]> git.proxmox.com Git - mirror_qemu.git/blob - hw/alpha/typhoon.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / alpha / typhoon.c
1 /*
2 * DEC 21272 (TSUNAMI/TYPHOON) chipset emulation.
3 *
4 * Written by Richard Henderson.
5 *
6 * This work is licensed under the GNU GPL license version 2 or later.
7 */
8
9 #include "cpu.h"
10 #include "hw/hw.h"
11 #include "hw/devices.h"
12 #include "sysemu/sysemu.h"
13 #include "alpha_sys.h"
14 #include "exec/address-spaces.h"
15
16
17 #define TYPE_TYPHOON_PCI_HOST_BRIDGE "typhoon-pcihost"
18
19 typedef struct TyphoonCchip {
20 MemoryRegion region;
21 uint64_t misc;
22 uint64_t drir;
23 uint64_t dim[4];
24 uint32_t iic[4];
25 AlphaCPU *cpu[4];
26 } TyphoonCchip;
27
28 typedef struct TyphoonWindow {
29 uint64_t wba;
30 uint64_t wsm;
31 uint64_t tba;
32 } TyphoonWindow;
33
34 typedef struct TyphoonPchip {
35 MemoryRegion region;
36 MemoryRegion reg_iack;
37 MemoryRegion reg_mem;
38 MemoryRegion reg_io;
39 MemoryRegion reg_conf;
40
41 AddressSpace iommu_as;
42 MemoryRegion iommu;
43
44 uint64_t ctl;
45 TyphoonWindow win[4];
46 } TyphoonPchip;
47
48 #define TYPHOON_PCI_HOST_BRIDGE(obj) \
49 OBJECT_CHECK(TyphoonState, (obj), TYPE_TYPHOON_PCI_HOST_BRIDGE)
50
51 typedef struct TyphoonState {
52 PCIHostState parent_obj;
53
54 TyphoonCchip cchip;
55 TyphoonPchip pchip;
56 MemoryRegion dchip_region;
57 MemoryRegion ram_region;
58 } TyphoonState;
59
60 /* Called when one of DRIR or DIM changes. */
61 static void cpu_irq_change(AlphaCPU *cpu, uint64_t req)
62 {
63 /* If there are any non-masked interrupts, tell the cpu. */
64 if (cpu != NULL) {
65 CPUState *cs = CPU(cpu);
66 if (req) {
67 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
68 } else {
69 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
70 }
71 }
72 }
73
74 static uint64_t cchip_read(void *opaque, hwaddr addr, unsigned size)
75 {
76 CPUState *cpu = current_cpu;
77 TyphoonState *s = opaque;
78 uint64_t ret = 0;
79
80 switch (addr) {
81 case 0x0000:
82 /* CSC: Cchip System Configuration Register. */
83 /* All sorts of data here; probably the only thing relevant is
84 PIP<14> Pchip 1 Present = 0. */
85 break;
86
87 case 0x0040:
88 /* MTR: Memory Timing Register. */
89 /* All sorts of stuff related to real DRAM. */
90 break;
91
92 case 0x0080:
93 /* MISC: Miscellaneous Register. */
94 ret = s->cchip.misc | (cpu->cpu_index & 3);
95 break;
96
97 case 0x00c0:
98 /* MPD: Memory Presence Detect Register. */
99 break;
100
101 case 0x0100: /* AAR0 */
102 case 0x0140: /* AAR1 */
103 case 0x0180: /* AAR2 */
104 case 0x01c0: /* AAR3 */
105 /* AAR: Array Address Register. */
106 /* All sorts of information about DRAM. */
107 break;
108
109 case 0x0200:
110 /* DIM0: Device Interrupt Mask Register, CPU0. */
111 ret = s->cchip.dim[0];
112 break;
113 case 0x0240:
114 /* DIM1: Device Interrupt Mask Register, CPU1. */
115 ret = s->cchip.dim[1];
116 break;
117 case 0x0280:
118 /* DIR0: Device Interrupt Request Register, CPU0. */
119 ret = s->cchip.dim[0] & s->cchip.drir;
120 break;
121 case 0x02c0:
122 /* DIR1: Device Interrupt Request Register, CPU1. */
123 ret = s->cchip.dim[1] & s->cchip.drir;
124 break;
125 case 0x0300:
126 /* DRIR: Device Raw Interrupt Request Register. */
127 ret = s->cchip.drir;
128 break;
129
130 case 0x0340:
131 /* PRBEN: Probe Enable Register. */
132 break;
133
134 case 0x0380:
135 /* IIC0: Interval Ignore Count Register, CPU0. */
136 ret = s->cchip.iic[0];
137 break;
138 case 0x03c0:
139 /* IIC1: Interval Ignore Count Register, CPU1. */
140 ret = s->cchip.iic[1];
141 break;
142
143 case 0x0400: /* MPR0 */
144 case 0x0440: /* MPR1 */
145 case 0x0480: /* MPR2 */
146 case 0x04c0: /* MPR3 */
147 /* MPR: Memory Programming Register. */
148 break;
149
150 case 0x0580:
151 /* TTR: TIGbus Timing Register. */
152 /* All sorts of stuff related to interrupt delivery timings. */
153 break;
154 case 0x05c0:
155 /* TDR: TIGbug Device Timing Register. */
156 break;
157
158 case 0x0600:
159 /* DIM2: Device Interrupt Mask Register, CPU2. */
160 ret = s->cchip.dim[2];
161 break;
162 case 0x0640:
163 /* DIM3: Device Interrupt Mask Register, CPU3. */
164 ret = s->cchip.dim[3];
165 break;
166 case 0x0680:
167 /* DIR2: Device Interrupt Request Register, CPU2. */
168 ret = s->cchip.dim[2] & s->cchip.drir;
169 break;
170 case 0x06c0:
171 /* DIR3: Device Interrupt Request Register, CPU3. */
172 ret = s->cchip.dim[3] & s->cchip.drir;
173 break;
174
175 case 0x0700:
176 /* IIC2: Interval Ignore Count Register, CPU2. */
177 ret = s->cchip.iic[2];
178 break;
179 case 0x0740:
180 /* IIC3: Interval Ignore Count Register, CPU3. */
181 ret = s->cchip.iic[3];
182 break;
183
184 case 0x0780:
185 /* PWR: Power Management Control. */
186 break;
187
188 case 0x0c00: /* CMONCTLA */
189 case 0x0c40: /* CMONCTLB */
190 case 0x0c80: /* CMONCNT01 */
191 case 0x0cc0: /* CMONCNT23 */
192 break;
193
194 default:
195 cpu_unassigned_access(cpu, addr, false, false, 0, size);
196 return -1;
197 }
198
199 return ret;
200 }
201
202 static uint64_t dchip_read(void *opaque, hwaddr addr, unsigned size)
203 {
204 /* Skip this. It's all related to DRAM timing and setup. */
205 return 0;
206 }
207
208 static uint64_t pchip_read(void *opaque, hwaddr addr, unsigned size)
209 {
210 TyphoonState *s = opaque;
211 uint64_t ret = 0;
212
213 switch (addr) {
214 case 0x0000:
215 /* WSBA0: Window Space Base Address Register. */
216 ret = s->pchip.win[0].wba;
217 break;
218 case 0x0040:
219 /* WSBA1 */
220 ret = s->pchip.win[1].wba;
221 break;
222 case 0x0080:
223 /* WSBA2 */
224 ret = s->pchip.win[2].wba;
225 break;
226 case 0x00c0:
227 /* WSBA3 */
228 ret = s->pchip.win[3].wba;
229 break;
230
231 case 0x0100:
232 /* WSM0: Window Space Mask Register. */
233 ret = s->pchip.win[0].wsm;
234 break;
235 case 0x0140:
236 /* WSM1 */
237 ret = s->pchip.win[1].wsm;
238 break;
239 case 0x0180:
240 /* WSM2 */
241 ret = s->pchip.win[2].wsm;
242 break;
243 case 0x01c0:
244 /* WSM3 */
245 ret = s->pchip.win[3].wsm;
246 break;
247
248 case 0x0200:
249 /* TBA0: Translated Base Address Register. */
250 ret = s->pchip.win[0].tba;
251 break;
252 case 0x0240:
253 /* TBA1 */
254 ret = s->pchip.win[1].tba;
255 break;
256 case 0x0280:
257 /* TBA2 */
258 ret = s->pchip.win[2].tba;
259 break;
260 case 0x02c0:
261 /* TBA3 */
262 ret = s->pchip.win[3].tba;
263 break;
264
265 case 0x0300:
266 /* PCTL: Pchip Control Register. */
267 ret = s->pchip.ctl;
268 break;
269 case 0x0340:
270 /* PLAT: Pchip Master Latency Register. */
271 break;
272 case 0x03c0:
273 /* PERROR: Pchip Error Register. */
274 break;
275 case 0x0400:
276 /* PERRMASK: Pchip Error Mask Register. */
277 break;
278 case 0x0440:
279 /* PERRSET: Pchip Error Set Register. */
280 break;
281 case 0x0480:
282 /* TLBIV: Translation Buffer Invalidate Virtual Register (WO). */
283 break;
284 case 0x04c0:
285 /* TLBIA: Translation Buffer Invalidate All Register (WO). */
286 break;
287 case 0x0500: /* PMONCTL */
288 case 0x0540: /* PMONCNT */
289 case 0x0800: /* SPRST */
290 break;
291
292 default:
293 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
294 return -1;
295 }
296
297 return ret;
298 }
299
300 static void cchip_write(void *opaque, hwaddr addr,
301 uint64_t val, unsigned size)
302 {
303 TyphoonState *s = opaque;
304 uint64_t oldval, newval;
305
306 switch (addr) {
307 case 0x0000:
308 /* CSC: Cchip System Configuration Register. */
309 /* All sorts of data here; nothing relevant RW. */
310 break;
311
312 case 0x0040:
313 /* MTR: Memory Timing Register. */
314 /* All sorts of stuff related to real DRAM. */
315 break;
316
317 case 0x0080:
318 /* MISC: Miscellaneous Register. */
319 newval = oldval = s->cchip.misc;
320 newval &= ~(val & 0x10000ff0); /* W1C fields */
321 if (val & 0x100000) {
322 newval &= ~0xff0000ull; /* ACL clears ABT and ABW */
323 } else {
324 newval |= val & 0x00f00000; /* ABT field is W1S */
325 if ((newval & 0xf0000) == 0) {
326 newval |= val & 0xf0000; /* ABW field is W1S iff zero */
327 }
328 }
329 newval |= (val & 0xf000) >> 4; /* IPREQ field sets IPINTR. */
330
331 newval &= ~0xf0000000000ull; /* WO and RW fields */
332 newval |= val & 0xf0000000000ull;
333 s->cchip.misc = newval;
334
335 /* Pass on changes to IPI and ITI state. */
336 if ((newval ^ oldval) & 0xff0) {
337 int i;
338 for (i = 0; i < 4; ++i) {
339 AlphaCPU *cpu = s->cchip.cpu[i];
340 if (cpu != NULL) {
341 CPUState *cs = CPU(cpu);
342 /* IPI can be either cleared or set by the write. */
343 if (newval & (1 << (i + 8))) {
344 cpu_interrupt(cs, CPU_INTERRUPT_SMP);
345 } else {
346 cpu_reset_interrupt(cs, CPU_INTERRUPT_SMP);
347 }
348
349 /* ITI can only be cleared by the write. */
350 if ((newval & (1 << (i + 4))) == 0) {
351 cpu_reset_interrupt(cs, CPU_INTERRUPT_TIMER);
352 }
353 }
354 }
355 }
356 break;
357
358 case 0x00c0:
359 /* MPD: Memory Presence Detect Register. */
360 break;
361
362 case 0x0100: /* AAR0 */
363 case 0x0140: /* AAR1 */
364 case 0x0180: /* AAR2 */
365 case 0x01c0: /* AAR3 */
366 /* AAR: Array Address Register. */
367 /* All sorts of information about DRAM. */
368 break;
369
370 case 0x0200: /* DIM0 */
371 /* DIM: Device Interrupt Mask Register, CPU0. */
372 s->cchip.dim[0] = val;
373 cpu_irq_change(s->cchip.cpu[0], val & s->cchip.drir);
374 break;
375 case 0x0240: /* DIM1 */
376 /* DIM: Device Interrupt Mask Register, CPU1. */
377 s->cchip.dim[0] = val;
378 cpu_irq_change(s->cchip.cpu[1], val & s->cchip.drir);
379 break;
380
381 case 0x0280: /* DIR0 (RO) */
382 case 0x02c0: /* DIR1 (RO) */
383 case 0x0300: /* DRIR (RO) */
384 break;
385
386 case 0x0340:
387 /* PRBEN: Probe Enable Register. */
388 break;
389
390 case 0x0380: /* IIC0 */
391 s->cchip.iic[0] = val & 0xffffff;
392 break;
393 case 0x03c0: /* IIC1 */
394 s->cchip.iic[1] = val & 0xffffff;
395 break;
396
397 case 0x0400: /* MPR0 */
398 case 0x0440: /* MPR1 */
399 case 0x0480: /* MPR2 */
400 case 0x04c0: /* MPR3 */
401 /* MPR: Memory Programming Register. */
402 break;
403
404 case 0x0580:
405 /* TTR: TIGbus Timing Register. */
406 /* All sorts of stuff related to interrupt delivery timings. */
407 break;
408 case 0x05c0:
409 /* TDR: TIGbug Device Timing Register. */
410 break;
411
412 case 0x0600:
413 /* DIM2: Device Interrupt Mask Register, CPU2. */
414 s->cchip.dim[2] = val;
415 cpu_irq_change(s->cchip.cpu[2], val & s->cchip.drir);
416 break;
417 case 0x0640:
418 /* DIM3: Device Interrupt Mask Register, CPU3. */
419 s->cchip.dim[3] = val;
420 cpu_irq_change(s->cchip.cpu[3], val & s->cchip.drir);
421 break;
422
423 case 0x0680: /* DIR2 (RO) */
424 case 0x06c0: /* DIR3 (RO) */
425 break;
426
427 case 0x0700: /* IIC2 */
428 s->cchip.iic[2] = val & 0xffffff;
429 break;
430 case 0x0740: /* IIC3 */
431 s->cchip.iic[3] = val & 0xffffff;
432 break;
433
434 case 0x0780:
435 /* PWR: Power Management Control. */
436 break;
437
438 case 0x0c00: /* CMONCTLA */
439 case 0x0c40: /* CMONCTLB */
440 case 0x0c80: /* CMONCNT01 */
441 case 0x0cc0: /* CMONCNT23 */
442 break;
443
444 default:
445 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
446 return;
447 }
448 }
449
450 static void dchip_write(void *opaque, hwaddr addr,
451 uint64_t val, unsigned size)
452 {
453 /* Skip this. It's all related to DRAM timing and setup. */
454 }
455
456 static void pchip_write(void *opaque, hwaddr addr,
457 uint64_t val, unsigned size)
458 {
459 TyphoonState *s = opaque;
460 uint64_t oldval;
461
462 switch (addr) {
463 case 0x0000:
464 /* WSBA0: Window Space Base Address Register. */
465 s->pchip.win[0].wba = val & 0xfff00003u;
466 break;
467 case 0x0040:
468 /* WSBA1 */
469 s->pchip.win[1].wba = val & 0xfff00003u;
470 break;
471 case 0x0080:
472 /* WSBA2 */
473 s->pchip.win[2].wba = val & 0xfff00003u;
474 break;
475 case 0x00c0:
476 /* WSBA3 */
477 s->pchip.win[3].wba = (val & 0x80fff00001ull) | 2;
478 break;
479
480 case 0x0100:
481 /* WSM0: Window Space Mask Register. */
482 s->pchip.win[0].wsm = val & 0xfff00000u;
483 break;
484 case 0x0140:
485 /* WSM1 */
486 s->pchip.win[1].wsm = val & 0xfff00000u;
487 break;
488 case 0x0180:
489 /* WSM2 */
490 s->pchip.win[2].wsm = val & 0xfff00000u;
491 break;
492 case 0x01c0:
493 /* WSM3 */
494 s->pchip.win[3].wsm = val & 0xfff00000u;
495 break;
496
497 case 0x0200:
498 /* TBA0: Translated Base Address Register. */
499 s->pchip.win[0].tba = val & 0x7fffffc00ull;
500 break;
501 case 0x0240:
502 /* TBA1 */
503 s->pchip.win[1].tba = val & 0x7fffffc00ull;
504 break;
505 case 0x0280:
506 /* TBA2 */
507 s->pchip.win[2].tba = val & 0x7fffffc00ull;
508 break;
509 case 0x02c0:
510 /* TBA3 */
511 s->pchip.win[3].tba = val & 0x7fffffc00ull;
512 break;
513
514 case 0x0300:
515 /* PCTL: Pchip Control Register. */
516 oldval = s->pchip.ctl;
517 oldval &= ~0x00001cff0fc7ffull; /* RW fields */
518 oldval |= val & 0x00001cff0fc7ffull;
519 s->pchip.ctl = oldval;
520 break;
521
522 case 0x0340:
523 /* PLAT: Pchip Master Latency Register. */
524 break;
525 case 0x03c0:
526 /* PERROR: Pchip Error Register. */
527 break;
528 case 0x0400:
529 /* PERRMASK: Pchip Error Mask Register. */
530 break;
531 case 0x0440:
532 /* PERRSET: Pchip Error Set Register. */
533 break;
534
535 case 0x0480:
536 /* TLBIV: Translation Buffer Invalidate Virtual Register. */
537 break;
538
539 case 0x04c0:
540 /* TLBIA: Translation Buffer Invalidate All Register (WO). */
541 break;
542
543 case 0x0500:
544 /* PMONCTL */
545 case 0x0540:
546 /* PMONCNT */
547 case 0x0800:
548 /* SPRST */
549 break;
550
551 default:
552 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
553 return;
554 }
555 }
556
557 static const MemoryRegionOps cchip_ops = {
558 .read = cchip_read,
559 .write = cchip_write,
560 .endianness = DEVICE_LITTLE_ENDIAN,
561 .valid = {
562 .min_access_size = 8,
563 .max_access_size = 8,
564 },
565 .impl = {
566 .min_access_size = 8,
567 .max_access_size = 8,
568 },
569 };
570
571 static const MemoryRegionOps dchip_ops = {
572 .read = dchip_read,
573 .write = dchip_write,
574 .endianness = DEVICE_LITTLE_ENDIAN,
575 .valid = {
576 .min_access_size = 8,
577 .max_access_size = 8,
578 },
579 .impl = {
580 .min_access_size = 8,
581 .max_access_size = 8,
582 },
583 };
584
585 static const MemoryRegionOps pchip_ops = {
586 .read = pchip_read,
587 .write = pchip_write,
588 .endianness = DEVICE_LITTLE_ENDIAN,
589 .valid = {
590 .min_access_size = 8,
591 .max_access_size = 8,
592 },
593 .impl = {
594 .min_access_size = 8,
595 .max_access_size = 8,
596 },
597 };
598
599 /* A subroutine of typhoon_translate_iommu that builds an IOMMUTLBEntry
600 using the given translated address and mask. */
601 static bool make_iommu_tlbe(hwaddr taddr, hwaddr mask, IOMMUTLBEntry *ret)
602 {
603 *ret = (IOMMUTLBEntry) {
604 .target_as = &address_space_memory,
605 .translated_addr = taddr,
606 .addr_mask = mask,
607 .perm = IOMMU_RW,
608 };
609 return true;
610 }
611
612 /* A subroutine of typhoon_translate_iommu that handles scatter-gather
613 translation, given the address of the PTE. */
614 static bool pte_translate(hwaddr pte_addr, IOMMUTLBEntry *ret)
615 {
616 uint64_t pte = address_space_ldq(&address_space_memory, pte_addr,
617 MEMTXATTRS_UNSPECIFIED, NULL);
618
619 /* Check valid bit. */
620 if ((pte & 1) == 0) {
621 return false;
622 }
623
624 return make_iommu_tlbe((pte & 0x3ffffe) << 12, 0x1fff, ret);
625 }
626
627 /* A subroutine of typhoon_translate_iommu that handles one of the
628 four single-address-cycle translation windows. */
629 static bool window_translate(TyphoonWindow *win, hwaddr addr,
630 IOMMUTLBEntry *ret)
631 {
632 uint32_t wba = win->wba;
633 uint64_t wsm = win->wsm;
634 uint64_t tba = win->tba;
635 uint64_t wsm_ext = wsm | 0xfffff;
636
637 /* Check for window disabled. */
638 if ((wba & 1) == 0) {
639 return false;
640 }
641
642 /* Check for window hit. */
643 if ((addr & ~wsm_ext) != (wba & 0xfff00000u)) {
644 return false;
645 }
646
647 if (wba & 2) {
648 /* Scatter-gather translation. */
649 hwaddr pte_addr;
650
651 /* See table 10-6, Generating PTE address for PCI DMA Address. */
652 pte_addr = tba & ~(wsm >> 10);
653 pte_addr |= (addr & (wsm | 0xfe000)) >> 10;
654 return pte_translate(pte_addr, ret);
655 } else {
656 /* Direct-mapped translation. */
657 return make_iommu_tlbe(tba & ~wsm_ext, wsm_ext, ret);
658 }
659 }
660
661 /* Handle PCI-to-system address translation. */
662 /* TODO: A translation failure here ought to set PCI error codes on the
663 Pchip and generate a machine check interrupt. */
664 static IOMMUTLBEntry typhoon_translate_iommu(MemoryRegion *iommu, hwaddr addr,
665 bool is_write)
666 {
667 TyphoonPchip *pchip = container_of(iommu, TyphoonPchip, iommu);
668 IOMMUTLBEntry ret;
669 int i;
670
671 if (addr <= 0xffffffffu) {
672 /* Single-address cycle. */
673
674 /* Check for the Window Hole, inhibiting matching. */
675 if ((pchip->ctl & 0x20)
676 && addr >= 0x80000
677 && addr <= 0xfffff) {
678 goto failure;
679 }
680
681 /* Check the first three windows. */
682 for (i = 0; i < 3; ++i) {
683 if (window_translate(&pchip->win[i], addr, &ret)) {
684 goto success;
685 }
686 }
687
688 /* Check the fourth window for DAC disable. */
689 if ((pchip->win[3].wba & 0x80000000000ull) == 0
690 && window_translate(&pchip->win[3], addr, &ret)) {
691 goto success;
692 }
693 } else {
694 /* Double-address cycle. */
695
696 if (addr >= 0x10000000000ull && addr < 0x20000000000ull) {
697 /* Check for the DMA monster window. */
698 if (pchip->ctl & 0x40) {
699 /* See 10.1.4.4; in particular <39:35> is ignored. */
700 make_iommu_tlbe(0, 0x007ffffffffull, &ret);
701 goto success;
702 }
703 }
704
705 if (addr >= 0x80000000000ull && addr <= 0xfffffffffffull) {
706 /* Check the fourth window for DAC enable and window enable. */
707 if ((pchip->win[3].wba & 0x80000000001ull) == 0x80000000001ull) {
708 uint64_t pte_addr;
709
710 pte_addr = pchip->win[3].tba & 0x7ffc00000ull;
711 pte_addr |= (addr & 0xffffe000u) >> 10;
712 if (pte_translate(pte_addr, &ret)) {
713 goto success;
714 }
715 }
716 }
717 }
718
719 failure:
720 ret = (IOMMUTLBEntry) { .perm = IOMMU_NONE };
721 success:
722 return ret;
723 }
724
725 static const MemoryRegionIOMMUOps typhoon_iommu_ops = {
726 .translate = typhoon_translate_iommu,
727 };
728
729 static AddressSpace *typhoon_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
730 {
731 TyphoonState *s = opaque;
732 return &s->pchip.iommu_as;
733 }
734
735 static void typhoon_set_irq(void *opaque, int irq, int level)
736 {
737 TyphoonState *s = opaque;
738 uint64_t drir;
739 int i;
740
741 /* Set/Reset the bit in CCHIP.DRIR based on IRQ+LEVEL. */
742 drir = s->cchip.drir;
743 if (level) {
744 drir |= 1ull << irq;
745 } else {
746 drir &= ~(1ull << irq);
747 }
748 s->cchip.drir = drir;
749
750 for (i = 0; i < 4; ++i) {
751 cpu_irq_change(s->cchip.cpu[i], s->cchip.dim[i] & drir);
752 }
753 }
754
755 static void typhoon_set_isa_irq(void *opaque, int irq, int level)
756 {
757 typhoon_set_irq(opaque, 55, level);
758 }
759
760 static void typhoon_set_timer_irq(void *opaque, int irq, int level)
761 {
762 TyphoonState *s = opaque;
763 int i;
764
765 /* Thankfully, the mc146818rtc code doesn't track the IRQ state,
766 and so we don't have to worry about missing interrupts just
767 because we never actually ACK the interrupt. Just ignore any
768 case of the interrupt level going low. */
769 if (level == 0) {
770 return;
771 }
772
773 /* Deliver the interrupt to each CPU, considering each CPU's IIC. */
774 for (i = 0; i < 4; ++i) {
775 AlphaCPU *cpu = s->cchip.cpu[i];
776 if (cpu != NULL) {
777 uint32_t iic = s->cchip.iic[i];
778
779 /* ??? The verbage in Section 10.2.2.10 isn't 100% clear.
780 Bit 24 is the OverFlow bit, RO, and set when the count
781 decrements past 0. When is OF cleared? My guess is that
782 OF is actually cleared when the IIC is written, and that
783 the ICNT field always decrements. At least, that's an
784 interpretation that makes sense, and "allows the CPU to
785 determine exactly how mant interval timer ticks were
786 skipped". At least within the next 4M ticks... */
787
788 iic = ((iic - 1) & 0x1ffffff) | (iic & 0x1000000);
789 s->cchip.iic[i] = iic;
790
791 if (iic & 0x1000000) {
792 /* Set the ITI bit for this cpu. */
793 s->cchip.misc |= 1 << (i + 4);
794 /* And signal the interrupt. */
795 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_TIMER);
796 }
797 }
798 }
799 }
800
801 static void typhoon_alarm_timer(void *opaque)
802 {
803 TyphoonState *s = (TyphoonState *)((uintptr_t)opaque & ~3);
804 int cpu = (uintptr_t)opaque & 3;
805
806 /* Set the ITI bit for this cpu. */
807 s->cchip.misc |= 1 << (cpu + 4);
808 cpu_interrupt(CPU(s->cchip.cpu[cpu]), CPU_INTERRUPT_TIMER);
809 }
810
811 PCIBus *typhoon_init(ram_addr_t ram_size, ISABus **isa_bus,
812 qemu_irq *p_rtc_irq,
813 AlphaCPU *cpus[4], pci_map_irq_fn sys_map_irq)
814 {
815 const uint64_t MB = 1024 * 1024;
816 const uint64_t GB = 1024 * MB;
817 MemoryRegion *addr_space = get_system_memory();
818 DeviceState *dev;
819 TyphoonState *s;
820 PCIHostState *phb;
821 PCIBus *b;
822 int i;
823
824 dev = qdev_create(NULL, TYPE_TYPHOON_PCI_HOST_BRIDGE);
825 qdev_init_nofail(dev);
826
827 s = TYPHOON_PCI_HOST_BRIDGE(dev);
828 phb = PCI_HOST_BRIDGE(dev);
829
830 s->cchip.misc = 0x800000000ull; /* Revision: Typhoon. */
831 s->pchip.win[3].wba = 2; /* Window 3 SG always enabled. */
832
833 /* Remember the CPUs so that we can deliver interrupts to them. */
834 for (i = 0; i < 4; i++) {
835 AlphaCPU *cpu = cpus[i];
836 s->cchip.cpu[i] = cpu;
837 if (cpu != NULL) {
838 cpu->alarm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
839 typhoon_alarm_timer,
840 (void *)((uintptr_t)s + i));
841 }
842 }
843
844 *p_rtc_irq = *qemu_allocate_irqs(typhoon_set_timer_irq, s, 1);
845
846 /* Main memory region, 0x00.0000.0000. Real hardware supports 32GB,
847 but the address space hole reserved at this point is 8TB. */
848 memory_region_allocate_system_memory(&s->ram_region, OBJECT(s), "ram",
849 ram_size);
850 memory_region_add_subregion(addr_space, 0, &s->ram_region);
851
852 /* TIGbus, 0x801.0000.0000, 1GB. */
853 /* ??? The TIGbus is used for delivering interrupts, and access to
854 the flash ROM. I'm not sure that we need to implement it at all. */
855
856 /* Pchip0 CSRs, 0x801.8000.0000, 256MB. */
857 memory_region_init_io(&s->pchip.region, OBJECT(s), &pchip_ops, s, "pchip0",
858 256*MB);
859 memory_region_add_subregion(addr_space, 0x80180000000ULL,
860 &s->pchip.region);
861
862 /* Cchip CSRs, 0x801.A000.0000, 256MB. */
863 memory_region_init_io(&s->cchip.region, OBJECT(s), &cchip_ops, s, "cchip0",
864 256*MB);
865 memory_region_add_subregion(addr_space, 0x801a0000000ULL,
866 &s->cchip.region);
867
868 /* Dchip CSRs, 0x801.B000.0000, 256MB. */
869 memory_region_init_io(&s->dchip_region, OBJECT(s), &dchip_ops, s, "dchip0",
870 256*MB);
871 memory_region_add_subregion(addr_space, 0x801b0000000ULL,
872 &s->dchip_region);
873
874 /* Pchip0 PCI memory, 0x800.0000.0000, 4GB. */
875 memory_region_init(&s->pchip.reg_mem, OBJECT(s), "pci0-mem", 4*GB);
876 memory_region_add_subregion(addr_space, 0x80000000000ULL,
877 &s->pchip.reg_mem);
878
879 /* Pchip0 PCI I/O, 0x801.FC00.0000, 32MB. */
880 memory_region_init_io(&s->pchip.reg_io, OBJECT(s), &alpha_pci_ignore_ops,
881 NULL, "pci0-io", 32*MB);
882 memory_region_add_subregion(addr_space, 0x801fc000000ULL,
883 &s->pchip.reg_io);
884
885 b = pci_register_bus(dev, "pci",
886 typhoon_set_irq, sys_map_irq, s,
887 &s->pchip.reg_mem, &s->pchip.reg_io,
888 0, 64, TYPE_PCI_BUS);
889 phb->bus = b;
890
891 /* Host memory as seen from the PCI side, via the IOMMU. */
892 memory_region_init_iommu(&s->pchip.iommu, OBJECT(s), &typhoon_iommu_ops,
893 "iommu-typhoon", UINT64_MAX);
894 address_space_init(&s->pchip.iommu_as, &s->pchip.iommu, "pchip0-pci");
895 pci_setup_iommu(b, typhoon_pci_dma_iommu, s);
896
897 /* Pchip0 PCI special/interrupt acknowledge, 0x801.F800.0000, 64MB. */
898 memory_region_init_io(&s->pchip.reg_iack, OBJECT(s), &alpha_pci_iack_ops,
899 b, "pci0-iack", 64*MB);
900 memory_region_add_subregion(addr_space, 0x801f8000000ULL,
901 &s->pchip.reg_iack);
902
903 /* Pchip0 PCI configuration, 0x801.FE00.0000, 16MB. */
904 memory_region_init_io(&s->pchip.reg_conf, OBJECT(s), &alpha_pci_conf1_ops,
905 b, "pci0-conf", 16*MB);
906 memory_region_add_subregion(addr_space, 0x801fe000000ULL,
907 &s->pchip.reg_conf);
908
909 /* For the record, these are the mappings for the second PCI bus.
910 We can get away with not implementing them because we indicate
911 via the Cchip.CSC<PIP> bit that Pchip1 is not present. */
912 /* Pchip1 PCI memory, 0x802.0000.0000, 4GB. */
913 /* Pchip1 CSRs, 0x802.8000.0000, 256MB. */
914 /* Pchip1 PCI special/interrupt acknowledge, 0x802.F800.0000, 64MB. */
915 /* Pchip1 PCI I/O, 0x802.FC00.0000, 32MB. */
916 /* Pchip1 PCI configuration, 0x802.FE00.0000, 16MB. */
917
918 /* Init the ISA bus. */
919 /* ??? Technically there should be a cy82c693ub pci-isa bridge. */
920 {
921 qemu_irq isa_pci_irq, *isa_irqs;
922
923 *isa_bus = isa_bus_new(NULL, get_system_memory(), &s->pchip.reg_io);
924 isa_pci_irq = *qemu_allocate_irqs(typhoon_set_isa_irq, s, 1);
925 isa_irqs = i8259_init(*isa_bus, isa_pci_irq);
926 isa_bus_irqs(*isa_bus, isa_irqs);
927 }
928
929 return b;
930 }
931
932 static int typhoon_pcihost_init(SysBusDevice *dev)
933 {
934 return 0;
935 }
936
937 static void typhoon_pcihost_class_init(ObjectClass *klass, void *data)
938 {
939 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
940
941 k->init = typhoon_pcihost_init;
942 }
943
944 static const TypeInfo typhoon_pcihost_info = {
945 .name = TYPE_TYPHOON_PCI_HOST_BRIDGE,
946 .parent = TYPE_PCI_HOST_BRIDGE,
947 .instance_size = sizeof(TyphoonState),
948 .class_init = typhoon_pcihost_class_init,
949 };
950
951 static void typhoon_register_types(void)
952 {
953 type_register_static(&typhoon_pcihost_info);
954 }
955
956 type_init(typhoon_register_types)