]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: Return appropriate watch message to gdb (Jan Kiszka)
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
30
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "qemu_socket.h"
41 #ifdef _WIN32
42 /* XXX: these constants may be independent of the host ones even for Unix */
43 #ifndef SIGTRAP
44 #define SIGTRAP 5
45 #endif
46 #ifndef SIGINT
47 #define SIGINT 2
48 #endif
49 #else
50 #include <signal.h>
51 #endif
52
53 //#define DEBUG_GDB
54
55 typedef struct GDBRegisterState {
56 int base_reg;
57 int num_regs;
58 gdb_reg_cb get_reg;
59 gdb_reg_cb set_reg;
60 const char *xml;
61 struct GDBRegisterState *next;
62 } GDBRegisterState;
63
64 enum RSState {
65 RS_IDLE,
66 RS_GETLINE,
67 RS_CHKSUM1,
68 RS_CHKSUM2,
69 RS_SYSCALL,
70 };
71 typedef struct GDBState {
72 CPUState *env; /* current CPU */
73 enum RSState state; /* parsing state */
74 char line_buf[MAX_PACKET_LENGTH];
75 int line_buf_index;
76 int line_csum;
77 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
78 int last_packet_len;
79 int signal;
80 #ifdef CONFIG_USER_ONLY
81 int fd;
82 int running_state;
83 #else
84 CharDriverState *chr;
85 #endif
86 } GDBState;
87
88 /* By default use no IRQs and no timers while single stepping so as to
89 * make single stepping like an ICE HW step.
90 */
91 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
92
93 /* This is an ugly hack to cope with both new and old gdb.
94 If gdb sends qXfer:features:read then assume we're talking to a newish
95 gdb that understands target descriptions. */
96 static int gdb_has_xml;
97
98 #ifdef CONFIG_USER_ONLY
99 /* XXX: This is not thread safe. Do we care? */
100 static int gdbserver_fd = -1;
101
102 /* XXX: remove this hack. */
103 static GDBState gdbserver_state;
104
105 static int get_char(GDBState *s)
106 {
107 uint8_t ch;
108 int ret;
109
110 for(;;) {
111 ret = recv(s->fd, &ch, 1, 0);
112 if (ret < 0) {
113 if (errno == ECONNRESET)
114 s->fd = -1;
115 if (errno != EINTR && errno != EAGAIN)
116 return -1;
117 } else if (ret == 0) {
118 close(s->fd);
119 s->fd = -1;
120 return -1;
121 } else {
122 break;
123 }
124 }
125 return ch;
126 }
127 #endif
128
129 /* GDB stub state for use by semihosting syscalls. */
130 static GDBState *gdb_syscall_state;
131 static gdb_syscall_complete_cb gdb_current_syscall_cb;
132
133 enum {
134 GDB_SYS_UNKNOWN,
135 GDB_SYS_ENABLED,
136 GDB_SYS_DISABLED,
137 } gdb_syscall_mode;
138
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
142 {
143 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
144 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
145 : GDB_SYS_DISABLED);
146 }
147 return gdb_syscall_mode == GDB_SYS_ENABLED;
148 }
149
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState *s)
152 {
153 #ifdef CONFIG_USER_ONLY
154 s->running_state = 1;
155 #else
156 vm_start();
157 #endif
158 }
159
160 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
161 {
162 #ifdef CONFIG_USER_ONLY
163 int ret;
164
165 while (len > 0) {
166 ret = send(s->fd, buf, len, 0);
167 if (ret < 0) {
168 if (errno != EINTR && errno != EAGAIN)
169 return;
170 } else {
171 buf += ret;
172 len -= ret;
173 }
174 }
175 #else
176 qemu_chr_write(s->chr, buf, len);
177 #endif
178 }
179
180 static inline int fromhex(int v)
181 {
182 if (v >= '0' && v <= '9')
183 return v - '0';
184 else if (v >= 'A' && v <= 'F')
185 return v - 'A' + 10;
186 else if (v >= 'a' && v <= 'f')
187 return v - 'a' + 10;
188 else
189 return 0;
190 }
191
192 static inline int tohex(int v)
193 {
194 if (v < 10)
195 return v + '0';
196 else
197 return v - 10 + 'a';
198 }
199
200 static void memtohex(char *buf, const uint8_t *mem, int len)
201 {
202 int i, c;
203 char *q;
204 q = buf;
205 for(i = 0; i < len; i++) {
206 c = mem[i];
207 *q++ = tohex(c >> 4);
208 *q++ = tohex(c & 0xf);
209 }
210 *q = '\0';
211 }
212
213 static void hextomem(uint8_t *mem, const char *buf, int len)
214 {
215 int i;
216
217 for(i = 0; i < len; i++) {
218 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
219 buf += 2;
220 }
221 }
222
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState *s, const char *buf, int len)
225 {
226 int csum, i;
227 uint8_t *p;
228
229 for(;;) {
230 p = s->last_packet;
231 *(p++) = '$';
232 memcpy(p, buf, len);
233 p += len;
234 csum = 0;
235 for(i = 0; i < len; i++) {
236 csum += buf[i];
237 }
238 *(p++) = '#';
239 *(p++) = tohex((csum >> 4) & 0xf);
240 *(p++) = tohex((csum) & 0xf);
241
242 s->last_packet_len = p - s->last_packet;
243 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
244
245 #ifdef CONFIG_USER_ONLY
246 i = get_char(s);
247 if (i < 0)
248 return -1;
249 if (i == '+')
250 break;
251 #else
252 break;
253 #endif
254 }
255 return 0;
256 }
257
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState *s, const char *buf)
260 {
261 #ifdef DEBUG_GDB
262 printf("reply='%s'\n", buf);
263 #endif
264
265 return put_packet_binary(s, buf, strlen(buf));
266 }
267
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
271 */
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
274 return 1; \
275 } while(0)
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
278 return 2; \
279 } while(0)
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
282 return 4; \
283 } while(0)
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
286 return 8; \
287 } while(0)
288
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
292 #else
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
295 #endif
296
297 #if defined(TARGET_I386)
298
299 #ifdef TARGET_X86_64
300 static const int gpr_map[16] = {
301 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
302 8, 9, 10, 11, 12, 13, 14, 15
303 };
304 #else
305 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306 #endif
307
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
309
310 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
311 {
312 if (n < CPU_NB_REGS) {
313 GET_REGL(env->regs[gpr_map[n]]);
314 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318 #else
319 memset(mem_buf, 0, 10);
320 #endif
321 return 10;
322 } else if (n >= CPU_NB_REGS + 24) {
323 n -= CPU_NB_REGS + 24;
324 if (n < CPU_NB_REGS) {
325 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
326 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
327 return 16;
328 } else if (n == CPU_NB_REGS) {
329 GET_REG32(env->mxcsr);
330 }
331 } else {
332 n -= CPU_NB_REGS;
333 switch (n) {
334 case 0: GET_REGL(env->eip);
335 case 1: GET_REG32(env->eflags);
336 case 2: GET_REG32(env->segs[R_CS].selector);
337 case 3: GET_REG32(env->segs[R_SS].selector);
338 case 4: GET_REG32(env->segs[R_DS].selector);
339 case 5: GET_REG32(env->segs[R_ES].selector);
340 case 6: GET_REG32(env->segs[R_FS].selector);
341 case 7: GET_REG32(env->segs[R_GS].selector);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env->fpuc);
344 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
351 /* 24+ xmm regs. */
352 }
353 }
354 return 0;
355 }
356
357 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
358 {
359 uint32_t tmp;
360
361 if (i < CPU_NB_REGS) {
362 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
363 return sizeof(target_ulong);
364 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
365 i -= CPU_NB_REGS + 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env->fpregs[i], mem_buf, 10);
368 #endif
369 return 10;
370 } else if (i >= CPU_NB_REGS + 24) {
371 i -= CPU_NB_REGS + 24;
372 if (i < CPU_NB_REGS) {
373 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
374 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
375 return 16;
376 } else if (i == CPU_NB_REGS) {
377 env->mxcsr = ldl_p(mem_buf);
378 return 4;
379 }
380 } else {
381 i -= CPU_NB_REGS;
382 switch (i) {
383 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
384 case 1: env->eflags = ldl_p(mem_buf); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
390 #else
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
394 #endif
395 case 2: LOAD_SEG(10, R_CS); return 4;
396 case 3: LOAD_SEG(11, R_SS); return 4;
397 case 4: LOAD_SEG(12, R_DS); return 4;
398 case 5: LOAD_SEG(13, R_ES); return 4;
399 case 6: LOAD_SEG(14, R_FS); return 4;
400 case 7: LOAD_SEG(15, R_GS); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env->fpuc = ldl_p(mem_buf); return 4;
403 case 17:
404 tmp = ldl_p(mem_buf);
405 env->fpstt = (tmp >> 11) & 7;
406 env->fpus = tmp & ~0x3800;
407 return 4;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
414 /* 24+ xmm regs. */
415 }
416 }
417 /* Unrecognised register. */
418 return 0;
419 }
420
421 #elif defined (TARGET_PPC)
422
423 #define NUM_CORE_REGS 71
424
425 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
426 {
427 if (n < 32) {
428 /* gprs */
429 GET_REGL(env->gpr[n]);
430 } else if (n < 64) {
431 /* fprs */
432 stfq_p(mem_buf, env->fpr[n]);
433 return 8;
434 } else {
435 switch (n) {
436 case 64: GET_REGL(env->nip);
437 case 65: GET_REGL(env->msr);
438 case 66:
439 {
440 uint32_t cr = 0;
441 int i;
442 for (i = 0; i < 8; i++)
443 cr |= env->crf[i] << (32 - ((i + 1) * 4));
444 GET_REG32(cr);
445 }
446 case 67: GET_REGL(env->lr);
447 case 68: GET_REGL(env->ctr);
448 case 69: GET_REGL(env->xer);
449 case 70: GET_REG32(0); /* fpscr */
450 }
451 }
452 return 0;
453 }
454
455 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
456 {
457 if (n < 32) {
458 /* gprs */
459 env->gpr[n] = ldtul_p(mem_buf);
460 return sizeof(target_ulong);
461 } else if (n < 64) {
462 /* fprs */
463 env->fpr[n] = ldfq_p(mem_buf);
464 return 8;
465 } else {
466 switch (n) {
467 case 64:
468 env->nip = ldtul_p(mem_buf);
469 return sizeof(target_ulong);
470 case 65:
471 ppc_store_msr(env, ldtul_p(mem_buf));
472 return sizeof(target_ulong);
473 case 66:
474 {
475 uint32_t cr = ldl_p(mem_buf);
476 int i;
477 for (i = 0; i < 8; i++)
478 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
479 return 4;
480 }
481 case 67:
482 env->lr = ldtul_p(mem_buf);
483 return sizeof(target_ulong);
484 case 68:
485 env->ctr = ldtul_p(mem_buf);
486 return sizeof(target_ulong);
487 case 69:
488 env->xer = ldtul_p(mem_buf);
489 return sizeof(target_ulong);
490 case 70:
491 /* fpscr */
492 return 4;
493 }
494 }
495 return 0;
496 }
497
498 #elif defined (TARGET_SPARC)
499
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
502 #else
503 #define NUM_CORE_REGS 73
504 #endif
505
506 #ifdef TARGET_ABI32
507 #define GET_REGA(val) GET_REG32(val)
508 #else
509 #define GET_REGA(val) GET_REGL(val)
510 #endif
511
512 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
513 {
514 if (n < 8) {
515 /* g0..g7 */
516 GET_REGA(env->gregs[n]);
517 }
518 if (n < 32) {
519 /* register window */
520 GET_REGA(env->regwptr[n - 8]);
521 }
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
523 if (n < 64) {
524 /* fprs */
525 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
526 }
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528 switch (n) {
529 case 64: GET_REGA(env->y);
530 case 65: GET_REGA(GET_PSR(env));
531 case 66: GET_REGA(env->wim);
532 case 67: GET_REGA(env->tbr);
533 case 68: GET_REGA(env->pc);
534 case 69: GET_REGA(env->npc);
535 case 70: GET_REGA(env->fsr);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
538 }
539 #else
540 if (n < 64) {
541 /* f0-f31 */
542 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
543 }
544 if (n < 80) {
545 /* f32-f62 (double width, even numbers only) */
546 uint64_t val;
547
548 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
549 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
550 GET_REG64(val);
551 }
552 switch (n) {
553 case 80: GET_REGL(env->pc);
554 case 81: GET_REGL(env->npc);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556 ((env->asi & 0xff) << 24) |
557 ((env->pstate & 0xfff) << 8) |
558 GET_CWP64(env));
559 case 83: GET_REGL(env->fsr);
560 case 84: GET_REGL(env->fprs);
561 case 85: GET_REGL(env->y);
562 }
563 #endif
564 return 0;
565 }
566
567 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
568 {
569 #if defined(TARGET_ABI32)
570 abi_ulong tmp;
571
572 tmp = ldl_p(mem_buf);
573 #else
574 target_ulong tmp;
575
576 tmp = ldtul_p(mem_buf);
577 #endif
578
579 if (n < 8) {
580 /* g0..g7 */
581 env->gregs[n] = tmp;
582 } else if (n < 32) {
583 /* register window */
584 env->regwptr[n - 8] = tmp;
585 }
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
587 else if (n < 64) {
588 /* fprs */
589 *((uint32_t *)&env->fpr[n - 32]) = tmp;
590 } else {
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
592 switch (n) {
593 case 64: env->y = tmp; break;
594 case 65: PUT_PSR(env, tmp); break;
595 case 66: env->wim = tmp; break;
596 case 67: env->tbr = tmp; break;
597 case 68: env->pc = tmp; break;
598 case 69: env->npc = tmp; break;
599 case 70: env->fsr = tmp; break;
600 default: return 0;
601 }
602 }
603 return 4;
604 #else
605 else if (n < 64) {
606 /* f0-f31 */
607 env->fpr[n] = ldfl_p(mem_buf);
608 return 4;
609 } else if (n < 80) {
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
612 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
613 } else {
614 switch (n) {
615 case 80: env->pc = tmp; break;
616 case 81: env->npc = tmp; break;
617 case 82:
618 PUT_CCR(env, tmp >> 32);
619 env->asi = (tmp >> 24) & 0xff;
620 env->pstate = (tmp >> 8) & 0xfff;
621 PUT_CWP64(env, tmp & 0xff);
622 break;
623 case 83: env->fsr = tmp; break;
624 case 84: env->fprs = tmp; break;
625 case 85: env->y = tmp; break;
626 default: return 0;
627 }
628 }
629 return 8;
630 #endif
631 }
632 #elif defined (TARGET_ARM)
633
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
638 newer gdb. */
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
641
642 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
643 {
644 if (n < 16) {
645 /* Core integer register. */
646 GET_REG32(env->regs[n]);
647 }
648 if (n < 24) {
649 /* FPA registers. */
650 if (gdb_has_xml)
651 return 0;
652 memset(mem_buf, 0, 12);
653 return 12;
654 }
655 switch (n) {
656 case 24:
657 /* FPA status register. */
658 if (gdb_has_xml)
659 return 0;
660 GET_REG32(0);
661 case 25:
662 /* CPSR */
663 GET_REG32(cpsr_read(env));
664 }
665 /* Unknown register. */
666 return 0;
667 }
668
669 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
670 {
671 uint32_t tmp;
672
673 tmp = ldl_p(mem_buf);
674
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
677 if (n == 15)
678 tmp &= ~1;
679
680 if (n < 16) {
681 /* Core integer register. */
682 env->regs[n] = tmp;
683 return 4;
684 }
685 if (n < 24) { /* 16-23 */
686 /* FPA registers (ignored). */
687 if (gdb_has_xml)
688 return 0;
689 return 12;
690 }
691 switch (n) {
692 case 24:
693 /* FPA status register (ignored). */
694 if (gdb_has_xml)
695 return 0;
696 return 4;
697 case 25:
698 /* CPSR */
699 cpsr_write (env, tmp, 0xffffffff);
700 return 4;
701 }
702 /* Unknown register. */
703 return 0;
704 }
705
706 #elif defined (TARGET_M68K)
707
708 #define NUM_CORE_REGS 18
709
710 #define GDB_CORE_XML "cf-core.xml"
711
712 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
713 {
714 if (n < 8) {
715 /* D0-D7 */
716 GET_REG32(env->dregs[n]);
717 } else if (n < 16) {
718 /* A0-A7 */
719 GET_REG32(env->aregs[n - 8]);
720 } else {
721 switch (n) {
722 case 16: GET_REG32(env->sr);
723 case 17: GET_REG32(env->pc);
724 }
725 }
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
728 return 0;
729 }
730
731 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
732 {
733 uint32_t tmp;
734
735 tmp = ldl_p(mem_buf);
736
737 if (n < 8) {
738 /* D0-D7 */
739 env->dregs[n] = tmp;
740 } else if (n < 8) {
741 /* A0-A7 */
742 env->aregs[n - 8] = tmp;
743 } else {
744 switch (n) {
745 case 16: env->sr = tmp; break;
746 case 17: env->pc = tmp; break;
747 default: return 0;
748 }
749 }
750 return 4;
751 }
752 #elif defined (TARGET_MIPS)
753
754 #define NUM_CORE_REGS 73
755
756 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
757 {
758 if (n < 32) {
759 GET_REGL(env->active_tc.gpr[n]);
760 }
761 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
762 if (n >= 38 && n < 70) {
763 if (env->CP0_Status & (1 << CP0St_FR))
764 GET_REGL(env->active_fpu.fpr[n - 38].d);
765 else
766 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
767 }
768 switch (n) {
769 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
770 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
771 }
772 }
773 switch (n) {
774 case 32: GET_REGL((int32_t)env->CP0_Status);
775 case 33: GET_REGL(env->active_tc.LO[0]);
776 case 34: GET_REGL(env->active_tc.HI[0]);
777 case 35: GET_REGL(env->CP0_BadVAddr);
778 case 36: GET_REGL((int32_t)env->CP0_Cause);
779 case 37: GET_REGL(env->active_tc.PC);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env->CP0_PRid);
782 }
783 if (n >= 73 && n <= 88) {
784 /* 16 embedded regs. */
785 GET_REGL(0);
786 }
787
788 return 0;
789 }
790
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm[] =
793 {
794 float_round_nearest_even,
795 float_round_to_zero,
796 float_round_up,
797 float_round_down
798 };
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
801
802 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
803 {
804 target_ulong tmp;
805
806 tmp = ldtul_p(mem_buf);
807
808 if (n < 32) {
809 env->active_tc.gpr[n] = tmp;
810 return sizeof(target_ulong);
811 }
812 if (env->CP0_Config1 & (1 << CP0C1_FP)
813 && n >= 38 && n < 73) {
814 if (n < 70) {
815 if (env->CP0_Status & (1 << CP0St_FR))
816 env->active_fpu.fpr[n - 38].d = tmp;
817 else
818 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
819 }
820 switch (n) {
821 case 70:
822 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
828 #endif
829 break;
830 case 71: env->active_fpu.fcr0 = tmp; break;
831 }
832 return sizeof(target_ulong);
833 }
834 switch (n) {
835 case 32: env->CP0_Status = tmp; break;
836 case 33: env->active_tc.LO[0] = tmp; break;
837 case 34: env->active_tc.HI[0] = tmp; break;
838 case 35: env->CP0_BadVAddr = tmp; break;
839 case 36: env->CP0_Cause = tmp; break;
840 case 37: env->active_tc.PC = tmp; break;
841 case 72: /* fp, ignored */ break;
842 default:
843 if (n > 89)
844 return 0;
845 /* Other registers are readonly. Ignore writes. */
846 break;
847 }
848
849 return sizeof(target_ulong);
850 }
851 #elif defined (TARGET_SH4)
852
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
855
856 #define NUM_CORE_REGS 59
857
858 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
859 {
860 if (n < 8) {
861 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
862 GET_REGL(env->gregs[n + 16]);
863 } else {
864 GET_REGL(env->gregs[n]);
865 }
866 } else if (n < 16) {
867 GET_REGL(env->gregs[n - 8]);
868 } else if (n >= 25 && n < 41) {
869 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
870 } else if (n >= 43 && n < 51) {
871 GET_REGL(env->gregs[n - 43]);
872 } else if (n >= 51 && n < 59) {
873 GET_REGL(env->gregs[n - (51 - 16)]);
874 }
875 switch (n) {
876 case 16: GET_REGL(env->pc);
877 case 17: GET_REGL(env->pr);
878 case 18: GET_REGL(env->gbr);
879 case 19: GET_REGL(env->vbr);
880 case 20: GET_REGL(env->mach);
881 case 21: GET_REGL(env->macl);
882 case 22: GET_REGL(env->sr);
883 case 23: GET_REGL(env->fpul);
884 case 24: GET_REGL(env->fpscr);
885 case 41: GET_REGL(env->ssr);
886 case 42: GET_REGL(env->spc);
887 }
888
889 return 0;
890 }
891
892 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
893 {
894 uint32_t tmp;
895
896 tmp = ldl_p(mem_buf);
897
898 if (n < 8) {
899 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
900 env->gregs[n + 16] = tmp;
901 } else {
902 env->gregs[n] = tmp;
903 }
904 return 4;
905 } else if (n < 16) {
906 env->gregs[n - 8] = tmp;
907 return 4;
908 } else if (n >= 25 && n < 41) {
909 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
910 } else if (n >= 43 && n < 51) {
911 env->gregs[n - 43] = tmp;
912 return 4;
913 } else if (n >= 51 && n < 59) {
914 env->gregs[n - (51 - 16)] = tmp;
915 return 4;
916 }
917 switch (n) {
918 case 16: env->pc = tmp;
919 case 17: env->pr = tmp;
920 case 18: env->gbr = tmp;
921 case 19: env->vbr = tmp;
922 case 20: env->mach = tmp;
923 case 21: env->macl = tmp;
924 case 22: env->sr = tmp;
925 case 23: env->fpul = tmp;
926 case 24: env->fpscr = tmp;
927 case 41: env->ssr = tmp;
928 case 42: env->spc = tmp;
929 default: return 0;
930 }
931
932 return 4;
933 }
934 #elif defined (TARGET_CRIS)
935
936 #define NUM_CORE_REGS 49
937
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
939 {
940 uint8_t srs;
941
942 srs = env->pregs[PR_SRS];
943 if (n < 16) {
944 GET_REG32(env->regs[n]);
945 }
946
947 if (n >= 21 && n < 32) {
948 GET_REG32(env->pregs[n - 16]);
949 }
950 if (n >= 33 && n < 49) {
951 GET_REG32(env->sregs[srs][n - 33]);
952 }
953 switch (n) {
954 case 16: GET_REG8(env->pregs[0]);
955 case 17: GET_REG8(env->pregs[1]);
956 case 18: GET_REG32(env->pregs[2]);
957 case 19: GET_REG8(srs);
958 case 20: GET_REG16(env->pregs[4]);
959 case 32: GET_REG32(env->pc);
960 }
961
962 return 0;
963 }
964
965 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
966 {
967 uint32_t tmp;
968
969 if (n > 49)
970 return 0;
971
972 tmp = ldl_p(mem_buf);
973
974 if (n < 16) {
975 env->regs[n] = tmp;
976 }
977
978 if (n >= 21 && n < 32) {
979 env->pregs[n - 16] = tmp;
980 }
981
982 /* FIXME: Should support function regs be writable? */
983 switch (n) {
984 case 16: return 1;
985 case 17: return 1;
986 case 18: env->pregs[PR_PID] = tmp; break;
987 case 19: return 1;
988 case 20: return 2;
989 case 32: env->pc = tmp; break;
990 }
991
992 return 4;
993 }
994 #else
995
996 #define NUM_CORE_REGS 0
997
998 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
999 {
1000 return 0;
1001 }
1002
1003 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1004 {
1005 return 0;
1006 }
1007
1008 #endif
1009
1010 static int num_g_regs = NUM_CORE_REGS;
1011
1012 #ifdef GDB_CORE_XML
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf, const char *mem, int len)
1015 {
1016 char *p = buf;
1017 char c;
1018
1019 while (len--) {
1020 c = *(mem++);
1021 switch (c) {
1022 case '#': case '$': case '*': case '}':
1023 *(p++) = '}';
1024 *(p++) = c ^ 0x20;
1025 break;
1026 default:
1027 *(p++) = c;
1028 break;
1029 }
1030 }
1031 return p - buf;
1032 }
1033
1034 const char *get_feature_xml(CPUState *env, const char *p, const char **newp)
1035 {
1036 extern const char *const xml_builtin[][2];
1037 size_t len;
1038 int i;
1039 const char *name;
1040 static char target_xml[1024];
1041
1042 len = 0;
1043 while (p[len] && p[len] != ':')
1044 len++;
1045 *newp = p + len;
1046
1047 name = NULL;
1048 if (strncmp(p, "target.xml", len) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml[0]) {
1051 GDBRegisterState *r;
1052
1053 snprintf(target_xml, sizeof(target_xml),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1056 "<target>"
1057 "<xi:include href=\"%s\"/>",
1058 GDB_CORE_XML);
1059
1060 for (r = env->gdb_regs; r; r = r->next) {
1061 strcat(target_xml, "<xi:include href=\"");
1062 strcat(target_xml, r->xml);
1063 strcat(target_xml, "\"/>");
1064 }
1065 strcat(target_xml, "</target>");
1066 }
1067 return target_xml;
1068 }
1069 for (i = 0; ; i++) {
1070 name = xml_builtin[i][0];
1071 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1072 break;
1073 }
1074 return name ? xml_builtin[i][1] : NULL;
1075 }
1076 #endif
1077
1078 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1079 {
1080 GDBRegisterState *r;
1081
1082 if (reg < NUM_CORE_REGS)
1083 return cpu_gdb_read_register(env, mem_buf, reg);
1084
1085 for (r = env->gdb_regs; r; r = r->next) {
1086 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1087 return r->get_reg(env, mem_buf, reg - r->base_reg);
1088 }
1089 }
1090 return 0;
1091 }
1092
1093 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1094 {
1095 GDBRegisterState *r;
1096
1097 if (reg < NUM_CORE_REGS)
1098 return cpu_gdb_write_register(env, mem_buf, reg);
1099
1100 for (r = env->gdb_regs; r; r = r->next) {
1101 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1102 return r->set_reg(env, mem_buf, reg - r->base_reg);
1103 }
1104 }
1105 return 0;
1106 }
1107
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1112 */
1113
1114 void gdb_register_coprocessor(CPUState * env,
1115 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1116 int num_regs, const char *xml, int g_pos)
1117 {
1118 GDBRegisterState *s;
1119 GDBRegisterState **p;
1120 static int last_reg = NUM_CORE_REGS;
1121
1122 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1123 s->base_reg = last_reg;
1124 s->num_regs = num_regs;
1125 s->get_reg = get_reg;
1126 s->set_reg = set_reg;
1127 s->xml = xml;
1128 p = &env->gdb_regs;
1129 while (*p) {
1130 /* Check for duplicates. */
1131 if (strcmp((*p)->xml, xml) == 0)
1132 return;
1133 p = &(*p)->next;
1134 }
1135 /* Add to end of list. */
1136 last_reg += num_regs;
1137 *p = s;
1138 if (g_pos) {
1139 if (g_pos != s->base_reg) {
1140 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1142 } else {
1143 num_g_regs = last_reg;
1144 }
1145 }
1146 }
1147
1148 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
1149 {
1150 const char *p;
1151 int ch, reg_size, type;
1152 char buf[MAX_PACKET_LENGTH];
1153 uint8_t mem_buf[MAX_PACKET_LENGTH];
1154 uint8_t *registers;
1155 target_ulong addr, len;
1156
1157 #ifdef DEBUG_GDB
1158 printf("command='%s'\n", line_buf);
1159 #endif
1160 p = line_buf;
1161 ch = *p++;
1162 switch(ch) {
1163 case '?':
1164 /* TODO: Make this return the correct value for user-mode. */
1165 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
1166 put_packet(s, buf);
1167 /* Remove all the breakpoints when this query is issued,
1168 * because gdb is doing and initial connect and the state
1169 * should be cleaned up.
1170 */
1171 cpu_breakpoint_remove_all(env);
1172 cpu_watchpoint_remove_all(env);
1173 break;
1174 case 'c':
1175 if (*p != '\0') {
1176 addr = strtoull(p, (char **)&p, 16);
1177 #if defined(TARGET_I386)
1178 env->eip = addr;
1179 #elif defined (TARGET_PPC)
1180 env->nip = addr;
1181 #elif defined (TARGET_SPARC)
1182 env->pc = addr;
1183 env->npc = addr + 4;
1184 #elif defined (TARGET_ARM)
1185 env->regs[15] = addr;
1186 #elif defined (TARGET_SH4)
1187 env->pc = addr;
1188 #elif defined (TARGET_MIPS)
1189 env->active_tc.PC = addr;
1190 #elif defined (TARGET_CRIS)
1191 env->pc = addr;
1192 #endif
1193 }
1194 gdb_continue(s);
1195 return RS_IDLE;
1196 case 'C':
1197 s->signal = strtoul(p, (char **)&p, 16);
1198 gdb_continue(s);
1199 return RS_IDLE;
1200 case 'k':
1201 /* Kill the target */
1202 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1203 exit(0);
1204 case 'D':
1205 /* Detach packet */
1206 cpu_breakpoint_remove_all(env);
1207 cpu_watchpoint_remove_all(env);
1208 gdb_continue(s);
1209 put_packet(s, "OK");
1210 break;
1211 case 's':
1212 if (*p != '\0') {
1213 addr = strtoull(p, (char **)&p, 16);
1214 #if defined(TARGET_I386)
1215 env->eip = addr;
1216 #elif defined (TARGET_PPC)
1217 env->nip = addr;
1218 #elif defined (TARGET_SPARC)
1219 env->pc = addr;
1220 env->npc = addr + 4;
1221 #elif defined (TARGET_ARM)
1222 env->regs[15] = addr;
1223 #elif defined (TARGET_SH4)
1224 env->pc = addr;
1225 #elif defined (TARGET_MIPS)
1226 env->active_tc.PC = addr;
1227 #elif defined (TARGET_CRIS)
1228 env->pc = addr;
1229 #endif
1230 }
1231 cpu_single_step(env, sstep_flags);
1232 gdb_continue(s);
1233 return RS_IDLE;
1234 case 'F':
1235 {
1236 target_ulong ret;
1237 target_ulong err;
1238
1239 ret = strtoull(p, (char **)&p, 16);
1240 if (*p == ',') {
1241 p++;
1242 err = strtoull(p, (char **)&p, 16);
1243 } else {
1244 err = 0;
1245 }
1246 if (*p == ',')
1247 p++;
1248 type = *p;
1249 if (gdb_current_syscall_cb)
1250 gdb_current_syscall_cb(s->env, ret, err);
1251 if (type == 'C') {
1252 put_packet(s, "T02");
1253 } else {
1254 gdb_continue(s);
1255 }
1256 }
1257 break;
1258 case 'g':
1259 len = 0;
1260 for (addr = 0; addr < num_g_regs; addr++) {
1261 reg_size = gdb_read_register(env, mem_buf + len, addr);
1262 len += reg_size;
1263 }
1264 memtohex(buf, mem_buf, len);
1265 put_packet(s, buf);
1266 break;
1267 case 'G':
1268 registers = mem_buf;
1269 len = strlen(p) / 2;
1270 hextomem((uint8_t *)registers, p, len);
1271 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1272 reg_size = gdb_write_register(env, registers, addr);
1273 len -= reg_size;
1274 registers += reg_size;
1275 }
1276 put_packet(s, "OK");
1277 break;
1278 case 'm':
1279 addr = strtoull(p, (char **)&p, 16);
1280 if (*p == ',')
1281 p++;
1282 len = strtoull(p, NULL, 16);
1283 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1284 put_packet (s, "E14");
1285 } else {
1286 memtohex(buf, mem_buf, len);
1287 put_packet(s, buf);
1288 }
1289 break;
1290 case 'M':
1291 addr = strtoull(p, (char **)&p, 16);
1292 if (*p == ',')
1293 p++;
1294 len = strtoull(p, (char **)&p, 16);
1295 if (*p == ':')
1296 p++;
1297 hextomem(mem_buf, p, len);
1298 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1299 put_packet(s, "E14");
1300 else
1301 put_packet(s, "OK");
1302 break;
1303 case 'p':
1304 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1305 This works, but can be very slow. Anything new enough to
1306 understand XML also knows how to use this properly. */
1307 if (!gdb_has_xml)
1308 goto unknown_command;
1309 addr = strtoull(p, (char **)&p, 16);
1310 reg_size = gdb_read_register(env, mem_buf, addr);
1311 if (reg_size) {
1312 memtohex(buf, mem_buf, reg_size);
1313 put_packet(s, buf);
1314 } else {
1315 put_packet(s, "E14");
1316 }
1317 break;
1318 case 'P':
1319 if (!gdb_has_xml)
1320 goto unknown_command;
1321 addr = strtoull(p, (char **)&p, 16);
1322 if (*p == '=')
1323 p++;
1324 reg_size = strlen(p) / 2;
1325 hextomem(mem_buf, p, reg_size);
1326 gdb_write_register(env, mem_buf, addr);
1327 put_packet(s, "OK");
1328 break;
1329 case 'Z':
1330 type = strtoul(p, (char **)&p, 16);
1331 if (*p == ',')
1332 p++;
1333 addr = strtoull(p, (char **)&p, 16);
1334 if (*p == ',')
1335 p++;
1336 len = strtoull(p, (char **)&p, 16);
1337 switch (type) {
1338 case 0:
1339 case 1:
1340 if (cpu_breakpoint_insert(env, addr) < 0)
1341 goto breakpoint_error;
1342 put_packet(s, "OK");
1343 break;
1344 #ifndef CONFIG_USER_ONLY
1345 case 2:
1346 type = PAGE_WRITE;
1347 goto insert_watchpoint;
1348 case 3:
1349 type = PAGE_READ;
1350 goto insert_watchpoint;
1351 case 4:
1352 type = PAGE_READ | PAGE_WRITE;
1353 insert_watchpoint:
1354 if (cpu_watchpoint_insert(env, addr, type) < 0)
1355 goto breakpoint_error;
1356 put_packet(s, "OK");
1357 break;
1358 #endif
1359 default:
1360 put_packet(s, "");
1361 break;
1362 }
1363 break;
1364 breakpoint_error:
1365 put_packet(s, "E22");
1366 break;
1367
1368 case 'z':
1369 type = strtoul(p, (char **)&p, 16);
1370 if (*p == ',')
1371 p++;
1372 addr = strtoull(p, (char **)&p, 16);
1373 if (*p == ',')
1374 p++;
1375 len = strtoull(p, (char **)&p, 16);
1376 if (type == 0 || type == 1) {
1377 cpu_breakpoint_remove(env, addr);
1378 put_packet(s, "OK");
1379 #ifndef CONFIG_USER_ONLY
1380 } else if (type >= 2 || type <= 4) {
1381 cpu_watchpoint_remove(env, addr);
1382 put_packet(s, "OK");
1383 #endif
1384 } else {
1385 put_packet(s, "");
1386 }
1387 break;
1388 case 'q':
1389 case 'Q':
1390 /* parse any 'q' packets here */
1391 if (!strcmp(p,"qemu.sstepbits")) {
1392 /* Query Breakpoint bit definitions */
1393 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1394 SSTEP_ENABLE,
1395 SSTEP_NOIRQ,
1396 SSTEP_NOTIMER);
1397 put_packet(s, buf);
1398 break;
1399 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1400 /* Display or change the sstep_flags */
1401 p += 10;
1402 if (*p != '=') {
1403 /* Display current setting */
1404 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1405 put_packet(s, buf);
1406 break;
1407 }
1408 p++;
1409 type = strtoul(p, (char **)&p, 16);
1410 sstep_flags = type;
1411 put_packet(s, "OK");
1412 break;
1413 }
1414 #ifdef CONFIG_LINUX_USER
1415 else if (strncmp(p, "Offsets", 7) == 0) {
1416 TaskState *ts = env->opaque;
1417
1418 snprintf(buf, sizeof(buf),
1419 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1420 ";Bss=" TARGET_ABI_FMT_lx,
1421 ts->info->code_offset,
1422 ts->info->data_offset,
1423 ts->info->data_offset);
1424 put_packet(s, buf);
1425 break;
1426 }
1427 #endif
1428 if (strncmp(p, "Supported", 9) == 0) {
1429 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1430 #ifdef GDB_CORE_XML
1431 strcat(buf, ";qXfer:features:read+");
1432 #endif
1433 put_packet(s, buf);
1434 break;
1435 }
1436 #ifdef GDB_CORE_XML
1437 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1438 const char *xml;
1439 target_ulong total_len;
1440
1441 gdb_has_xml = 1;
1442 p += 19;
1443 xml = get_feature_xml(env, p, &p);
1444 if (!xml) {
1445 snprintf(buf, sizeof(buf), "E00");
1446 put_packet(s, buf);
1447 break;
1448 }
1449
1450 if (*p == ':')
1451 p++;
1452 addr = strtoul(p, (char **)&p, 16);
1453 if (*p == ',')
1454 p++;
1455 len = strtoul(p, (char **)&p, 16);
1456
1457 total_len = strlen(xml);
1458 if (addr > total_len) {
1459 snprintf(buf, sizeof(buf), "E00");
1460 put_packet(s, buf);
1461 break;
1462 }
1463 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1464 len = (MAX_PACKET_LENGTH - 5) / 2;
1465 if (len < total_len - addr) {
1466 buf[0] = 'm';
1467 len = memtox(buf + 1, xml + addr, len);
1468 } else {
1469 buf[0] = 'l';
1470 len = memtox(buf + 1, xml + addr, total_len - addr);
1471 }
1472 put_packet_binary(s, buf, len + 1);
1473 break;
1474 }
1475 #endif
1476 /* Unrecognised 'q' command. */
1477 goto unknown_command;
1478
1479 default:
1480 unknown_command:
1481 /* put empty packet */
1482 buf[0] = '\0';
1483 put_packet(s, buf);
1484 break;
1485 }
1486 return RS_IDLE;
1487 }
1488
1489 extern void tb_flush(CPUState *env);
1490
1491 #ifndef CONFIG_USER_ONLY
1492 static void gdb_vm_stopped(void *opaque, int reason)
1493 {
1494 GDBState *s = opaque;
1495 char buf[256];
1496 const char *type;
1497 int ret;
1498
1499 if (s->state == RS_SYSCALL)
1500 return;
1501
1502 /* disable single step if it was enable */
1503 cpu_single_step(s->env, 0);
1504
1505 if (reason == EXCP_DEBUG) {
1506 if (s->env->watchpoint_hit) {
1507 switch (s->env->watchpoint[s->env->watchpoint_hit - 1].type &
1508 (PAGE_READ | PAGE_WRITE)) {
1509 case PAGE_READ:
1510 type = "r";
1511 break;
1512 case PAGE_READ | PAGE_WRITE:
1513 type = "a";
1514 break;
1515 default:
1516 type = "";
1517 break;
1518 }
1519 snprintf(buf, sizeof(buf), "T%02x%swatch:" TARGET_FMT_lx ";",
1520 SIGTRAP, type,
1521 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1522 put_packet(s, buf);
1523 s->env->watchpoint_hit = 0;
1524 return;
1525 }
1526 tb_flush(s->env);
1527 ret = SIGTRAP;
1528 } else if (reason == EXCP_INTERRUPT) {
1529 ret = SIGINT;
1530 } else {
1531 ret = 0;
1532 }
1533 snprintf(buf, sizeof(buf), "S%02x", ret);
1534 put_packet(s, buf);
1535 }
1536 #endif
1537
1538 /* Send a gdb syscall request.
1539 This accepts limited printf-style format specifiers, specifically:
1540 %x - target_ulong argument printed in hex.
1541 %lx - 64-bit argument printed in hex.
1542 %s - string pointer (target_ulong) and length (int) pair. */
1543 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1544 {
1545 va_list va;
1546 char buf[256];
1547 char *p;
1548 target_ulong addr;
1549 uint64_t i64;
1550 GDBState *s;
1551
1552 s = gdb_syscall_state;
1553 if (!s)
1554 return;
1555 gdb_current_syscall_cb = cb;
1556 s->state = RS_SYSCALL;
1557 #ifndef CONFIG_USER_ONLY
1558 vm_stop(EXCP_DEBUG);
1559 #endif
1560 s->state = RS_IDLE;
1561 va_start(va, fmt);
1562 p = buf;
1563 *(p++) = 'F';
1564 while (*fmt) {
1565 if (*fmt == '%') {
1566 fmt++;
1567 switch (*fmt++) {
1568 case 'x':
1569 addr = va_arg(va, target_ulong);
1570 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1571 break;
1572 case 'l':
1573 if (*(fmt++) != 'x')
1574 goto bad_format;
1575 i64 = va_arg(va, uint64_t);
1576 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1577 break;
1578 case 's':
1579 addr = va_arg(va, target_ulong);
1580 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1581 addr, va_arg(va, int));
1582 break;
1583 default:
1584 bad_format:
1585 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1586 fmt - 1);
1587 break;
1588 }
1589 } else {
1590 *(p++) = *(fmt++);
1591 }
1592 }
1593 *p = 0;
1594 va_end(va);
1595 put_packet(s, buf);
1596 #ifdef CONFIG_USER_ONLY
1597 gdb_handlesig(s->env, 0);
1598 #else
1599 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1600 #endif
1601 }
1602
1603 static void gdb_read_byte(GDBState *s, int ch)
1604 {
1605 CPUState *env = s->env;
1606 int i, csum;
1607 uint8_t reply;
1608
1609 #ifndef CONFIG_USER_ONLY
1610 if (s->last_packet_len) {
1611 /* Waiting for a response to the last packet. If we see the start
1612 of a new command then abandon the previous response. */
1613 if (ch == '-') {
1614 #ifdef DEBUG_GDB
1615 printf("Got NACK, retransmitting\n");
1616 #endif
1617 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1618 }
1619 #ifdef DEBUG_GDB
1620 else if (ch == '+')
1621 printf("Got ACK\n");
1622 else
1623 printf("Got '%c' when expecting ACK/NACK\n", ch);
1624 #endif
1625 if (ch == '+' || ch == '$')
1626 s->last_packet_len = 0;
1627 if (ch != '$')
1628 return;
1629 }
1630 if (vm_running) {
1631 /* when the CPU is running, we cannot do anything except stop
1632 it when receiving a char */
1633 vm_stop(EXCP_INTERRUPT);
1634 } else
1635 #endif
1636 {
1637 switch(s->state) {
1638 case RS_IDLE:
1639 if (ch == '$') {
1640 s->line_buf_index = 0;
1641 s->state = RS_GETLINE;
1642 }
1643 break;
1644 case RS_GETLINE:
1645 if (ch == '#') {
1646 s->state = RS_CHKSUM1;
1647 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1648 s->state = RS_IDLE;
1649 } else {
1650 s->line_buf[s->line_buf_index++] = ch;
1651 }
1652 break;
1653 case RS_CHKSUM1:
1654 s->line_buf[s->line_buf_index] = '\0';
1655 s->line_csum = fromhex(ch) << 4;
1656 s->state = RS_CHKSUM2;
1657 break;
1658 case RS_CHKSUM2:
1659 s->line_csum |= fromhex(ch);
1660 csum = 0;
1661 for(i = 0; i < s->line_buf_index; i++) {
1662 csum += s->line_buf[i];
1663 }
1664 if (s->line_csum != (csum & 0xff)) {
1665 reply = '-';
1666 put_buffer(s, &reply, 1);
1667 s->state = RS_IDLE;
1668 } else {
1669 reply = '+';
1670 put_buffer(s, &reply, 1);
1671 s->state = gdb_handle_packet(s, env, s->line_buf);
1672 }
1673 break;
1674 default:
1675 abort();
1676 }
1677 }
1678 }
1679
1680 #ifdef CONFIG_USER_ONLY
1681 int
1682 gdb_handlesig (CPUState *env, int sig)
1683 {
1684 GDBState *s;
1685 char buf[256];
1686 int n;
1687
1688 s = &gdbserver_state;
1689 if (gdbserver_fd < 0 || s->fd < 0)
1690 return sig;
1691
1692 /* disable single step if it was enabled */
1693 cpu_single_step(env, 0);
1694 tb_flush(env);
1695
1696 if (sig != 0)
1697 {
1698 snprintf(buf, sizeof(buf), "S%02x", sig);
1699 put_packet(s, buf);
1700 }
1701 /* put_packet() might have detected that the peer terminated the
1702 connection. */
1703 if (s->fd < 0)
1704 return sig;
1705
1706 sig = 0;
1707 s->state = RS_IDLE;
1708 s->running_state = 0;
1709 while (s->running_state == 0) {
1710 n = read (s->fd, buf, 256);
1711 if (n > 0)
1712 {
1713 int i;
1714
1715 for (i = 0; i < n; i++)
1716 gdb_read_byte (s, buf[i]);
1717 }
1718 else if (n == 0 || errno != EAGAIN)
1719 {
1720 /* XXX: Connection closed. Should probably wait for annother
1721 connection before continuing. */
1722 return sig;
1723 }
1724 }
1725 sig = s->signal;
1726 s->signal = 0;
1727 return sig;
1728 }
1729
1730 /* Tell the remote gdb that the process has exited. */
1731 void gdb_exit(CPUState *env, int code)
1732 {
1733 GDBState *s;
1734 char buf[4];
1735
1736 s = &gdbserver_state;
1737 if (gdbserver_fd < 0 || s->fd < 0)
1738 return;
1739
1740 snprintf(buf, sizeof(buf), "W%02x", code);
1741 put_packet(s, buf);
1742 }
1743
1744
1745 static void gdb_accept(void *opaque)
1746 {
1747 GDBState *s;
1748 struct sockaddr_in sockaddr;
1749 socklen_t len;
1750 int val, fd;
1751
1752 for(;;) {
1753 len = sizeof(sockaddr);
1754 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1755 if (fd < 0 && errno != EINTR) {
1756 perror("accept");
1757 return;
1758 } else if (fd >= 0) {
1759 break;
1760 }
1761 }
1762
1763 /* set short latency */
1764 val = 1;
1765 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1766
1767 s = &gdbserver_state;
1768 memset (s, 0, sizeof (GDBState));
1769 s->env = first_cpu; /* XXX: allow to change CPU */
1770 s->fd = fd;
1771 gdb_has_xml = 0;
1772
1773 gdb_syscall_state = s;
1774
1775 fcntl(fd, F_SETFL, O_NONBLOCK);
1776 }
1777
1778 static int gdbserver_open(int port)
1779 {
1780 struct sockaddr_in sockaddr;
1781 int fd, val, ret;
1782
1783 fd = socket(PF_INET, SOCK_STREAM, 0);
1784 if (fd < 0) {
1785 perror("socket");
1786 return -1;
1787 }
1788
1789 /* allow fast reuse */
1790 val = 1;
1791 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1792
1793 sockaddr.sin_family = AF_INET;
1794 sockaddr.sin_port = htons(port);
1795 sockaddr.sin_addr.s_addr = 0;
1796 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1797 if (ret < 0) {
1798 perror("bind");
1799 return -1;
1800 }
1801 ret = listen(fd, 0);
1802 if (ret < 0) {
1803 perror("listen");
1804 return -1;
1805 }
1806 return fd;
1807 }
1808
1809 int gdbserver_start(int port)
1810 {
1811 gdbserver_fd = gdbserver_open(port);
1812 if (gdbserver_fd < 0)
1813 return -1;
1814 /* accept connections */
1815 gdb_accept (NULL);
1816 return 0;
1817 }
1818 #else
1819 static int gdb_chr_can_receive(void *opaque)
1820 {
1821 /* We can handle an arbitrarily large amount of data.
1822 Pick the maximum packet size, which is as good as anything. */
1823 return MAX_PACKET_LENGTH;
1824 }
1825
1826 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1827 {
1828 GDBState *s = opaque;
1829 int i;
1830
1831 for (i = 0; i < size; i++) {
1832 gdb_read_byte(s, buf[i]);
1833 }
1834 }
1835
1836 static void gdb_chr_event(void *opaque, int event)
1837 {
1838 switch (event) {
1839 case CHR_EVENT_RESET:
1840 vm_stop(EXCP_INTERRUPT);
1841 gdb_syscall_state = opaque;
1842 gdb_has_xml = 0;
1843 break;
1844 default:
1845 break;
1846 }
1847 }
1848
1849 int gdbserver_start(const char *port)
1850 {
1851 GDBState *s;
1852 char gdbstub_port_name[128];
1853 int port_num;
1854 char *p;
1855 CharDriverState *chr;
1856
1857 if (!port || !*port)
1858 return -1;
1859
1860 port_num = strtol(port, &p, 10);
1861 if (*p == 0) {
1862 /* A numeric value is interpreted as a port number. */
1863 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1864 "tcp::%d,nowait,nodelay,server", port_num);
1865 port = gdbstub_port_name;
1866 }
1867
1868 chr = qemu_chr_open("gdb", port);
1869 if (!chr)
1870 return -1;
1871
1872 s = qemu_mallocz(sizeof(GDBState));
1873 if (!s) {
1874 return -1;
1875 }
1876 s->env = first_cpu; /* XXX: allow to change CPU */
1877 s->chr = chr;
1878 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1879 gdb_chr_event, s);
1880 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1881 return 0;
1882 }
1883 #endif