]> git.proxmox.com Git - grub2.git/blob - grub-core/efiemu/mm.c
Unify memory types.
[grub2.git] / grub-core / efiemu / mm.c
1 /* Memory management for efiemu */
2 /*
3 * GRUB -- GRand Unified Bootloader
4 * Copyright (C) 2009 Free Software Foundation, Inc.
5 *
6 * GRUB is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * GRUB is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
18 */
19 /*
20 To keep efiemu runtime contiguous this mm is special.
21 It uses deferred allocation.
22 In the first stage you may request memory with grub_efiemu_request_memalign
23 It will give you a handle with which in the second phase you can access your
24 memory with grub_efiemu_mm_obtain_request (handle). It's guaranteed that
25 subsequent calls with the same handle return the same result. You can't request any additional memory once you're in the second phase
26 */
27
28 #include <grub/err.h>
29 #include <grub/normal.h>
30 #include <grub/mm.h>
31 #include <grub/misc.h>
32 #include <grub/efiemu/efiemu.h>
33 #include <grub/memory.h>
34
35 struct grub_efiemu_memrequest
36 {
37 struct grub_efiemu_memrequest *next;
38 grub_efi_memory_type_t type;
39 grub_size_t size;
40 grub_size_t align_overhead;
41 int handle;
42 void *val;
43 };
44 /* Linked list of requested memory. */
45 static struct grub_efiemu_memrequest *memrequests = 0;
46 /* Memory map. */
47 static grub_efi_memory_descriptor_t *efiemu_mmap = 0;
48 /* Pointer to allocated memory */
49 static void *resident_memory = 0;
50 /* Size of requested memory per type */
51 static grub_size_t requested_memory[GRUB_EFI_MAX_MEMORY_TYPE];
52 /* How many slots is allocated for memory_map and how many are already used */
53 static int mmap_reserved_size = 0, mmap_num = 0;
54
55 /* Add a memory region to map*/
56 static grub_err_t
57 grub_efiemu_add_to_mmap (grub_uint64_t start, grub_uint64_t size,
58 grub_efi_memory_type_t type)
59 {
60 grub_uint64_t page_start, npages;
61
62 /* Extend map if necessary*/
63 if (mmap_num >= mmap_reserved_size)
64 {
65 efiemu_mmap = (grub_efi_memory_descriptor_t *)
66 grub_realloc (efiemu_mmap, (++mmap_reserved_size)
67 * sizeof (grub_efi_memory_descriptor_t));
68 if (!efiemu_mmap)
69 return grub_error (GRUB_ERR_OUT_OF_MEMORY,
70 "not enough space for memory map");
71 }
72
73 /* Fill slot*/
74 page_start = start - (start % GRUB_EFIEMU_PAGESIZE);
75 npages = (size + (start % GRUB_EFIEMU_PAGESIZE) + GRUB_EFIEMU_PAGESIZE - 1)
76 / GRUB_EFIEMU_PAGESIZE;
77 efiemu_mmap[mmap_num].physical_start = page_start;
78 efiemu_mmap[mmap_num].virtual_start = page_start;
79 efiemu_mmap[mmap_num].num_pages = npages;
80 efiemu_mmap[mmap_num].type = type;
81 mmap_num++;
82
83 return GRUB_ERR_NONE;
84 }
85
86 /* Request a resident memory of type TYPE of size SIZE aligned at ALIGN
87 ALIGN must be a divisor of page size (if it's a divisor of 4096
88 it should be ok on all platforms)
89 */
90 int
91 grub_efiemu_request_memalign (grub_size_t align, grub_size_t size,
92 grub_efi_memory_type_t type)
93 {
94 grub_size_t align_overhead;
95 struct grub_efiemu_memrequest *ret, *cur, *prev;
96 /* Check that the request is correct */
97 if (type >= GRUB_EFI_MAX_MEMORY_TYPE || type <= GRUB_EFI_LOADER_CODE)
98 return -2;
99
100 /* Add new size to requested size */
101 align_overhead = align - (requested_memory[type]%align);
102 if (align_overhead == align)
103 align_overhead = 0;
104 requested_memory[type] += align_overhead + size;
105
106 /* Remember the request */
107 ret = grub_zalloc (sizeof (*ret));
108 if (!ret)
109 return -1;
110 ret->type = type;
111 ret->size = size;
112 ret->align_overhead = align_overhead;
113 prev = 0;
114
115 /* Add request to the end of the chain.
116 It should be at the end because otherwise alignment isn't guaranteed */
117 for (cur = memrequests; cur; prev = cur, cur = cur->next);
118 if (prev)
119 {
120 ret->handle = prev->handle + 1;
121 prev->next = ret;
122 }
123 else
124 {
125 ret->handle = 1; /* Avoid 0 handle*/
126 memrequests = ret;
127 }
128 return ret->handle;
129 }
130
131 /* Really allocate the memory */
132 static grub_err_t
133 efiemu_alloc_requests (void)
134 {
135 grub_size_t align_overhead = 0;
136 grub_uint8_t *curptr, *typestart;
137 struct grub_efiemu_memrequest *cur;
138 grub_size_t total_alloc = 0;
139 unsigned i;
140 /* Order of memory regions */
141 grub_efi_memory_type_t reqorder[] =
142 {
143 /* First come regions usable by OS*/
144 GRUB_EFI_LOADER_CODE,
145 GRUB_EFI_LOADER_DATA,
146 GRUB_EFI_BOOT_SERVICES_CODE,
147 GRUB_EFI_BOOT_SERVICES_DATA,
148 GRUB_EFI_CONVENTIONAL_MEMORY,
149 GRUB_EFI_ACPI_RECLAIM_MEMORY,
150
151 /* Then memory used by runtime */
152 /* This way all our regions are in a single block */
153 GRUB_EFI_RUNTIME_SERVICES_CODE,
154 GRUB_EFI_RUNTIME_SERVICES_DATA,
155 GRUB_EFI_ACPI_MEMORY_NVS,
156
157 /* And then unavailable memory types. This is more for a completeness.
158 You should double think before allocating memory of any of these types
159 */
160 GRUB_EFI_UNUSABLE_MEMORY,
161 GRUB_EFI_MEMORY_MAPPED_IO,
162 GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE,
163 GRUB_EFI_PAL_CODE
164 };
165
166 /* Compute total memory needed */
167 for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++)
168 {
169 align_overhead = GRUB_EFIEMU_PAGESIZE
170 - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE);
171 if (align_overhead == GRUB_EFIEMU_PAGESIZE)
172 align_overhead = 0;
173 total_alloc += requested_memory[reqorder[i]] + align_overhead;
174 }
175
176 /* Allocate the whole memory in one block */
177 resident_memory = grub_memalign (GRUB_EFIEMU_PAGESIZE, total_alloc);
178 if (!resident_memory)
179 return grub_error (GRUB_ERR_OUT_OF_MEMORY,
180 "couldn't allocate resident memory");
181
182 /* Split the memory into blocks by type */
183 curptr = resident_memory;
184 for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++)
185 {
186 if (!requested_memory[reqorder[i]])
187 continue;
188 typestart = curptr;
189
190 /* Write pointers to requests */
191 for (cur = memrequests; cur; cur = cur->next)
192 if (cur->type == reqorder[i])
193 {
194 curptr = ((grub_uint8_t *)curptr) + cur->align_overhead;
195 cur->val = curptr;
196 curptr = ((grub_uint8_t *)curptr) + cur->size;
197 }
198
199 /* Ensure that the regions are page-aligned */
200 align_overhead = GRUB_EFIEMU_PAGESIZE
201 - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE);
202 if (align_overhead == GRUB_EFIEMU_PAGESIZE)
203 align_overhead = 0;
204 curptr = ((grub_uint8_t *)curptr) + align_overhead;
205
206 /* Add the region to memory map */
207 grub_efiemu_add_to_mmap (PTR_TO_UINT64 (typestart),
208 curptr - typestart, reqorder[i]);
209 }
210
211 return GRUB_ERR_NONE;
212 }
213
214 /* Get a pointer to requested memory from handle */
215 void *
216 grub_efiemu_mm_obtain_request (int handle)
217 {
218 struct grub_efiemu_memrequest *cur;
219 for (cur = memrequests; cur; cur = cur->next)
220 if (cur->handle == handle)
221 return cur->val;
222 return 0;
223 }
224
225 /* Get type of requested memory by handle */
226 grub_efi_memory_type_t
227 grub_efiemu_mm_get_type (int handle)
228 {
229 struct grub_efiemu_memrequest *cur;
230 for (cur = memrequests; cur; cur = cur->next)
231 if (cur->handle == handle)
232 return cur->type;
233 return 0;
234 }
235
236 /* Free a request */
237 void
238 grub_efiemu_mm_return_request (int handle)
239 {
240 struct grub_efiemu_memrequest *cur, *prev;
241
242 /* Remove head if necessary */
243 while (memrequests && memrequests->handle == handle)
244 {
245 cur = memrequests->next;
246 grub_free (memrequests);
247 memrequests = cur;
248 }
249 if (!memrequests)
250 return;
251
252 /* Remove request from a middle of chain*/
253 for (prev = memrequests, cur = prev->next; cur;)
254 if (cur->handle == handle)
255 {
256 prev->next = cur->next;
257 grub_free (cur);
258 cur = prev->next;
259 }
260 else
261 {
262 prev = cur;
263 cur = prev->next;
264 }
265 }
266
267 /* Reserve space for memory map */
268 static grub_err_t
269 grub_efiemu_mmap_init (void)
270 {
271 auto int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t, grub_uint64_t,
272 grub_memory_type_t);
273 int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t addr __attribute__ ((unused)),
274 grub_uint64_t size __attribute__ ((unused)),
275 grub_memory_type_t type
276 __attribute__ ((unused)))
277 {
278 mmap_reserved_size++;
279 return 0;
280 }
281
282 // the place for memory used by efiemu itself
283 mmap_reserved_size = GRUB_EFI_MAX_MEMORY_TYPE + 1;
284
285 #ifndef GRUB_MACHINE_EMU
286 grub_machine_mmap_iterate (bounds_hook);
287 #endif
288
289 return GRUB_ERR_NONE;
290 }
291
292 /* This is a drop-in replacement of grub_efi_get_memory_map */
293 /* Get the memory map as defined in the EFI spec. Return 1 if successful,
294 return 0 if partial, or return -1 if an error occurs. */
295 int
296 grub_efiemu_get_memory_map (grub_efi_uintn_t *memory_map_size,
297 grub_efi_memory_descriptor_t *memory_map,
298 grub_efi_uintn_t *map_key,
299 grub_efi_uintn_t *descriptor_size,
300 grub_efi_uint32_t *descriptor_version)
301 {
302 if (!efiemu_mmap)
303 {
304 grub_error (GRUB_ERR_INVALID_COMMAND,
305 "you need to first launch efiemu_prepare");
306 return -1;
307 }
308
309 if (*memory_map_size < mmap_num * sizeof (grub_efi_memory_descriptor_t))
310 {
311 *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t);
312 return 0;
313 }
314
315 *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t);
316 grub_memcpy (memory_map, efiemu_mmap, *memory_map_size);
317 if (descriptor_size)
318 *descriptor_size = sizeof (grub_efi_memory_descriptor_t);
319 if (descriptor_version)
320 *descriptor_version = 1;
321 if (map_key)
322 *map_key = 0;
323
324 return 1;
325 }
326
327 grub_err_t
328 grub_efiemu_finish_boot_services (grub_efi_uintn_t *memory_map_size,
329 grub_efi_memory_descriptor_t *memory_map,
330 grub_efi_uintn_t *map_key,
331 grub_efi_uintn_t *descriptor_size,
332 grub_efi_uint32_t *descriptor_version)
333 {
334 int val = grub_efiemu_get_memory_map (memory_map_size,
335 memory_map, map_key,
336 descriptor_size,
337 descriptor_version);
338 if (val == 1)
339 return GRUB_ERR_NONE;
340 if (val == -1)
341 return grub_errno;
342 return grub_error (GRUB_ERR_IO, "memory map buffer is too small");
343 }
344
345
346 /* Free everything */
347 grub_err_t
348 grub_efiemu_mm_unload (void)
349 {
350 struct grub_efiemu_memrequest *cur, *d;
351 for (cur = memrequests; cur;)
352 {
353 d = cur->next;
354 grub_free (cur);
355 cur = d;
356 }
357 memrequests = 0;
358 grub_memset (&requested_memory, 0, sizeof (requested_memory));
359 grub_free (resident_memory);
360 resident_memory = 0;
361 grub_free (efiemu_mmap);
362 efiemu_mmap = 0;
363 mmap_reserved_size = mmap_num = 0;
364 return GRUB_ERR_NONE;
365 }
366
367 /* This function should be called before doing any requests */
368 grub_err_t
369 grub_efiemu_mm_init (void)
370 {
371 grub_err_t err;
372
373 err = grub_efiemu_mm_unload ();
374 if (err)
375 return err;
376
377 grub_efiemu_mmap_init ();
378
379 return GRUB_ERR_NONE;
380 }
381
382 /* Copy host memory map */
383 static grub_err_t
384 grub_efiemu_mmap_fill (void)
385 {
386 auto int NESTED_FUNC_ATTR fill_hook (grub_uint64_t, grub_uint64_t,
387 grub_memory_type_t);
388 int NESTED_FUNC_ATTR fill_hook (grub_uint64_t addr,
389 grub_uint64_t size,
390 grub_memory_type_t type)
391 {
392 switch (type)
393 {
394 case GRUB_MEMORY_AVAILABLE:
395 return grub_efiemu_add_to_mmap (addr, size,
396 GRUB_EFI_CONVENTIONAL_MEMORY);
397
398 case GRUB_MEMORY_ACPI:
399 return grub_efiemu_add_to_mmap (addr, size,
400 GRUB_EFI_ACPI_RECLAIM_MEMORY);
401
402 case GRUB_MEMORY_NVS:
403 return grub_efiemu_add_to_mmap (addr, size,
404 GRUB_EFI_ACPI_MEMORY_NVS);
405
406 default:
407 grub_printf ("Unknown memory type %d. Assuming unusable\n", type);
408 case GRUB_MEMORY_RESERVED:
409 return grub_efiemu_add_to_mmap (addr, size,
410 GRUB_EFI_UNUSABLE_MEMORY);
411 }
412 }
413
414 #ifndef GRUB_MACHINE_EMU
415 grub_machine_mmap_iterate (fill_hook);
416 #endif
417
418 return GRUB_ERR_NONE;
419 }
420
421 grub_err_t
422 grub_efiemu_mmap_iterate (grub_memory_hook_t hook)
423 {
424 unsigned i;
425
426 for (i = 0; i < (unsigned) mmap_num; i++)
427 switch (efiemu_mmap[i].type)
428 {
429 case GRUB_EFI_RUNTIME_SERVICES_CODE:
430 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
431 GRUB_MEMORY_CODE);
432 break;
433
434 case GRUB_EFI_UNUSABLE_MEMORY:
435 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
436 GRUB_MEMORY_BADRAM);
437 break;
438
439 case GRUB_EFI_RESERVED_MEMORY_TYPE:
440 case GRUB_EFI_RUNTIME_SERVICES_DATA:
441 case GRUB_EFI_MEMORY_MAPPED_IO:
442 case GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE:
443 case GRUB_EFI_PAL_CODE:
444 case GRUB_EFI_MAX_MEMORY_TYPE:
445 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
446 GRUB_MEMORY_RESERVED);
447 break;
448
449 case GRUB_EFI_LOADER_CODE:
450 case GRUB_EFI_LOADER_DATA:
451 case GRUB_EFI_BOOT_SERVICES_CODE:
452 case GRUB_EFI_BOOT_SERVICES_DATA:
453 case GRUB_EFI_CONVENTIONAL_MEMORY:
454 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
455 GRUB_MEMORY_AVAILABLE);
456 break;
457
458 case GRUB_EFI_ACPI_RECLAIM_MEMORY:
459 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
460 GRUB_MEMORY_ACPI);
461 break;
462
463 case GRUB_EFI_ACPI_MEMORY_NVS:
464 hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
465 GRUB_MEMORY_NVS);
466 break;
467 }
468
469 return 0;
470 }
471
472
473 /* This function resolves overlapping regions and sorts the memory map
474 It uses scanline (sweeping) algorithm
475 */
476 static grub_err_t
477 grub_efiemu_mmap_sort_and_uniq (void)
478 {
479 /* If same page is used by multiple types it's resolved
480 according to priority
481 0 - free memory
482 1 - memory immediately usable after ExitBootServices
483 2 - memory usable after loading ACPI tables
484 3 - efiemu memory
485 4 - unusable memory
486 */
487 int priority[GRUB_EFI_MAX_MEMORY_TYPE] =
488 {
489 [GRUB_EFI_RESERVED_MEMORY_TYPE] = 4,
490 [GRUB_EFI_LOADER_CODE] = 1,
491 [GRUB_EFI_LOADER_DATA] = 1,
492 [GRUB_EFI_BOOT_SERVICES_CODE] = 1,
493 [GRUB_EFI_BOOT_SERVICES_DATA] = 1,
494 [GRUB_EFI_RUNTIME_SERVICES_CODE] = 3,
495 [GRUB_EFI_RUNTIME_SERVICES_DATA] = 3,
496 [GRUB_EFI_CONVENTIONAL_MEMORY] = 0,
497 [GRUB_EFI_UNUSABLE_MEMORY] = 4,
498 [GRUB_EFI_ACPI_RECLAIM_MEMORY] = 2,
499 [GRUB_EFI_ACPI_MEMORY_NVS] = 3,
500 [GRUB_EFI_MEMORY_MAPPED_IO] = 4,
501 [GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE] = 4,
502 [GRUB_EFI_PAL_CODE] = 4
503 };
504
505 int i, j, k, done;
506
507 /* Scanline events */
508 struct grub_efiemu_mmap_scan
509 {
510 /* At which memory address*/
511 grub_uint64_t pos;
512 /* 0 = region starts, 1 = region ends */
513 int type;
514 /* Which type of memory region */
515 grub_efi_memory_type_t memtype;
516 };
517 struct grub_efiemu_mmap_scan *scanline_events;
518 struct grub_efiemu_mmap_scan t;
519
520 /* Previous scanline event */
521 grub_uint64_t lastaddr;
522 int lasttype;
523 /* Current scanline event */
524 int curtype;
525 /* how many regions of given type overlap at current location */
526 int present[GRUB_EFI_MAX_MEMORY_TYPE];
527 /* Here is stored the resulting memory map*/
528 grub_efi_memory_descriptor_t *result;
529
530 /* Initialize variables*/
531 grub_memset (present, 0, sizeof (int) * GRUB_EFI_MAX_MEMORY_TYPE);
532 scanline_events = (struct grub_efiemu_mmap_scan *)
533 grub_malloc (sizeof (struct grub_efiemu_mmap_scan) * 2 * mmap_num);
534
535 /* Number of chunks can't increase more than by factor of 2 */
536 result = (grub_efi_memory_descriptor_t *)
537 grub_malloc (sizeof (grub_efi_memory_descriptor_t) * 2 * mmap_num);
538 if (!result || !scanline_events)
539 {
540 grub_free (result);
541 grub_free (scanline_events);
542 return grub_error (GRUB_ERR_OUT_OF_MEMORY,
543 "couldn't allocate space for new memory map");
544 }
545
546 /* Register scanline events */
547 for (i = 0; i < mmap_num; i++)
548 {
549 scanline_events[2 * i].pos = efiemu_mmap[i].physical_start;
550 scanline_events[2 * i].type = 0;
551 scanline_events[2 * i].memtype = efiemu_mmap[i].type;
552 scanline_events[2 * i + 1].pos = efiemu_mmap[i].physical_start
553 + efiemu_mmap[i].num_pages * GRUB_EFIEMU_PAGESIZE;
554 scanline_events[2 * i + 1].type = 1;
555 scanline_events[2 * i + 1].memtype = efiemu_mmap[i].type;
556 }
557
558 /* Primitive bubble sort. It has complexity O(n^2) but since we're
559 unlikely to have more than 100 chunks it's probably one of the
560 fastest for one purpose */
561 done = 1;
562 while (done)
563 {
564 done = 0;
565 for (i = 0; i < 2 * mmap_num - 1; i++)
566 if (scanline_events[i + 1].pos < scanline_events[i].pos)
567 {
568 t = scanline_events[i + 1];
569 scanline_events[i + 1] = scanline_events[i];
570 scanline_events[i] = t;
571 done = 1;
572 }
573 }
574
575 /* Pointer in resulting memory map */
576 j = 0;
577 lastaddr = scanline_events[0].pos;
578 lasttype = scanline_events[0].memtype;
579 for (i = 0; i < 2 * mmap_num; i++)
580 {
581 /* Process event */
582 if (scanline_events[i].type)
583 present[scanline_events[i].memtype]--;
584 else
585 present[scanline_events[i].memtype]++;
586
587 /* Determine current region type */
588 curtype = -1;
589 for (k = 0; k < GRUB_EFI_MAX_MEMORY_TYPE; k++)
590 if (present[k] && (curtype == -1 || priority[k] > priority[curtype]))
591 curtype = k;
592
593 /* Add memory region to resulting map if necessary */
594 if ((curtype == -1 || curtype != lasttype)
595 && lastaddr != scanline_events[i].pos
596 && lasttype != -1)
597 {
598 result[j].virtual_start = result[j].physical_start = lastaddr;
599 result[j].num_pages = (scanline_events[i].pos - lastaddr)
600 / GRUB_EFIEMU_PAGESIZE;
601 result[j].type = lasttype;
602
603 /* We set runtime attribute on pages we need to be mapped */
604 result[j].attribute
605 = (lasttype == GRUB_EFI_RUNTIME_SERVICES_CODE
606 || lasttype == GRUB_EFI_RUNTIME_SERVICES_DATA)
607 ? GRUB_EFI_MEMORY_RUNTIME : 0;
608 grub_dprintf ("efiemu",
609 "mmap entry: type %d start 0x%llx 0x%llx pages\n",
610 result[j].type,
611 result[j].physical_start, result[j].num_pages);
612 j++;
613 }
614
615 /* Update last values if necessary */
616 if (curtype == -1 || curtype != lasttype)
617 {
618 lasttype = curtype;
619 lastaddr = scanline_events[i].pos;
620 }
621 }
622
623 grub_free (scanline_events);
624
625 /* Shrink resulting memory map to really used size and replace efiemu_mmap
626 by new value */
627 grub_free (efiemu_mmap);
628 efiemu_mmap = grub_realloc (result, j * sizeof (*result));
629 return GRUB_ERR_NONE;
630 }
631
632 /* This function is called to switch from first to second phase */
633 grub_err_t
634 grub_efiemu_mm_do_alloc (void)
635 {
636 grub_err_t err;
637
638 /* Preallocate mmap */
639 efiemu_mmap = (grub_efi_memory_descriptor_t *)
640 grub_malloc (mmap_reserved_size * sizeof (grub_efi_memory_descriptor_t));
641 if (!efiemu_mmap)
642 {
643 grub_efiemu_unload ();
644 return grub_error (GRUB_ERR_OUT_OF_MEMORY, "couldn't initialize mmap");
645 }
646
647 if ((err = efiemu_alloc_requests ()))
648 return err;
649 if ((err = grub_efiemu_mmap_fill ()))
650 return err;
651 return grub_efiemu_mmap_sort_and_uniq ();
652 }