]> git.proxmox.com Git - mirror_qemu.git/blob - hw/acpi/nvdimm.c
qga: Make qemu-ga compile statically for Windows
[mirror_qemu.git] / hw / acpi / nvdimm.c
1 /*
2 * NVDIMM ACPI Implementation
3 *
4 * Copyright(C) 2015 Intel Corporation.
5 *
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
8 *
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12 *
13 * Currently, it only supports PMEM Virtualization.
14 *
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
19 *
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
24 *
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
27 */
28
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35
36 static int nvdimm_device_list(Object *obj, void *opaque)
37 {
38 GSList **list = opaque;
39
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 *list = g_slist_append(*list, DEVICE(obj));
42 }
43
44 object_child_foreach(obj, nvdimm_device_list, opaque);
45 return 0;
46 }
47
48 /*
49 * inquire NVDIMM devices and link them into the list which is
50 * returned to the caller.
51 *
52 * Note: it is the caller's responsibility to free the list to avoid
53 * memory leak.
54 */
55 static GSList *nvdimm_get_device_list(void)
56 {
57 GSList *list = NULL;
58
59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60 return list;
61 }
62
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
67
68 /*
69 * define Byte Addressable Persistent Memory (PM) Region according to
70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
71 */
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74 0x18, 0xb7, 0x8c, 0xdb);
75
76 /*
77 * NVDIMM Firmware Interface Table
78 * @signature: "NFIT"
79 *
80 * It provides information that allows OSPM to enumerate NVDIMM present in
81 * the platform and associate system physical address ranges created by the
82 * NVDIMMs.
83 *
84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
85 */
86 struct NvdimmNfitHeader {
87 ACPI_TABLE_HEADER_DEF
88 uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
91
92 /*
93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94 * Interface Table (NFIT).
95 */
96
97 /*
98 * System Physical Address Range Structure
99 *
100 * It describes the system physical address ranges occupied by NVDIMMs and
101 * the types of the regions.
102 */
103 struct NvdimmNfitSpa {
104 uint16_t type;
105 uint16_t length;
106 uint16_t spa_index;
107 uint16_t flags;
108 uint32_t reserved;
109 uint32_t proximity_domain;
110 uint8_t type_guid[16];
111 uint64_t spa_base;
112 uint64_t spa_length;
113 uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
116
117 /*
118 * Memory Device to System Physical Address Range Mapping Structure
119 *
120 * It enables identifying each NVDIMM region and the corresponding SPA
121 * describing the memory interleave
122 */
123 struct NvdimmNfitMemDev {
124 uint16_t type;
125 uint16_t length;
126 uint32_t nfit_handle;
127 uint16_t phys_id;
128 uint16_t region_id;
129 uint16_t spa_index;
130 uint16_t dcr_index;
131 uint64_t region_len;
132 uint64_t region_offset;
133 uint64_t region_dpa;
134 uint16_t interleave_index;
135 uint16_t interleave_ways;
136 uint16_t flags;
137 uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
140
141 /*
142 * NVDIMM Control Region Structure
143 *
144 * It describes the NVDIMM and if applicable, Block Control Window.
145 */
146 struct NvdimmNfitControlRegion {
147 uint16_t type;
148 uint16_t length;
149 uint16_t dcr_index;
150 uint16_t vendor_id;
151 uint16_t device_id;
152 uint16_t revision_id;
153 uint16_t sub_vendor_id;
154 uint16_t sub_device_id;
155 uint16_t sub_revision_id;
156 uint8_t reserved[6];
157 uint32_t serial_number;
158 uint16_t fic;
159 uint16_t num_bcw;
160 uint64_t bcw_size;
161 uint64_t cmd_offset;
162 uint64_t cmd_size;
163 uint64_t status_offset;
164 uint64_t status_size;
165 uint16_t flags;
166 uint8_t reserved2[6];
167 } QEMU_PACKED;
168 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
169
170 /*
171 * Module serial number is a unique number for each device. We use the
172 * slot id of NVDIMM device to generate this number so that each device
173 * associates with a different number.
174 *
175 * 0x123456 is a magic number we arbitrarily chose.
176 */
177 static uint32_t nvdimm_slot_to_sn(int slot)
178 {
179 return 0x123456 + slot;
180 }
181
182 /*
183 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
184 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
185 * by ACPI device _ADR method.
186 *
187 * We generate the handle with the slot id of NVDIMM device and reserve
188 * 0 for NVDIMM root device.
189 */
190 static uint32_t nvdimm_slot_to_handle(int slot)
191 {
192 return slot + 1;
193 }
194
195 /*
196 * index uniquely identifies the structure, 0 is reserved which indicates
197 * that the structure is not valid or the associated structure is not
198 * present.
199 *
200 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
201 * nfit_dc which are generated by the slot id of NVDIMM device.
202 */
203 static uint16_t nvdimm_slot_to_spa_index(int slot)
204 {
205 return (slot + 1) << 1;
206 }
207
208 /* See the comments of nvdimm_slot_to_spa_index(). */
209 static uint32_t nvdimm_slot_to_dcr_index(int slot)
210 {
211 return nvdimm_slot_to_spa_index(slot) + 1;
212 }
213
214 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
215 {
216 NVDIMMDevice *nvdimm = NULL;
217 GSList *list, *device_list = nvdimm_get_device_list();
218
219 for (list = device_list; list; list = list->next) {
220 NVDIMMDevice *nvd = list->data;
221 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
222 NULL);
223
224 if (nvdimm_slot_to_handle(slot) == handle) {
225 nvdimm = nvd;
226 break;
227 }
228 }
229
230 g_slist_free(device_list);
231 return nvdimm;
232 }
233
234 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
235 static void
236 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
237 {
238 NvdimmNfitSpa *nfit_spa;
239 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
240 NULL);
241 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
242 NULL);
243 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
244 NULL);
245 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
246 NULL);
247
248 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
249
250 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
251 Structure */);
252 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
253 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
254
255 /*
256 * Control region is strict as all the device info, such as SN, index,
257 * is associated with slot id.
258 */
259 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
260 management during hot add/online
261 operation */ |
262 2 /* Data in Proximity Domain field is
263 valid*/);
264
265 /* NUMA node. */
266 nfit_spa->proximity_domain = cpu_to_le32(node);
267 /* the region reported as PMEM. */
268 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
269 sizeof(nvdimm_nfit_spa_uuid));
270
271 nfit_spa->spa_base = cpu_to_le64(addr);
272 nfit_spa->spa_length = cpu_to_le64(size);
273
274 /* It is the PMEM and can be cached as writeback. */
275 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
276 0x8000ULL /* EFI_MEMORY_NV */);
277 }
278
279 /*
280 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
281 * Structure
282 */
283 static void
284 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
285 {
286 NvdimmNfitMemDev *nfit_memdev;
287 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
288 NULL);
289 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
290 NULL);
291 uint32_t handle = nvdimm_slot_to_handle(slot);
292
293 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
294
295 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
296 Range Map Structure*/);
297 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
298 nfit_memdev->nfit_handle = cpu_to_le32(handle);
299
300 /*
301 * associate memory device with System Physical Address Range
302 * Structure.
303 */
304 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
305 /* associate memory device with Control Region Structure. */
306 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
307
308 /* The memory region on the device. */
309 nfit_memdev->region_len = cpu_to_le64(size);
310 /* The device address starts from 0. */
311 nfit_memdev->region_dpa = cpu_to_le64(0);
312
313 /* Only one interleave for PMEM. */
314 nfit_memdev->interleave_ways = cpu_to_le16(1);
315 }
316
317 /*
318 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
319 */
320 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
321 {
322 NvdimmNfitControlRegion *nfit_dcr;
323 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
324 NULL);
325 uint32_t sn = nvdimm_slot_to_sn(slot);
326
327 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
328
329 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
330 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
331 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
332
333 /* vendor: Intel. */
334 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
335 nfit_dcr->device_id = cpu_to_le16(1);
336
337 /* The _DSM method is following Intel's DSM specification. */
338 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
339 in ACPI 6.0 is 1. */);
340 nfit_dcr->serial_number = cpu_to_le32(sn);
341 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
342 2: NVDIMM Device Specific Method
343 (DSM) in DSM Spec Rev1.*/);
344 }
345
346 static GArray *nvdimm_build_device_structure(void)
347 {
348 GSList *device_list = nvdimm_get_device_list();
349 GArray *structures = g_array_new(false, true /* clear */, 1);
350
351 for (; device_list; device_list = device_list->next) {
352 DeviceState *dev = device_list->data;
353
354 /* build System Physical Address Range Structure. */
355 nvdimm_build_structure_spa(structures, dev);
356
357 /*
358 * build Memory Device to System Physical Address Range Mapping
359 * Structure.
360 */
361 nvdimm_build_structure_memdev(structures, dev);
362
363 /* build NVDIMM Control Region Structure. */
364 nvdimm_build_structure_dcr(structures, dev);
365 }
366 g_slist_free(device_list);
367
368 return structures;
369 }
370
371 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
372 {
373 fit_buf->fit = g_array_new(false, true /* clear */, 1);
374 }
375
376 static void nvdimm_build_fit_buffer(NvdimmFitBuffer *fit_buf)
377 {
378 g_array_free(fit_buf->fit, true);
379 fit_buf->fit = nvdimm_build_device_structure();
380 fit_buf->dirty = true;
381 }
382
383 void nvdimm_plug(AcpiNVDIMMState *state)
384 {
385 nvdimm_build_fit_buffer(&state->fit_buf);
386 }
387
388 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
389 GArray *table_data, BIOSLinker *linker)
390 {
391 NvdimmFitBuffer *fit_buf = &state->fit_buf;
392 unsigned int header;
393
394 acpi_add_table(table_offsets, table_data);
395
396 /* NFIT header. */
397 header = table_data->len;
398 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
399 /* NVDIMM device structures. */
400 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
401
402 build_header(linker, table_data,
403 (void *)(table_data->data + header), "NFIT",
404 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
405 }
406
407 #define NVDIMM_DSM_MEMORY_SIZE 4096
408
409 struct NvdimmDsmIn {
410 uint32_t handle;
411 uint32_t revision;
412 uint32_t function;
413 /* the remaining size in the page is used by arg3. */
414 union {
415 uint8_t arg3[4084];
416 };
417 } QEMU_PACKED;
418 typedef struct NvdimmDsmIn NvdimmDsmIn;
419 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
420
421 struct NvdimmDsmOut {
422 /* the size of buffer filled by QEMU. */
423 uint32_t len;
424 uint8_t data[4092];
425 } QEMU_PACKED;
426 typedef struct NvdimmDsmOut NvdimmDsmOut;
427 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
428
429 struct NvdimmDsmFunc0Out {
430 /* the size of buffer filled by QEMU. */
431 uint32_t len;
432 uint32_t supported_func;
433 } QEMU_PACKED;
434 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
435
436 struct NvdimmDsmFuncNoPayloadOut {
437 /* the size of buffer filled by QEMU. */
438 uint32_t len;
439 uint32_t func_ret_status;
440 } QEMU_PACKED;
441 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
442
443 struct NvdimmFuncGetLabelSizeOut {
444 /* the size of buffer filled by QEMU. */
445 uint32_t len;
446 uint32_t func_ret_status; /* return status code. */
447 uint32_t label_size; /* the size of label data area. */
448 /*
449 * Maximum size of the namespace label data length supported by
450 * the platform in Get/Set Namespace Label Data functions.
451 */
452 uint32_t max_xfer;
453 } QEMU_PACKED;
454 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
455 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
456
457 struct NvdimmFuncGetLabelDataIn {
458 uint32_t offset; /* the offset in the namespace label data area. */
459 uint32_t length; /* the size of data is to be read via the function. */
460 } QEMU_PACKED;
461 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
462 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
463 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
464
465 struct NvdimmFuncGetLabelDataOut {
466 /* the size of buffer filled by QEMU. */
467 uint32_t len;
468 uint32_t func_ret_status; /* return status code. */
469 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
470 } QEMU_PACKED;
471 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
473
474 struct NvdimmFuncSetLabelDataIn {
475 uint32_t offset; /* the offset in the namespace label data area. */
476 uint32_t length; /* the size of data is to be written via the function. */
477 uint8_t in_buf[0]; /* the data written to label data area. */
478 } QEMU_PACKED;
479 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
480 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
481 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
482
483 struct NvdimmFuncReadFITIn {
484 uint32_t offset; /* the offset into FIT buffer. */
485 } QEMU_PACKED;
486 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
488 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
489
490 struct NvdimmFuncReadFITOut {
491 /* the size of buffer filled by QEMU. */
492 uint32_t len;
493 uint32_t func_ret_status; /* return status code. */
494 uint8_t fit[0]; /* the FIT data. */
495 } QEMU_PACKED;
496 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
498
499 static void
500 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
501 {
502 NvdimmDsmFunc0Out func0 = {
503 .len = cpu_to_le32(sizeof(func0)),
504 .supported_func = cpu_to_le32(supported_func),
505 };
506 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
507 }
508
509 static void
510 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
511 {
512 NvdimmDsmFuncNoPayloadOut out = {
513 .len = cpu_to_le32(sizeof(out)),
514 .func_ret_status = cpu_to_le32(func_ret_status),
515 };
516 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
517 }
518
519 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
520 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
521 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
522 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
523 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
524
525 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
526
527 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
528 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
529 hwaddr dsm_mem_addr)
530 {
531 NvdimmFitBuffer *fit_buf = &state->fit_buf;
532 NvdimmFuncReadFITIn *read_fit;
533 NvdimmFuncReadFITOut *read_fit_out;
534 GArray *fit;
535 uint32_t read_len = 0, func_ret_status;
536 int size;
537
538 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
539 le32_to_cpus(&read_fit->offset);
540
541 fit = fit_buf->fit;
542
543 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
544 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
545
546 if (read_fit->offset > fit->len) {
547 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
548 goto exit;
549 }
550
551 /* It is the first time to read FIT. */
552 if (!read_fit->offset) {
553 fit_buf->dirty = false;
554 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
555 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
556 goto exit;
557 }
558
559 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
560 read_len = MIN(fit->len - read_fit->offset,
561 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
562
563 exit:
564 size = sizeof(NvdimmFuncReadFITOut) + read_len;
565 read_fit_out = g_malloc(size);
566
567 read_fit_out->len = cpu_to_le32(size);
568 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
569 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
570
571 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
572
573 g_free(read_fit_out);
574 }
575
576 static void
577 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
578 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
579 {
580 switch (in->function) {
581 case 0x0:
582 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
583 return;
584 case 0x1 /* Read FIT */:
585 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
586 return;
587 }
588
589 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
590 }
591
592 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
593 {
594 /*
595 * function 0 is called to inquire which functions are supported by
596 * OSPM
597 */
598 if (!in->function) {
599 nvdimm_dsm_function0(0 /* No function supported other than
600 function 0 */, dsm_mem_addr);
601 return;
602 }
603
604 /* No function except function 0 is supported yet. */
605 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
606 }
607
608 /*
609 * the max transfer size is the max size transferred by both a
610 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
611 * function.
612 */
613 static uint32_t nvdimm_get_max_xfer_label_size(void)
614 {
615 uint32_t max_get_size, max_set_size, dsm_memory_size;
616
617 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
618
619 /*
620 * the max data ACPI can read one time which is transferred by
621 * the response of 'Get Namespace Label Data' function.
622 */
623 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
624
625 /*
626 * the max data ACPI can write one time which is transferred by
627 * 'Set Namespace Label Data' function.
628 */
629 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
630 sizeof(NvdimmFuncSetLabelDataIn);
631
632 return MIN(max_get_size, max_set_size);
633 }
634
635 /*
636 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
637 *
638 * It gets the size of Namespace Label data area and the max data size
639 * that Get/Set Namespace Label Data functions can transfer.
640 */
641 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
642 {
643 NvdimmFuncGetLabelSizeOut label_size_out = {
644 .len = cpu_to_le32(sizeof(label_size_out)),
645 };
646 uint32_t label_size, mxfer;
647
648 label_size = nvdimm->label_size;
649 mxfer = nvdimm_get_max_xfer_label_size();
650
651 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
652
653 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
654 label_size_out.label_size = cpu_to_le32(label_size);
655 label_size_out.max_xfer = cpu_to_le32(mxfer);
656
657 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
658 sizeof(label_size_out));
659 }
660
661 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
662 uint32_t offset, uint32_t length)
663 {
664 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
665
666 if (offset + length < offset) {
667 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
668 length);
669 return ret;
670 }
671
672 if (nvdimm->label_size < offset + length) {
673 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
674 offset + length, nvdimm->label_size);
675 return ret;
676 }
677
678 if (length > nvdimm_get_max_xfer_label_size()) {
679 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
680 length, nvdimm_get_max_xfer_label_size());
681 return ret;
682 }
683
684 return NVDIMM_DSM_RET_STATUS_SUCCESS;
685 }
686
687 /*
688 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
689 */
690 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
691 hwaddr dsm_mem_addr)
692 {
693 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
694 NvdimmFuncGetLabelDataIn *get_label_data;
695 NvdimmFuncGetLabelDataOut *get_label_data_out;
696 uint32_t status;
697 int size;
698
699 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
700 le32_to_cpus(&get_label_data->offset);
701 le32_to_cpus(&get_label_data->length);
702
703 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
704 get_label_data->offset, get_label_data->length);
705
706 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
707 get_label_data->length);
708 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
709 nvdimm_dsm_no_payload(status, dsm_mem_addr);
710 return;
711 }
712
713 size = sizeof(*get_label_data_out) + get_label_data->length;
714 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
715 get_label_data_out = g_malloc(size);
716
717 get_label_data_out->len = cpu_to_le32(size);
718 get_label_data_out->func_ret_status =
719 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
720 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
721 get_label_data->length, get_label_data->offset);
722
723 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
724 g_free(get_label_data_out);
725 }
726
727 /*
728 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
729 */
730 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
731 hwaddr dsm_mem_addr)
732 {
733 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
734 NvdimmFuncSetLabelDataIn *set_label_data;
735 uint32_t status;
736
737 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
738
739 le32_to_cpus(&set_label_data->offset);
740 le32_to_cpus(&set_label_data->length);
741
742 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
743 set_label_data->offset, set_label_data->length);
744
745 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
746 set_label_data->length);
747 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
748 nvdimm_dsm_no_payload(status, dsm_mem_addr);
749 return;
750 }
751
752 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
753 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
754
755 nvc->write_label_data(nvdimm, set_label_data->in_buf,
756 set_label_data->length, set_label_data->offset);
757 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
758 }
759
760 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
761 {
762 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
763
764 /* See the comments in nvdimm_dsm_root(). */
765 if (!in->function) {
766 uint32_t supported_func = 0;
767
768 if (nvdimm && nvdimm->label_size) {
769 supported_func |= 0x1 /* Bit 0 indicates whether there is
770 support for any functions other
771 than function 0. */ |
772 1 << 4 /* Get Namespace Label Size */ |
773 1 << 5 /* Get Namespace Label Data */ |
774 1 << 6 /* Set Namespace Label Data */;
775 }
776 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
777 return;
778 }
779
780 if (!nvdimm) {
781 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
782 dsm_mem_addr);
783 return;
784 }
785
786 /* Encode DSM function according to DSM Spec Rev1. */
787 switch (in->function) {
788 case 4 /* Get Namespace Label Size */:
789 if (nvdimm->label_size) {
790 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
791 return;
792 }
793 break;
794 case 5 /* Get Namespace Label Data */:
795 if (nvdimm->label_size) {
796 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
797 return;
798 }
799 break;
800 case 0x6 /* Set Namespace Label Data */:
801 if (nvdimm->label_size) {
802 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
803 return;
804 }
805 break;
806 }
807
808 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
809 }
810
811 static uint64_t
812 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
813 {
814 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
815 return 0;
816 }
817
818 static void
819 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
820 {
821 AcpiNVDIMMState *state = opaque;
822 NvdimmDsmIn *in;
823 hwaddr dsm_mem_addr = val;
824
825 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
826
827 /*
828 * The DSM memory is mapped to guest address space so an evil guest
829 * can change its content while we are doing DSM emulation. Avoid
830 * this by copying DSM memory to QEMU local memory.
831 */
832 in = g_new(NvdimmDsmIn, 1);
833 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
834
835 le32_to_cpus(&in->revision);
836 le32_to_cpus(&in->function);
837 le32_to_cpus(&in->handle);
838
839 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
840 in->handle, in->function);
841
842 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
843 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
844 in->revision, 0x1);
845 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
846 goto exit;
847 }
848
849 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
850 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
851 goto exit;
852 }
853
854 /* Handle 0 is reserved for NVDIMM Root Device. */
855 if (!in->handle) {
856 nvdimm_dsm_root(in, dsm_mem_addr);
857 goto exit;
858 }
859
860 nvdimm_dsm_device(in, dsm_mem_addr);
861
862 exit:
863 g_free(in);
864 }
865
866 static const MemoryRegionOps nvdimm_dsm_ops = {
867 .read = nvdimm_dsm_read,
868 .write = nvdimm_dsm_write,
869 .endianness = DEVICE_LITTLE_ENDIAN,
870 .valid = {
871 .min_access_size = 4,
872 .max_access_size = 4,
873 },
874 };
875
876 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
877 {
878 if (dev->hotplugged) {
879 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
880 }
881 }
882
883 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
884 FWCfgState *fw_cfg, Object *owner)
885 {
886 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
887 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
888 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
889
890 state->dsm_mem = g_array_new(false, true /* clear */, 1);
891 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
892 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
893 state->dsm_mem->len);
894
895 nvdimm_init_fit_buffer(&state->fit_buf);
896 }
897
898 #define NVDIMM_COMMON_DSM "NCAL"
899 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
900
901 #define NVDIMM_DSM_MEMORY "NRAM"
902 #define NVDIMM_DSM_IOPORT "NPIO"
903
904 #define NVDIMM_DSM_NOTIFY "NTFI"
905 #define NVDIMM_DSM_HANDLE "HDLE"
906 #define NVDIMM_DSM_REVISION "REVS"
907 #define NVDIMM_DSM_FUNCTION "FUNC"
908 #define NVDIMM_DSM_ARG3 "FARG"
909
910 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
911 #define NVDIMM_DSM_OUT_BUF "ODAT"
912
913 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
914
915 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
916
917 static void nvdimm_build_common_dsm(Aml *dev)
918 {
919 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
920 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
921 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
922 uint8_t byte_list[1];
923
924 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
925 uuid = aml_arg(0);
926 function = aml_arg(2);
927 handle = aml_arg(4);
928 dsm_mem = aml_local(6);
929 dsm_out_buf = aml_local(7);
930
931 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
932
933 /* map DSM memory and IO into ACPI namespace. */
934 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
935 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
936 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
937 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
938
939 /*
940 * DSM notifier:
941 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
942 * emulate the access.
943 *
944 * It is the IO port so that accessing them will cause VM-exit, the
945 * control will be transferred to QEMU.
946 */
947 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
948 AML_PRESERVE);
949 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
950 sizeof(uint32_t) * BITS_PER_BYTE));
951 aml_append(method, field);
952
953 /*
954 * DSM input:
955 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
956 * happens on NVDIMM Root Device.
957 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
958 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
959 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
960 * containing function-specific arguments.
961 *
962 * They are RAM mapping on host so that these accesses never cause
963 * VM-EXIT.
964 */
965 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
966 AML_PRESERVE);
967 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
968 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
969 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
970 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
971 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
972 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
973 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
974 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
975 aml_append(method, field);
976
977 /*
978 * DSM output:
979 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
980 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
981 *
982 * Since the page is reused by both input and out, the input data
983 * will be lost after storing new result into ODAT so we should fetch
984 * all the input data before writing the result.
985 */
986 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
987 AML_PRESERVE);
988 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
989 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
990 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
991 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
992 aml_append(method, field);
993
994 /*
995 * do not support any method if DSM memory address has not been
996 * patched.
997 */
998 unpatched = aml_equal(dsm_mem, aml_int(0x0));
999
1000 expected_uuid = aml_local(0);
1001
1002 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1003 aml_append(ifctx, aml_store(
1004 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1005 /* UUID for NVDIMM Root Device */, expected_uuid));
1006 aml_append(method, ifctx);
1007 elsectx = aml_else();
1008 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1009 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1010 /* UUID for QEMU internal use */), expected_uuid));
1011 aml_append(elsectx, ifctx);
1012 elsectx2 = aml_else();
1013 aml_append(elsectx2, aml_store(
1014 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1015 /* UUID for NVDIMM Devices */, expected_uuid));
1016 aml_append(elsectx, elsectx2);
1017 aml_append(method, elsectx);
1018
1019 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1020
1021 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1022
1023 /*
1024 * function 0 is called to inquire what functions are supported by
1025 * OSPM
1026 */
1027 ifctx = aml_if(aml_equal(function, aml_int(0)));
1028 byte_list[0] = 0 /* No function Supported */;
1029 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1030 aml_append(unsupport, ifctx);
1031
1032 /* No function is supported yet. */
1033 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1034 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1035 aml_append(method, unsupport);
1036
1037 /*
1038 * The HDLE indicates the DSM function is issued from which device,
1039 * it reserves 0 for root device and is the handle for NVDIMM devices.
1040 * See the comments in nvdimm_slot_to_handle().
1041 */
1042 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1043 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1044 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1045
1046 /*
1047 * The fourth parameter (Arg3) of _DSM is a package which contains
1048 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1049 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1050 * in the DSM Spec.
1051 */
1052 pckg = aml_arg(3);
1053 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1054 aml_int(4 /* Package */)) /* It is a Package? */,
1055 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1056 NULL));
1057
1058 pckg_index = aml_local(2);
1059 pckg_buf = aml_local(3);
1060 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1061 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1062 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1063 aml_append(method, ifctx);
1064
1065 /*
1066 * tell QEMU about the real address of DSM memory, then QEMU
1067 * gets the control and fills the result in DSM memory.
1068 */
1069 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1070
1071 dsm_out_buf_size = aml_local(1);
1072 /* RLEN is not included in the payload returned to guest. */
1073 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1074 aml_int(4), dsm_out_buf_size));
1075 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1076 dsm_out_buf_size));
1077 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1078 aml_int(0), dsm_out_buf_size, "OBUF"));
1079 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1080 dsm_out_buf));
1081 aml_append(method, aml_return(dsm_out_buf));
1082 aml_append(dev, method);
1083 }
1084
1085 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1086 {
1087 Aml *method;
1088
1089 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1090 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1091 aml_arg(1), aml_arg(2), aml_arg(3),
1092 aml_int(handle))));
1093 aml_append(dev, method);
1094 }
1095
1096 static void nvdimm_build_fit(Aml *dev)
1097 {
1098 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1099 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1100
1101 buf = aml_local(0);
1102 buf_size = aml_local(1);
1103 fit = aml_local(2);
1104
1105 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1106
1107 /* build helper function, RFIT. */
1108 method = aml_method("RFIT", 1, AML_SERIALIZED);
1109 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1110
1111 /* prepare input package. */
1112 pkg = aml_package(1);
1113 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1114 aml_append(pkg, aml_name("OFST"));
1115
1116 /* call Read_FIT function. */
1117 call_result = aml_call5(NVDIMM_COMMON_DSM,
1118 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1119 aml_int(1) /* Revision 1 */,
1120 aml_int(0x1) /* Read FIT */,
1121 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1122 aml_append(method, aml_store(call_result, buf));
1123
1124 /* handle _DSM result. */
1125 aml_append(method, aml_create_dword_field(buf,
1126 aml_int(0) /* offset at byte 0 */, "STAU"));
1127
1128 aml_append(method, aml_store(aml_name("STAU"),
1129 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1130
1131 /* if something is wrong during _DSM. */
1132 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1133 aml_name("STAU"));
1134 ifctx = aml_if(aml_lnot(ifcond));
1135 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1136 aml_append(method, ifctx);
1137
1138 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1139 aml_append(method, aml_subtract(buf_size,
1140 aml_int(4) /* the size of "STAU" */,
1141 buf_size));
1142
1143 /* if we read the end of fit. */
1144 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1145 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1146 aml_append(method, ifctx);
1147
1148 aml_append(method, aml_create_field(buf,
1149 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1150 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1151 aml_append(method, aml_return(aml_name("BUFF")));
1152 aml_append(dev, method);
1153
1154 /* build _FIT. */
1155 method = aml_method("_FIT", 0, AML_SERIALIZED);
1156 offset = aml_local(3);
1157
1158 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1159 aml_append(method, aml_store(aml_int(0), offset));
1160
1161 whilectx = aml_while(aml_int(1));
1162 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1163 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1164
1165 /*
1166 * if fit buffer was changed during RFIT, read from the beginning
1167 * again.
1168 */
1169 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1170 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1171 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1172 aml_append(ifctx, aml_store(aml_int(0), offset));
1173 aml_append(whilectx, ifctx);
1174
1175 elsectx = aml_else();
1176
1177 /* finish fit read if no data is read out. */
1178 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1179 aml_append(ifctx, aml_return(fit));
1180 aml_append(elsectx, ifctx);
1181
1182 /* update the offset. */
1183 aml_append(elsectx, aml_add(offset, buf_size, offset));
1184 /* append the data we read out to the fit buffer. */
1185 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1186 aml_append(whilectx, elsectx);
1187 aml_append(method, whilectx);
1188
1189 aml_append(dev, method);
1190 }
1191
1192 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1193 {
1194 uint32_t slot;
1195
1196 for (slot = 0; slot < ram_slots; slot++) {
1197 uint32_t handle = nvdimm_slot_to_handle(slot);
1198 Aml *nvdimm_dev;
1199
1200 nvdimm_dev = aml_device("NV%02X", slot);
1201
1202 /*
1203 * ACPI 6.0: 9.20 NVDIMM Devices:
1204 *
1205 * _ADR object that is used to supply OSPM with unique address
1206 * of the NVDIMM device. This is done by returning the NFIT Device
1207 * handle that is used to identify the associated entries in ACPI
1208 * table NFIT or _FIT.
1209 */
1210 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1211
1212 nvdimm_build_device_dsm(nvdimm_dev, handle);
1213 aml_append(root_dev, nvdimm_dev);
1214 }
1215 }
1216
1217 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1218 BIOSLinker *linker, GArray *dsm_dma_arrea,
1219 uint32_t ram_slots)
1220 {
1221 Aml *ssdt, *sb_scope, *dev;
1222 int mem_addr_offset, nvdimm_ssdt;
1223
1224 acpi_add_table(table_offsets, table_data);
1225
1226 ssdt = init_aml_allocator();
1227 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1228
1229 sb_scope = aml_scope("\\_SB");
1230
1231 dev = aml_device("NVDR");
1232
1233 /*
1234 * ACPI 6.0: 9.20 NVDIMM Devices:
1235 *
1236 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1237 * NVDIMM interface device. Platform firmware is required to contain one
1238 * such device in _SB scope if NVDIMMs support is exposed by platform to
1239 * OSPM.
1240 * For each NVDIMM present or intended to be supported by platform,
1241 * platform firmware also exposes an ACPI Namespace Device under the
1242 * root device.
1243 */
1244 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1245
1246 nvdimm_build_common_dsm(dev);
1247
1248 /* 0 is reserved for root device. */
1249 nvdimm_build_device_dsm(dev, 0);
1250 nvdimm_build_fit(dev);
1251
1252 nvdimm_build_nvdimm_devices(dev, ram_slots);
1253
1254 aml_append(sb_scope, dev);
1255 aml_append(ssdt, sb_scope);
1256
1257 nvdimm_ssdt = table_data->len;
1258
1259 /* copy AML table into ACPI tables blob and patch header there */
1260 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1261 mem_addr_offset = build_append_named_dword(table_data,
1262 NVDIMM_ACPI_MEM_ADDR);
1263
1264 bios_linker_loader_alloc(linker,
1265 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1266 sizeof(NvdimmDsmIn), false /* high memory */);
1267 bios_linker_loader_add_pointer(linker,
1268 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1269 NVDIMM_DSM_MEM_FILE, 0);
1270 build_header(linker, table_data,
1271 (void *)(table_data->data + nvdimm_ssdt),
1272 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1273 free_aml_allocator();
1274 }
1275
1276 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1277 BIOSLinker *linker, AcpiNVDIMMState *state,
1278 uint32_t ram_slots)
1279 {
1280 GSList *device_list;
1281
1282 /* no nvdimm device can be plugged. */
1283 if (!ram_slots) {
1284 return;
1285 }
1286
1287 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1288 ram_slots);
1289
1290 device_list = nvdimm_get_device_list();
1291 /* no NVDIMM device is plugged. */
1292 if (!device_list) {
1293 return;
1294 }
1295
1296 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1297 g_slist_free(device_list);
1298 }