
2374 case RS_CHKSUM1:
2375 /* get high hex digit of checksum */
2376 if (!isxdigit(ch)) {
2377 trace_gdbstub_err_checksum_invalid(ch);
2378 s->state = RS_GETLINE;
2379 break;
2380 }
2381 s->line_buf[s->line_buf_index] = '\0';
2382 s->line_csum = fromhex(ch) << 4;
2383 s->state = RS_CHKSUM2;
2384 break;
2385 case RS_CHKSUM2:
2386 /* get low hex digit of checksum */
2387 if (!isxdigit(ch)) {
2388 trace_gdbstub_err_checksum_invalid(ch);
2389 s->state = RS_GETLINE;
2390 break;
2391 }
2392 s->line_csum |= fromhex(ch);
2393
2394 if (s->line_csum != (s->line_sum & 0xff)) {
2395 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2396 /* send NAK reply */
2397 reply = '-';
2398 put_buffer(s, &reply, 1);
2399 s->state = RS_IDLE;
2400 } else {
2401 /* send ACK reply */
2402 reply = '+';
2403 put_buffer(s, &reply, 1);
2404 s->state = gdb_handle_packet(s, s->line_buf);
2405 }
2406 break;
2407 default:
2408 abort();
2409 }
2410 }
2411 }
2412
2413 /* Tell the remote gdb that the process has exited. */
2414 void gdb_exit(CPUArchState *env, int code)
2415 {
2416 GDBState *s;
2417 char buf[4];
2418
2419 s = gdbserver_state;
2420 if (!s) {
2421 return;
2422 }
2423 #ifdef CONFIG_USER_ONLY
2424 if (gdbserver_fd < 0 || s->fd < 0) {
2425 return;
2426 }
2427 #endif
2428
2429 trace_gdbstub_op_exiting((uint8_t)code);
2430
2431 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2432 put_packet(s, buf);
2433
2434 #ifndef CONFIG_USER_ONLY
2435 qemu_chr_fe_deinit(&s->chr, true);
2436 #endif
2437 }
2438
2439 /*
2440 * Create the process that will contain all the "orphan" CPUs (that are not
2441 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2442 * be attachable and thus will be invisible to the user.
2443 */
2444 static void create_default_process(GDBState *s)
2445 {
2446 GDBProcess *process;
2447 int max_pid = 0;
2448
2449 if (s->process_num) {
2450 max_pid = s->processes[s->process_num - 1].pid;
2451 }
2452
2453 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2454 process = &s->processes[s->process_num - 1];
2455
2456 /* We need an available PID slot for this process */
2457 assert(max_pid < UINT32_MAX);
2458
2459 process->pid = max_pid + 1;
2460 process->attached = false;
2461 process->target_xml[0] = '\0';
2462 }
2463
2464 #ifdef CONFIG_USER_ONLY
2465 int
2466 gdb_handlesig(CPUState *cpu, int sig)
2467 {
2468 GDBState *s;
2469 char buf[256];
2470 int n;
2471
2472 s = gdbserver_state;
2473 if (gdbserver_fd < 0 || s->fd < 0) {
2474 return sig;
2475 }
2476
2477 /* disable single step if it was enabled */
2478 cpu_single_step(cpu, 0);
2479 tb_flush(cpu);
2480
2481 if (sig != 0) {
2482 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2483 put_packet(s, buf);
2484 }
2485 /* put_packet() might have detected that the peer terminated the
2486 connection. */
2487 if (s->fd < 0) {
2488 return sig;
2489 }
2490
2491 sig = 0;
2492 s->state = RS_IDLE;
2493 s->running_state = 0;
2494 while (s->running_state == 0) {
2495 n = read(s->fd, buf, 256);
2496 if (n > 0) {
2497 int i;
2498
2499 for (i = 0; i < n; i++) {
2500 gdb_read_byte(s, buf[i]);
2501 }
2502 } else {
2503 /* XXX: Connection closed. Should probably wait for another
2504 connection before continuing. */
2505 if (n == 0) {
2506 close(s->fd);
2507 }
2508 s->fd = -1;
2509 return sig;
2510 }
2511 }
2512 sig = s->signal;
2513 s->signal = 0;
2514 return sig;
2515 }
2516
2517 /* Tell the remote gdb that the process has exited due to SIG. */
2518 void gdb_signalled(CPUArchState *env, int sig)
2519 {
2520 GDBState *s;
2521 char buf[4];
2522
2523 s = gdbserver_state;
2524 if (gdbserver_fd < 0 || s->fd < 0) {
2525 return;
2526 }
2527
2528 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2529 put_packet(s, buf);
2530 }
2531
2532 static bool gdb_accept(void)
2533 {
2534 GDBState *s;
2535 struct sockaddr_in sockaddr;
2536 socklen_t len;
2537 int fd;
2538
2539 for(;;) {
2540 len = sizeof(sockaddr);
2541 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2542 if (fd < 0 && errno != EINTR) {
2543 perror("accept");
2544 return false;
2545 } else if (fd >= 0) {
2546 qemu_set_cloexec(fd);
2547 break;
2548 }
2549 }
2550
2551 /* set short latency */
2552 if (socket_set_nodelay(fd)) {
2553 perror("setsockopt");
2554 close(fd);
2555 return false;
2556 }
2557
2558 s = g_malloc0(sizeof(GDBState));
2559 create_default_process(s);
2560 s->processes[0].attached = true;
2561 s->c_cpu = gdb_first_attached_cpu(s);
2562 s->g_cpu = s->c_cpu;
2563 s->fd = fd;
2564 gdb_has_xml = false;
2565
2566 gdbserver_state = s;
2567 return true;
2568 }
2569
2570 static int gdbserver_open(int port)
2571 {
2572 struct sockaddr_in sockaddr;
2573 int fd, ret;
2574
2575 fd = socket(PF_INET, SOCK_STREAM, 0);
2576 if (fd < 0) {
2577 perror("socket");
2578 return -1;
2579 }
2580 qemu_set_cloexec(fd);
2581
2582 socket_set_fast_reuse(fd);
2583
2584 sockaddr.sin_family = AF_INET;
2585 sockaddr.sin_port = htons(port);
2586 sockaddr.sin_addr.s_addr = 0;
2587 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2588 if (ret < 0) {
2589 perror("bind");
2590 close(fd);
2591 return -1;
2592 }
2593 ret = listen(fd, 1);
2594 if (ret < 0) {
2595 perror("listen");
2596 close(fd);
2597 return -1;
2598 }
2599 return fd;
2600 }
2601
2602 int gdbserver_start(int port)
2603 {
2604 gdbserver_fd = gdbserver_open(port);
2605 if (gdbserver_fd < 0)
2606 return -1;
2607 /* accept connections */
2608 if (!gdb_accept()) {
2609 close(gdbserver_fd);
2610 gdbserver_fd = -1;
2611 return -1;
2612 }
2613 return 0;
2614 }
2615
2616 /* Disable gdb stub for child processes. */
2617 void gdbserver_fork(CPUState *cpu)
2618 {
2619 GDBState *s = gdbserver_state;
2620
2621 if (gdbserver_fd < 0 || s->fd < 0) {
2622 return;
2623 }
2624 close(s->fd);
2625 s->fd = -1;
2626 cpu_breakpoint_remove_all(cpu, BP_GDB);
2627 cpu_watchpoint_remove_all(cpu, BP_GDB);
2628 }
2629 #else
2630 static int gdb_chr_can_receive(void *opaque)
2631 {
2632 /* We can handle an arbitrarily large amount of data.
2633 Pick the maximum packet size, which is as good as anything. */
2634 return MAX_PACKET_LENGTH;
2635 }
2636
2637 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2638 {
2639 int i;
2640
2641 for (i = 0; i < size; i++) {
2642 gdb_read_byte(gdbserver_state, buf[i]);
2643 }
2644 }
2645
2646 static void gdb_chr_event(void *opaque, int event)
2647 {
2648 int i;
2649 GDBState *s = (GDBState *) opaque;
2650
2651 switch (event) {
2652 case CHR_EVENT_OPENED:
2653 /* Start with first process attached, others detached */
2654 for (i = 0; i < s->process_num; i++) {
2655 s->processes[i].attached = !i;
2656 }
2657
2658 s->c_cpu = gdb_first_attached_cpu(s);
2659 s->g_cpu = s->c_cpu;
2660
2661 vm_stop(RUN_STATE_PAUSED);
2662 gdb_has_xml = false;
2663 break;
2664 default:
2665 break;
2666 }
2667 }
2668
2669 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2670 {
2671 char buf[MAX_PACKET_LENGTH];
2672
2673 buf[0] = 'O';
2674 if (len > (MAX_PACKET_LENGTH/2) - 1)
2675 len = (MAX_PACKET_LENGTH/2) - 1;
2676 memtohex(buf + 1, (uint8_t *)msg, len);
2677 put_packet(s, buf);
2678 }
2679
2680 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2681 {
2682 const char *p = (const char *)buf;
2683 int max_sz;
2684
2685 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2686 for (;;) {
2687 if (len <= max_sz) {
2688 gdb_monitor_output(gdbserver_state, p, len);
2689 break;
2690 }
2691 gdb_monitor_output(gdbserver_state, p, max_sz);
2692 p += max_sz;
2693 len -= max_sz;
2694 }
2695 return len;
2696 }
2697
2698 #ifndef _WIN32
2699 static void gdb_sigterm_handler(int signal)
2700 {
2701 if (runstate_is_running()) {
2702 vm_stop(RUN_STATE_PAUSED);
2703 }
2704 }
2705 #endif
2706
2707 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2708 bool *be_opened, Error **errp)
2709 {
2710 *be_opened = false;
2711 }
2712
2713 static void char_gdb_class_init(ObjectClass *oc, void *data)
2714 {
2715 ChardevClass *cc = CHARDEV_CLASS(oc);
2716
2717 cc->internal = true;
2718 cc->open = gdb_monitor_open;
2719 cc->chr_write = gdb_monitor_write;
2720 }
2721
2722 #define TYPE_CHARDEV_GDB "chardev-gdb"
2723
2724 static const TypeInfo char_gdb_type_info = {
2725 .name = TYPE_CHARDEV_GDB,
2726 .parent = TYPE_CHARDEV,
2727 .class_init = char_gdb_class_init,
2728 };
2729
2730 static int find_cpu_clusters(Object *child, void *opaque)
2731 {
2732 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2733 GDBState *s = (GDBState *) opaque;
2734 CPUClusterState *cluster = CPU_CLUSTER(child);
2735 GDBProcess *process;
2736
2737 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2738
2739 process = &s->processes[s->process_num - 1];
2740
2741 /*
2742 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2743 * runtime, we enforce here that the machine does not use a cluster ID
2744 * that would lead to PID 0.
2745 */
2746 assert(cluster->cluster_id != UINT32_MAX);
2747 process->pid = cluster->cluster_id + 1;
2748 process->attached = false;
2749 process->target_xml[0] = '\0';
2750
2751 return 0;
2752 }
2753
2754 return object_child_foreach(child, find_cpu_clusters, opaque);
2755 }
2756
2757 static int pid_order(const void *a, const void *b)
2758 {
2759 GDBProcess *pa = (GDBProcess *) a;
2760 GDBProcess *pb = (GDBProcess *) b;
2761
2762 if (pa->pid < pb->pid) {
2763 return -1;
2764 } else if (pa->pid > pb->pid) {
2765 return 1;
2766 } else {
2767 return 0;
2768 }
2769 }
2770
2771 static void create_processes(GDBState *s)
2772 {
2773 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2774
2775 if (s->processes) {
2776 /* Sort by PID */
2777 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2778 }
2779
2780 create_default_process(s);
2781 }
2782
2783 static void cleanup_processes(GDBState *s)
2784 {
2785 g_free(s->processes);
2786 s->process_num = 0;
2787 s->processes = NULL;
2788 }
2789
2790 int gdbserver_start(const char *device)
2791 {
2792 trace_gdbstub_op_start(device);
2793
2794 GDBState *s;
2795 char gdbstub_device_name[128];
2796 Chardev *chr = NULL;
2797 Chardev *mon_chr;
2798
2799 if (!first_cpu) {
2800 error_report("gdbstub: meaningless to attach gdb to a "
2801 "machine without any CPU.");
2802 return -1;
2803 }
2804
2805 if (!device)
2806 return -1;
2807 if (strcmp(device, "none") != 0) {
2808 if (strstart(device, "tcp:", NULL)) {
2809 /* enforce required TCP attributes */
2810 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2811 "%s,nowait,nodelay,server", device);
2812 device = gdbstub_device_name;
2813 }
2814 #ifndef _WIN32
2815 else if (strcmp(device, "stdio") == 0) {
2816 struct sigaction act;
2817
2818 memset(&act, 0, sizeof(act));
2819 act.sa_handler = gdb_sigterm_handler;
2820 sigaction(SIGINT, &act, NULL);
2821 }
2822 #endif
2823 /*
2824 * FIXME: it's a bit weird to allow using a mux chardev here
2825 * and implicitly setup a monitor. We may want to break this.
2826 */
2827 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
2828 if (!chr)
2829 return -1;
2830 }
2831
2832 s = gdbserver_state;
2833 if (!s) {
2834 s = g_malloc0(sizeof(GDBState));
2835 gdbserver_state = s;
2836
2837 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2838
2839 /* Initialize a monitor terminal for gdb */
2840 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2841 NULL, NULL, &error_abort);
2842 monitor_init(mon_chr, 0);
2843 } else {
2844 qemu_chr_fe_deinit(&s->chr, true);
2845 mon_chr = s->mon_chr;
2846 cleanup_processes(s);
2847 memset(s, 0, sizeof(GDBState));
2848 s->mon_chr = mon_chr;
2849 }
2850
2851 create_processes(s);
2852
2853 if (chr) {
2854 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2855 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2856 gdb_chr_event, NULL, s, NULL, true);
2857 }
2858 s->state = chr ? RS_IDLE : RS_INACTIVE;
2859 s->mon_chr = mon_chr;
2860 s->current_syscall_cb = NULL;
2861
2862 return 0;
2863 }
2864
2865 void gdbserver_cleanup(void)
2866 {
2867 if (gdbserver_state) {
2868 put_packet(gdbserver_state, "W00");
2869 }
2870 }
2871
2872 static void register_types(void)
2873 {
2874 type_register_static(&char_gdb_type_info);
2875 }
2876
2877 type_init(register_types);
2878 #endif