]> git.proxmox.com Git - grub2.git/blob - grub-core/lib/libgcrypt-grub/mpi/mpih-mul.c
Import grub2_2.02+dfsg1.orig.tar.xz
[grub2.git] / grub-core / lib / libgcrypt-grub / mpi / mpih-mul.c
1 /* This file was automatically imported with
2 import_gcry.py. Please don't modify it */
3 /* mpih-mul.c - MPI helper functions
4 * Copyright (C) 1994, 1996, 1998, 1999, 2000,
5 * 2001, 2002 Free Software Foundation, Inc.
6 *
7 * This file is part of Libgcrypt.
8 *
9 * Libgcrypt is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU Lesser General Public License as
11 * published by the Free Software Foundation; either version 2.1 of
12 * the License, or (at your option) any later version.
13 *
14 * Libgcrypt is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
22 *
23 * Note: This code is heavily based on the GNU MP Library.
24 * Actually it's the same code with only minor changes in the
25 * way the data is stored; this is to support the abstraction
26 * of an optional secure memory allocation which may be used
27 * to avoid revealing of sensitive data due to paging etc.
28 */
29
30 #include <config.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include "mpi-internal.h"
35 #include "longlong.h"
36 #include "g10lib.h"
37
38 #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
39 do { \
40 if( (size) < KARATSUBA_THRESHOLD ) \
41 mul_n_basecase (prodp, up, vp, size); \
42 else \
43 mul_n (prodp, up, vp, size, tspace); \
44 } while (0);
45
46 #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
47 do { \
48 if ((size) < KARATSUBA_THRESHOLD) \
49 _gcry_mpih_sqr_n_basecase (prodp, up, size); \
50 else \
51 _gcry_mpih_sqr_n (prodp, up, size, tspace); \
52 } while (0);
53
54
55
56
57 /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
58 * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
59 * always stored. Return the most significant limb.
60 *
61 * Argument constraints:
62 * 1. PRODP != UP and PRODP != VP, i.e. the destination
63 * must be distinct from the multiplier and the multiplicand.
64 *
65 *
66 * Handle simple cases with traditional multiplication.
67 *
68 * This is the most critical code of multiplication. All multiplies rely
69 * on this, both small and huge. Small ones arrive here immediately. Huge
70 * ones arrive here as this is the base case for Karatsuba's recursive
71 * algorithm below.
72 */
73
74 static mpi_limb_t
75 mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up,
76 mpi_ptr_t vp, mpi_size_t size)
77 {
78 mpi_size_t i;
79 mpi_limb_t cy;
80 mpi_limb_t v_limb;
81
82 /* Multiply by the first limb in V separately, as the result can be
83 * stored (not added) to PROD. We also avoid a loop for zeroing. */
84 v_limb = vp[0];
85 if( v_limb <= 1 ) {
86 if( v_limb == 1 )
87 MPN_COPY( prodp, up, size );
88 else
89 MPN_ZERO( prodp, size );
90 cy = 0;
91 }
92 else
93 cy = _gcry_mpih_mul_1( prodp, up, size, v_limb );
94
95 prodp[size] = cy;
96 prodp++;
97
98 /* For each iteration in the outer loop, multiply one limb from
99 * U with one limb from V, and add it to PROD. */
100 for( i = 1; i < size; i++ ) {
101 v_limb = vp[i];
102 if( v_limb <= 1 ) {
103 cy = 0;
104 if( v_limb == 1 )
105 cy = _gcry_mpih_add_n(prodp, prodp, up, size);
106 }
107 else
108 cy = _gcry_mpih_addmul_1(prodp, up, size, v_limb);
109
110 prodp[size] = cy;
111 prodp++;
112 }
113
114 return cy;
115 }
116
117
118 static void
119 mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
120 mpi_size_t size, mpi_ptr_t tspace )
121 {
122 if( size & 1 ) {
123 /* The size is odd, and the code below doesn't handle that.
124 * Multiply the least significant (size - 1) limbs with a recursive
125 * call, and handle the most significant limb of S1 and S2
126 * separately.
127 * A slightly faster way to do this would be to make the Karatsuba
128 * code below behave as if the size were even, and let it check for
129 * odd size in the end. I.e., in essence move this code to the end.
130 * Doing so would save us a recursive call, and potentially make the
131 * stack grow a lot less.
132 */
133 mpi_size_t esize = size - 1; /* even size */
134 mpi_limb_t cy_limb;
135
136 MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace );
137 cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, vp[esize] );
138 prodp[esize + esize] = cy_limb;
139 cy_limb = _gcry_mpih_addmul_1( prodp + esize, vp, size, up[esize] );
140 prodp[esize + size] = cy_limb;
141 }
142 else {
143 /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
144 *
145 * Split U in two pieces, U1 and U0, such that
146 * U = U0 + U1*(B**n),
147 * and V in V1 and V0, such that
148 * V = V0 + V1*(B**n).
149 *
150 * UV is then computed recursively using the identity
151 *
152 * 2n n n n
153 * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
154 * 1 1 1 0 0 1 0 0
155 *
156 * Where B = 2**BITS_PER_MP_LIMB.
157 */
158 mpi_size_t hsize = size >> 1;
159 mpi_limb_t cy;
160 int negflg;
161
162 /* Product H. ________________ ________________
163 * |_____U1 x V1____||____U0 x V0_____|
164 * Put result in upper part of PROD and pass low part of TSPACE
165 * as new TSPACE.
166 */
167 MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace);
168
169 /* Product M. ________________
170 * |_(U1-U0)(V0-V1)_|
171 */
172 if( _gcry_mpih_cmp(up + hsize, up, hsize) >= 0 ) {
173 _gcry_mpih_sub_n(prodp, up + hsize, up, hsize);
174 negflg = 0;
175 }
176 else {
177 _gcry_mpih_sub_n(prodp, up, up + hsize, hsize);
178 negflg = 1;
179 }
180 if( _gcry_mpih_cmp(vp + hsize, vp, hsize) >= 0 ) {
181 _gcry_mpih_sub_n(prodp + hsize, vp + hsize, vp, hsize);
182 negflg ^= 1;
183 }
184 else {
185 _gcry_mpih_sub_n(prodp + hsize, vp, vp + hsize, hsize);
186 /* No change of NEGFLG. */
187 }
188 /* Read temporary operands from low part of PROD.
189 * Put result in low part of TSPACE using upper part of TSPACE
190 * as new TSPACE.
191 */
192 MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size);
193
194 /* Add/copy product H. */
195 MPN_COPY (prodp + hsize, prodp + size, hsize);
196 cy = _gcry_mpih_add_n( prodp + size, prodp + size,
197 prodp + size + hsize, hsize);
198
199 /* Add product M (if NEGFLG M is a negative number) */
200 if(negflg)
201 cy -= _gcry_mpih_sub_n(prodp + hsize, prodp + hsize, tspace, size);
202 else
203 cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size);
204
205 /* Product L. ________________ ________________
206 * |________________||____U0 x V0_____|
207 * Read temporary operands from low part of PROD.
208 * Put result in low part of TSPACE using upper part of TSPACE
209 * as new TSPACE.
210 */
211 MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
212
213 /* Add/copy Product L (twice) */
214
215 cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size);
216 if( cy )
217 _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy);
218
219 MPN_COPY(prodp, tspace, hsize);
220 cy = _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize);
221 if( cy )
222 _gcry_mpih_add_1(prodp + size, prodp + size, size, 1);
223 }
224 }
225
226
227 void
228 _gcry_mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size )
229 {
230 mpi_size_t i;
231 mpi_limb_t cy_limb;
232 mpi_limb_t v_limb;
233
234 /* Multiply by the first limb in V separately, as the result can be
235 * stored (not added) to PROD. We also avoid a loop for zeroing. */
236 v_limb = up[0];
237 if( v_limb <= 1 ) {
238 if( v_limb == 1 )
239 MPN_COPY( prodp, up, size );
240 else
241 MPN_ZERO(prodp, size);
242 cy_limb = 0;
243 }
244 else
245 cy_limb = _gcry_mpih_mul_1( prodp, up, size, v_limb );
246
247 prodp[size] = cy_limb;
248 prodp++;
249
250 /* For each iteration in the outer loop, multiply one limb from
251 * U with one limb from V, and add it to PROD. */
252 for( i=1; i < size; i++) {
253 v_limb = up[i];
254 if( v_limb <= 1 ) {
255 cy_limb = 0;
256 if( v_limb == 1 )
257 cy_limb = _gcry_mpih_add_n(prodp, prodp, up, size);
258 }
259 else
260 cy_limb = _gcry_mpih_addmul_1(prodp, up, size, v_limb);
261
262 prodp[size] = cy_limb;
263 prodp++;
264 }
265 }
266
267
268 void
269 _gcry_mpih_sqr_n( mpi_ptr_t prodp,
270 mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
271 {
272 if( size & 1 ) {
273 /* The size is odd, and the code below doesn't handle that.
274 * Multiply the least significant (size - 1) limbs with a recursive
275 * call, and handle the most significant limb of S1 and S2
276 * separately.
277 * A slightly faster way to do this would be to make the Karatsuba
278 * code below behave as if the size were even, and let it check for
279 * odd size in the end. I.e., in essence move this code to the end.
280 * Doing so would save us a recursive call, and potentially make the
281 * stack grow a lot less.
282 */
283 mpi_size_t esize = size - 1; /* even size */
284 mpi_limb_t cy_limb;
285
286 MPN_SQR_N_RECURSE( prodp, up, esize, tspace );
287 cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, up[esize] );
288 prodp[esize + esize] = cy_limb;
289 cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, size, up[esize] );
290
291 prodp[esize + size] = cy_limb;
292 }
293 else {
294 mpi_size_t hsize = size >> 1;
295 mpi_limb_t cy;
296
297 /* Product H. ________________ ________________
298 * |_____U1 x U1____||____U0 x U0_____|
299 * Put result in upper part of PROD and pass low part of TSPACE
300 * as new TSPACE.
301 */
302 MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
303
304 /* Product M. ________________
305 * |_(U1-U0)(U0-U1)_|
306 */
307 if( _gcry_mpih_cmp( up + hsize, up, hsize) >= 0 )
308 _gcry_mpih_sub_n( prodp, up + hsize, up, hsize);
309 else
310 _gcry_mpih_sub_n (prodp, up, up + hsize, hsize);
311
312 /* Read temporary operands from low part of PROD.
313 * Put result in low part of TSPACE using upper part of TSPACE
314 * as new TSPACE. */
315 MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
316
317 /* Add/copy product H */
318 MPN_COPY(prodp + hsize, prodp + size, hsize);
319 cy = _gcry_mpih_add_n(prodp + size, prodp + size,
320 prodp + size + hsize, hsize);
321
322 /* Add product M (if NEGFLG M is a negative number). */
323 cy -= _gcry_mpih_sub_n (prodp + hsize, prodp + hsize, tspace, size);
324
325 /* Product L. ________________ ________________
326 * |________________||____U0 x U0_____|
327 * Read temporary operands from low part of PROD.
328 * Put result in low part of TSPACE using upper part of TSPACE
329 * as new TSPACE. */
330 MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
331
332 /* Add/copy Product L (twice). */
333 cy += _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace, size);
334 if( cy )
335 _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size,
336 hsize, cy);
337
338 MPN_COPY(prodp, tspace, hsize);
339 cy = _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
340 if( cy )
341 _gcry_mpih_add_1 (prodp + size, prodp + size, size, 1);
342 }
343 }
344
345
346 /* This should be made into an inline function in gmp.h. */
347 void
348 _gcry_mpih_mul_n( mpi_ptr_t prodp,
349 mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
350 {
351 int secure;
352
353 if( up == vp ) {
354 if( size < KARATSUBA_THRESHOLD )
355 _gcry_mpih_sqr_n_basecase( prodp, up, size );
356 else {
357 mpi_ptr_t tspace;
358 secure = gcry_is_secure( up );
359 tspace = mpi_alloc_limb_space( 2 * size, secure );
360 _gcry_mpih_sqr_n( prodp, up, size, tspace );
361 _gcry_mpi_free_limb_space (tspace, 2 * size );
362 }
363 }
364 else {
365 if( size < KARATSUBA_THRESHOLD )
366 mul_n_basecase( prodp, up, vp, size );
367 else {
368 mpi_ptr_t tspace;
369 secure = gcry_is_secure( up ) || gcry_is_secure( vp );
370 tspace = mpi_alloc_limb_space( 2 * size, secure );
371 mul_n (prodp, up, vp, size, tspace);
372 _gcry_mpi_free_limb_space (tspace, 2 * size );
373 }
374 }
375 }
376
377
378
379 void
380 _gcry_mpih_mul_karatsuba_case( mpi_ptr_t prodp,
381 mpi_ptr_t up, mpi_size_t usize,
382 mpi_ptr_t vp, mpi_size_t vsize,
383 struct karatsuba_ctx *ctx )
384 {
385 mpi_limb_t cy;
386
387 if( !ctx->tspace || ctx->tspace_size < vsize ) {
388 if( ctx->tspace )
389 _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
390 ctx->tspace_nlimbs = 2 * vsize;
391 ctx->tspace = mpi_alloc_limb_space( 2 * vsize,
392 (gcry_is_secure( up )
393 || gcry_is_secure( vp )) );
394 ctx->tspace_size = vsize;
395 }
396
397 MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace );
398
399 prodp += vsize;
400 up += vsize;
401 usize -= vsize;
402 if( usize >= vsize ) {
403 if( !ctx->tp || ctx->tp_size < vsize ) {
404 if( ctx->tp )
405 _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
406 ctx->tp_nlimbs = 2 * vsize;
407 ctx->tp = mpi_alloc_limb_space( 2 * vsize, gcry_is_secure( up )
408 || gcry_is_secure( vp ) );
409 ctx->tp_size = vsize;
410 }
411
412 do {
413 MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace );
414 cy = _gcry_mpih_add_n( prodp, prodp, ctx->tp, vsize );
415 _gcry_mpih_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy );
416 prodp += vsize;
417 up += vsize;
418 usize -= vsize;
419 } while( usize >= vsize );
420 }
421
422 if( usize ) {
423 if( usize < KARATSUBA_THRESHOLD ) {
424 _gcry_mpih_mul( ctx->tspace, vp, vsize, up, usize );
425 }
426 else {
427 if( !ctx->next ) {
428 ctx->next = gcry_xcalloc( 1, sizeof *ctx );
429 }
430 _gcry_mpih_mul_karatsuba_case( ctx->tspace,
431 vp, vsize,
432 up, usize,
433 ctx->next );
434 }
435
436 cy = _gcry_mpih_add_n( prodp, prodp, ctx->tspace, vsize);
437 _gcry_mpih_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy );
438 }
439 }
440
441
442 void
443 _gcry_mpih_release_karatsuba_ctx( struct karatsuba_ctx *ctx )
444 {
445 struct karatsuba_ctx *ctx2;
446
447 if( ctx->tp )
448 _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
449 if( ctx->tspace )
450 _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
451 for( ctx=ctx->next; ctx; ctx = ctx2 ) {
452 ctx2 = ctx->next;
453 if( ctx->tp )
454 _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
455 if( ctx->tspace )
456 _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
457 gcry_free( ctx );
458 }
459 }
460
461 /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
462 * and v (pointed to by VP, with VSIZE limbs), and store the result at
463 * PRODP. USIZE + VSIZE limbs are always stored, but if the input
464 * operands are normalized. Return the most significant limb of the
465 * result.
466 *
467 * NOTE: The space pointed to by PRODP is overwritten before finished
468 * with U and V, so overlap is an error.
469 *
470 * Argument constraints:
471 * 1. USIZE >= VSIZE.
472 * 2. PRODP != UP and PRODP != VP, i.e. the destination
473 * must be distinct from the multiplier and the multiplicand.
474 */
475
476 mpi_limb_t
477 _gcry_mpih_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
478 mpi_ptr_t vp, mpi_size_t vsize)
479 {
480 mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
481 mpi_limb_t cy;
482 struct karatsuba_ctx ctx;
483
484 if( vsize < KARATSUBA_THRESHOLD ) {
485 mpi_size_t i;
486 mpi_limb_t v_limb;
487
488 if( !vsize )
489 return 0;
490
491 /* Multiply by the first limb in V separately, as the result can be
492 * stored (not added) to PROD. We also avoid a loop for zeroing. */
493 v_limb = vp[0];
494 if( v_limb <= 1 ) {
495 if( v_limb == 1 )
496 MPN_COPY( prodp, up, usize );
497 else
498 MPN_ZERO( prodp, usize );
499 cy = 0;
500 }
501 else
502 cy = _gcry_mpih_mul_1( prodp, up, usize, v_limb );
503
504 prodp[usize] = cy;
505 prodp++;
506
507 /* For each iteration in the outer loop, multiply one limb from
508 * U with one limb from V, and add it to PROD. */
509 for( i = 1; i < vsize; i++ ) {
510 v_limb = vp[i];
511 if( v_limb <= 1 ) {
512 cy = 0;
513 if( v_limb == 1 )
514 cy = _gcry_mpih_add_n(prodp, prodp, up, usize);
515 }
516 else
517 cy = _gcry_mpih_addmul_1(prodp, up, usize, v_limb);
518
519 prodp[usize] = cy;
520 prodp++;
521 }
522
523 return cy;
524 }
525
526 memset( &ctx, 0, sizeof ctx );
527 _gcry_mpih_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx );
528 _gcry_mpih_release_karatsuba_ctx( &ctx );
529 return *prod_endp;
530 }