]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/armsse.c
hw/arm/armsse: Give each CPU its own view of memory
[mirror_qemu.git] / hw / arm / armsse.c
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
20
21 struct ARMSSEInfo {
22 const char *name;
23 int sram_banks;
24 int num_cpus;
25 };
26
27 static const ARMSSEInfo armsse_variants[] = {
28 {
29 .name = TYPE_IOTKIT,
30 .sram_banks = 1,
31 .num_cpus = 1,
32 },
33 };
34
35 /* Clock frequency in HZ of the 32KHz "slow clock" */
36 #define S32KCLK (32 * 1000)
37
38 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
39 static bool irq_is_common[32] = {
40 [0 ... 5] = true,
41 /* 6, 7: per-CPU MHU interrupts */
42 [8 ... 12] = true,
43 /* 13: per-CPU icache interrupt */
44 /* 14: reserved */
45 [15 ... 20] = true,
46 /* 21: reserved */
47 [22 ... 26] = true,
48 /* 27: reserved */
49 /* 28, 29: per-CPU CTI interrupts */
50 /* 30, 31: reserved */
51 };
52
53 /* Create an alias region of @size bytes starting at @base
54 * which mirrors the memory starting at @orig.
55 */
56 static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
57 hwaddr base, hwaddr size, hwaddr orig)
58 {
59 memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
60 /* The alias is even lower priority than unimplemented_device regions */
61 memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
62 }
63
64 static void irq_status_forwarder(void *opaque, int n, int level)
65 {
66 qemu_irq destirq = opaque;
67
68 qemu_set_irq(destirq, level);
69 }
70
71 static void nsccfg_handler(void *opaque, int n, int level)
72 {
73 ARMSSE *s = ARMSSE(opaque);
74
75 s->nsccfg = level;
76 }
77
78 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
79 {
80 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
81 * system using the ARMSSE has a collection of control lines which
82 * are provided by the security controller and which we want to
83 * expose as control lines on the ARMSSE device itself, so the
84 * code using the ARMSSE can wire them up to the PPCs.
85 */
86 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
87 DeviceState *armssedev = DEVICE(s);
88 DeviceState *dev_secctl = DEVICE(&s->secctl);
89 DeviceState *dev_splitter = DEVICE(splitter);
90 char *name;
91
92 name = g_strdup_printf("%s_nonsec", ppcname);
93 qdev_pass_gpios(dev_secctl, armssedev, name);
94 g_free(name);
95 name = g_strdup_printf("%s_ap", ppcname);
96 qdev_pass_gpios(dev_secctl, armssedev, name);
97 g_free(name);
98 name = g_strdup_printf("%s_irq_enable", ppcname);
99 qdev_pass_gpios(dev_secctl, armssedev, name);
100 g_free(name);
101 name = g_strdup_printf("%s_irq_clear", ppcname);
102 qdev_pass_gpios(dev_secctl, armssedev, name);
103 g_free(name);
104
105 /* irq_status is a little more tricky, because we need to
106 * split it so we can send it both to the security controller
107 * and to our OR gate for the NVIC interrupt line.
108 * Connect up the splitter's outputs, and create a GPIO input
109 * which will pass the line state to the input splitter.
110 */
111 name = g_strdup_printf("%s_irq_status", ppcname);
112 qdev_connect_gpio_out(dev_splitter, 0,
113 qdev_get_gpio_in_named(dev_secctl,
114 name, 0));
115 qdev_connect_gpio_out(dev_splitter, 1,
116 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
117 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
118 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
119 s->irq_status_in[ppcnum], name, 1);
120 g_free(name);
121 }
122
123 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
124 {
125 /* Forward the 3rd output from the splitter device as a
126 * named GPIO output of the armsse object.
127 */
128 DeviceState *dev = DEVICE(s);
129 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
130
131 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
132 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
133 s->sec_resp_cfg, 1);
134 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
135 }
136
137 static void armsse_init(Object *obj)
138 {
139 ARMSSE *s = ARMSSE(obj);
140 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
141 const ARMSSEInfo *info = asc->info;
142 int i;
143
144 assert(info->sram_banks <= MAX_SRAM_BANKS);
145 assert(info->num_cpus <= SSE_MAX_CPUS);
146
147 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
148
149 for (i = 0; i < info->num_cpus; i++) {
150 char *name = g_strdup_printf("armv7m%d", i);
151 sysbus_init_child_obj(obj, name, &s->armv7m[i], sizeof(s->armv7m),
152 TYPE_ARMV7M);
153 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
154 ARM_CPU_TYPE_NAME("cortex-m33"));
155 g_free(name);
156 name = g_strdup_printf("arm-sse-cpu-container%d", i);
157 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
158 g_free(name);
159 if (i > 0) {
160 name = g_strdup_printf("arm-sse-container-alias%d", i);
161 memory_region_init_alias(&s->container_alias[i - 1], obj,
162 name, &s->container, 0, UINT64_MAX);
163 g_free(name);
164 }
165 }
166
167 sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
168 TYPE_IOTKIT_SECCTL);
169 sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
170 TYPE_TZ_PPC);
171 sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
172 TYPE_TZ_PPC);
173 for (i = 0; i < info->sram_banks; i++) {
174 char *name = g_strdup_printf("mpc%d", i);
175 sysbus_init_child_obj(obj, name, &s->mpc[i],
176 sizeof(s->mpc[i]), TYPE_TZ_MPC);
177 g_free(name);
178 }
179 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
180 sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
181 &error_abort, NULL);
182
183 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
184 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
185 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
186
187 object_initialize_child(obj, name, splitter, sizeof(*splitter),
188 TYPE_SPLIT_IRQ, &error_abort, NULL);
189 g_free(name);
190 }
191 sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
192 TYPE_CMSDK_APB_TIMER);
193 sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
194 TYPE_CMSDK_APB_TIMER);
195 sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
196 TYPE_CMSDK_APB_TIMER);
197 sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
198 TYPE_CMSDK_APB_DUALTIMER);
199 sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
200 sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
201 sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
202 sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
203 sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
204 sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
205 sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
206 sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
207 sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
208 sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
209 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
210 sizeof(s->nmi_orgate), TYPE_OR_IRQ,
211 &error_abort, NULL);
212 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
213 sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
214 &error_abort, NULL);
215 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
216 sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
217 &error_abort, NULL);
218 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
219 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
220 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
221
222 object_initialize_child(obj, name, splitter, sizeof(*splitter),
223 TYPE_SPLIT_IRQ, &error_abort, NULL);
224 g_free(name);
225 }
226 if (info->num_cpus > 1) {
227 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
228 if (irq_is_common[i]) {
229 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
230 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
231
232 object_initialize_child(obj, name, splitter, sizeof(*splitter),
233 TYPE_SPLIT_IRQ, &error_abort, NULL);
234 g_free(name);
235 }
236 }
237 }
238 }
239
240 static void armsse_exp_irq(void *opaque, int n, int level)
241 {
242 qemu_irq *irqarray = opaque;
243
244 qemu_set_irq(irqarray[n], level);
245 }
246
247 static void armsse_mpcexp_status(void *opaque, int n, int level)
248 {
249 ARMSSE *s = ARMSSE(opaque);
250 qemu_set_irq(s->mpcexp_status_in[n], level);
251 }
252
253 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
254 {
255 /*
256 * Return a qemu_irq which can be used to signal IRQ n to
257 * all CPUs in the SSE.
258 */
259 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
260 const ARMSSEInfo *info = asc->info;
261
262 assert(irq_is_common[irqno]);
263
264 if (info->num_cpus == 1) {
265 /* Only one CPU -- just connect directly to it */
266 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
267 } else {
268 /* Connect to the splitter which feeds all CPUs */
269 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
270 }
271 }
272
273 static void armsse_realize(DeviceState *dev, Error **errp)
274 {
275 ARMSSE *s = ARMSSE(dev);
276 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
277 const ARMSSEInfo *info = asc->info;
278 int i;
279 MemoryRegion *mr;
280 Error *err = NULL;
281 SysBusDevice *sbd_apb_ppc0;
282 SysBusDevice *sbd_secctl;
283 DeviceState *dev_apb_ppc0;
284 DeviceState *dev_apb_ppc1;
285 DeviceState *dev_secctl;
286 DeviceState *dev_splitter;
287 uint32_t addr_width_max;
288
289 if (!s->board_memory) {
290 error_setg(errp, "memory property was not set");
291 return;
292 }
293
294 if (!s->mainclk_frq) {
295 error_setg(errp, "MAINCLK property was not set");
296 return;
297 }
298
299 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
300 assert(is_power_of_2(info->sram_banks));
301 addr_width_max = 24 - ctz32(info->sram_banks);
302 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
303 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
304 addr_width_max);
305 return;
306 }
307
308 /* Handling of which devices should be available only to secure
309 * code is usually done differently for M profile than for A profile.
310 * Instead of putting some devices only into the secure address space,
311 * devices exist in both address spaces but with hard-wired security
312 * permissions that will cause the CPU to fault for non-secure accesses.
313 *
314 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
315 * which specifies hard-wired security permissions for different
316 * areas of the physical address space. For the ARMSSE IDAU, the
317 * top 4 bits of the physical address are the IDAU region ID, and
318 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
319 * region, otherwise it is an S region.
320 *
321 * The various devices and RAMs are generally all mapped twice,
322 * once into a region that the IDAU defines as secure and once
323 * into a non-secure region. They sit behind either a Memory
324 * Protection Controller (for RAM) or a Peripheral Protection
325 * Controller (for devices), which allow a more fine grained
326 * configuration of whether non-secure accesses are permitted.
327 *
328 * (The other place that guest software can configure security
329 * permissions is in the architected SAU (Security Attribution
330 * Unit), which is entirely inside the CPU. The IDAU can upgrade
331 * the security attributes for a region to more restrictive than
332 * the SAU specifies, but cannot downgrade them.)
333 *
334 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
335 * 0x20000000..0x2007ffff 32KB FPGA block RAM
336 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
337 * 0x40000000..0x4000ffff base peripheral region 1
338 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
339 * 0x40020000..0x4002ffff system control element peripherals
340 * 0x40080000..0x400fffff base peripheral region 2
341 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
342 */
343
344 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
345
346 for (i = 0; i < info->num_cpus; i++) {
347 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
348 Object *cpuobj = OBJECT(&s->armv7m[i]);
349 int j;
350 char *gpioname;
351
352 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
353 /*
354 * In real hardware the initial Secure VTOR is set from the INITSVTOR0
355 * register in the IoT Kit System Control Register block, and the
356 * initial value of that is in turn specifiable by the FPGA that
357 * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
358 * and simply set the CPU's init-svtor to the IoT Kit default value.
359 * In SSE-200 the situation is similar, except that the default value
360 * is a reset-time signal input. Typically a board using the SSE-200
361 * will have a system control processor whose boot firmware initializes
362 * the INITSVTOR* registers before powering up the CPUs in any case,
363 * so the hardware's default value doesn't matter. QEMU doesn't emulate
364 * the control processor, so instead we behave in the way that the
365 * firmware does. All boards currently known about have firmware that
366 * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
367 * IoTKit default. We can make this more configurable if necessary.
368 */
369 qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
370 /*
371 * Start all CPUs except CPU0 powered down. In real hardware it is
372 * a configurable property of the SSE-200 which CPUs start powered up
373 * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
374 * the boards we care about start CPU0 and leave CPU1 powered off,
375 * we hard-code that for now. We can add QOM properties for this
376 * later if necessary.
377 */
378 if (i > 0) {
379 object_property_set_bool(cpuobj, true, "start-powered-off", &err);
380 if (err) {
381 error_propagate(errp, err);
382 return;
383 }
384 }
385
386 if (i > 0) {
387 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
388 &s->container_alias[i - 1], -1);
389 } else {
390 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
391 &s->container, -1);
392 }
393 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
394 "memory", &err);
395 if (err) {
396 error_propagate(errp, err);
397 return;
398 }
399 object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
400 if (err) {
401 error_propagate(errp, err);
402 return;
403 }
404 object_property_set_bool(cpuobj, true, "realized", &err);
405 if (err) {
406 error_propagate(errp, err);
407 return;
408 }
409
410 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
411 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
412 for (j = 0; j < s->exp_numirq; j++) {
413 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
414 }
415 if (i == 0) {
416 gpioname = g_strdup("EXP_IRQ");
417 } else {
418 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
419 }
420 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
421 s->exp_irqs[i],
422 gpioname, s->exp_numirq);
423 g_free(gpioname);
424 }
425
426 /* Wire up the splitters that connect common IRQs to all CPUs */
427 if (info->num_cpus > 1) {
428 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
429 if (irq_is_common[i]) {
430 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
431 DeviceState *devs = DEVICE(splitter);
432 int cpunum;
433
434 object_property_set_int(splitter, info->num_cpus,
435 "num-lines", &err);
436 if (err) {
437 error_propagate(errp, err);
438 return;
439 }
440 object_property_set_bool(splitter, true, "realized", &err);
441 if (err) {
442 error_propagate(errp, err);
443 return;
444 }
445 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
446 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
447
448 qdev_connect_gpio_out(devs, cpunum,
449 qdev_get_gpio_in(cpudev, i));
450 }
451 }
452 }
453 }
454
455 /* Set up the big aliases first */
456 make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
457 make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
458 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
459 * a few extra devices that only appear there (generally the
460 * control interfaces for the protection controllers).
461 * We implement this by mapping those devices over the top of this
462 * alias MR at a higher priority.
463 */
464 make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
465
466
467 /* Security controller */
468 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
469 if (err) {
470 error_propagate(errp, err);
471 return;
472 }
473 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
474 dev_secctl = DEVICE(&s->secctl);
475 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
476 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
477
478 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
479 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
480
481 /* The sec_resp_cfg output from the security controller must be split into
482 * multiple lines, one for each of the PPCs within the ARMSSE and one
483 * that will be an output from the ARMSSE to the system.
484 */
485 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
486 "num-lines", &err);
487 if (err) {
488 error_propagate(errp, err);
489 return;
490 }
491 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
492 "realized", &err);
493 if (err) {
494 error_propagate(errp, err);
495 return;
496 }
497 dev_splitter = DEVICE(&s->sec_resp_splitter);
498 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
499 qdev_get_gpio_in(dev_splitter, 0));
500
501 /* Each SRAM bank lives behind its own Memory Protection Controller */
502 for (i = 0; i < info->sram_banks; i++) {
503 char *ramname = g_strdup_printf("armsse.sram%d", i);
504 SysBusDevice *sbd_mpc;
505 uint32_t sram_bank_size = 1 << s->sram_addr_width;
506
507 memory_region_init_ram(&s->sram[i], NULL, ramname,
508 sram_bank_size, &err);
509 g_free(ramname);
510 if (err) {
511 error_propagate(errp, err);
512 return;
513 }
514 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
515 "downstream", &err);
516 if (err) {
517 error_propagate(errp, err);
518 return;
519 }
520 object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
521 if (err) {
522 error_propagate(errp, err);
523 return;
524 }
525 /* Map the upstream end of the MPC into the right place... */
526 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
527 memory_region_add_subregion(&s->container,
528 0x20000000 + i * sram_bank_size,
529 sysbus_mmio_get_region(sbd_mpc, 1));
530 /* ...and its register interface */
531 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
532 sysbus_mmio_get_region(sbd_mpc, 0));
533 }
534
535 /* We must OR together lines from the MPC splitters to go to the NVIC */
536 object_property_set_int(OBJECT(&s->mpc_irq_orgate),
537 IOTS_NUM_EXP_MPC + info->sram_banks,
538 "num-lines", &err);
539 if (err) {
540 error_propagate(errp, err);
541 return;
542 }
543 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
544 "realized", &err);
545 if (err) {
546 error_propagate(errp, err);
547 return;
548 }
549 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
550 armsse_get_common_irq_in(s, 9));
551
552 /* Devices behind APB PPC0:
553 * 0x40000000: timer0
554 * 0x40001000: timer1
555 * 0x40002000: dual timer
556 * We must configure and realize each downstream device and connect
557 * it to the appropriate PPC port; then we can realize the PPC and
558 * map its upstream ends to the right place in the container.
559 */
560 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
561 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
562 if (err) {
563 error_propagate(errp, err);
564 return;
565 }
566 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
567 armsse_get_common_irq_in(s, 3));
568 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
569 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
570 if (err) {
571 error_propagate(errp, err);
572 return;
573 }
574
575 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
576 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
577 if (err) {
578 error_propagate(errp, err);
579 return;
580 }
581 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
582 armsse_get_common_irq_in(s, 4));
583 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
584 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
585 if (err) {
586 error_propagate(errp, err);
587 return;
588 }
589
590
591 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
592 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
593 if (err) {
594 error_propagate(errp, err);
595 return;
596 }
597 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
598 armsse_get_common_irq_in(s, 5));
599 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
600 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
601 if (err) {
602 error_propagate(errp, err);
603 return;
604 }
605
606 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
607 if (err) {
608 error_propagate(errp, err);
609 return;
610 }
611
612 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
613 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
614
615 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
616 memory_region_add_subregion(&s->container, 0x40000000, mr);
617 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
618 memory_region_add_subregion(&s->container, 0x40001000, mr);
619 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
620 memory_region_add_subregion(&s->container, 0x40002000, mr);
621 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
622 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
623 qdev_get_gpio_in_named(dev_apb_ppc0,
624 "cfg_nonsec", i));
625 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
626 qdev_get_gpio_in_named(dev_apb_ppc0,
627 "cfg_ap", i));
628 }
629 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
630 qdev_get_gpio_in_named(dev_apb_ppc0,
631 "irq_enable", 0));
632 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
633 qdev_get_gpio_in_named(dev_apb_ppc0,
634 "irq_clear", 0));
635 qdev_connect_gpio_out(dev_splitter, 0,
636 qdev_get_gpio_in_named(dev_apb_ppc0,
637 "cfg_sec_resp", 0));
638
639 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
640 * ones) are sent individually to the security controller, and also
641 * ORed together to give a single combined PPC interrupt to the NVIC.
642 */
643 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
644 NUM_PPCS, "num-lines", &err);
645 if (err) {
646 error_propagate(errp, err);
647 return;
648 }
649 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
650 "realized", &err);
651 if (err) {
652 error_propagate(errp, err);
653 return;
654 }
655 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
656 armsse_get_common_irq_in(s, 10));
657
658 /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
659
660 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
661 /* Devices behind APB PPC1:
662 * 0x4002f000: S32K timer
663 */
664 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
665 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
666 if (err) {
667 error_propagate(errp, err);
668 return;
669 }
670 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
671 armsse_get_common_irq_in(s, 2));
672 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
673 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
674 if (err) {
675 error_propagate(errp, err);
676 return;
677 }
678
679 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
680 if (err) {
681 error_propagate(errp, err);
682 return;
683 }
684 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
685 memory_region_add_subregion(&s->container, 0x4002f000, mr);
686
687 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
688 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
689 qdev_get_gpio_in_named(dev_apb_ppc1,
690 "cfg_nonsec", 0));
691 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
692 qdev_get_gpio_in_named(dev_apb_ppc1,
693 "cfg_ap", 0));
694 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
695 qdev_get_gpio_in_named(dev_apb_ppc1,
696 "irq_enable", 0));
697 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
698 qdev_get_gpio_in_named(dev_apb_ppc1,
699 "irq_clear", 0));
700 qdev_connect_gpio_out(dev_splitter, 1,
701 qdev_get_gpio_in_named(dev_apb_ppc1,
702 "cfg_sec_resp", 0));
703
704 object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
705 if (err) {
706 error_propagate(errp, err);
707 return;
708 }
709 /* System information registers */
710 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
711 /* System control registers */
712 object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
713 if (err) {
714 error_propagate(errp, err);
715 return;
716 }
717 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
718
719 /* This OR gate wires together outputs from the secure watchdogs to NMI */
720 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
721 if (err) {
722 error_propagate(errp, err);
723 return;
724 }
725 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
726 if (err) {
727 error_propagate(errp, err);
728 return;
729 }
730 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
731 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
732
733 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
734 object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
735 if (err) {
736 error_propagate(errp, err);
737 return;
738 }
739 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
740 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
741 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
742
743 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
744
745 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
746 object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
747 if (err) {
748 error_propagate(errp, err);
749 return;
750 }
751 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
752 armsse_get_common_irq_in(s, 1));
753 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
754
755 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
756 object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
757 if (err) {
758 error_propagate(errp, err);
759 return;
760 }
761 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
762 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
763 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
764
765 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
766 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
767
768 object_property_set_int(splitter, 2, "num-lines", &err);
769 if (err) {
770 error_propagate(errp, err);
771 return;
772 }
773 object_property_set_bool(splitter, true, "realized", &err);
774 if (err) {
775 error_propagate(errp, err);
776 return;
777 }
778 }
779
780 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
781 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
782
783 armsse_forward_ppc(s, ppcname, i);
784 g_free(ppcname);
785 }
786
787 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
788 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
789
790 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
791 g_free(ppcname);
792 }
793
794 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
795 /* Wire up IRQ splitter for internal PPCs */
796 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
797 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
798 i - NUM_EXTERNAL_PPCS);
799 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
800
801 qdev_connect_gpio_out(devs, 0,
802 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
803 qdev_connect_gpio_out(devs, 1,
804 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
805 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
806 qdev_get_gpio_in(devs, 0));
807 g_free(gpioname);
808 }
809
810 /* Wire up the splitters for the MPC IRQs */
811 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
812 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
813 DeviceState *dev_splitter = DEVICE(splitter);
814
815 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
816 if (err) {
817 error_propagate(errp, err);
818 return;
819 }
820 object_property_set_bool(OBJECT(splitter), true, "realized", &err);
821 if (err) {
822 error_propagate(errp, err);
823 return;
824 }
825
826 if (i < IOTS_NUM_EXP_MPC) {
827 /* Splitter input is from GPIO input line */
828 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
829 qdev_connect_gpio_out(dev_splitter, 0,
830 qdev_get_gpio_in_named(dev_secctl,
831 "mpcexp_status", i));
832 } else {
833 /* Splitter input is from our own MPC */
834 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
835 "irq", 0,
836 qdev_get_gpio_in(dev_splitter, 0));
837 qdev_connect_gpio_out(dev_splitter, 0,
838 qdev_get_gpio_in_named(dev_secctl,
839 "mpc_status", 0));
840 }
841
842 qdev_connect_gpio_out(dev_splitter, 1,
843 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
844 }
845 /* Create GPIO inputs which will pass the line state for our
846 * mpcexp_irq inputs to the correct splitter devices.
847 */
848 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
849 IOTS_NUM_EXP_MPC);
850
851 armsse_forward_sec_resp_cfg(s);
852
853 /* Forward the MSC related signals */
854 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
855 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
856 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
857 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
858 armsse_get_common_irq_in(s, 11));
859
860 /*
861 * Expose our container region to the board model; this corresponds
862 * to the AHB Slave Expansion ports which allow bus master devices
863 * (eg DMA controllers) in the board model to make transactions into
864 * devices in the ARMSSE.
865 */
866 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
867
868 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
869 }
870
871 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
872 int *iregion, bool *exempt, bool *ns, bool *nsc)
873 {
874 /*
875 * For ARMSSE systems the IDAU responses are simple logical functions
876 * of the address bits. The NSC attribute is guest-adjustable via the
877 * NSCCFG register in the security controller.
878 */
879 ARMSSE *s = ARMSSE(ii);
880 int region = extract32(address, 28, 4);
881
882 *ns = !(region & 1);
883 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
884 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
885 *exempt = (address & 0xeff00000) == 0xe0000000;
886 *iregion = region;
887 }
888
889 static const VMStateDescription armsse_vmstate = {
890 .name = "iotkit",
891 .version_id = 1,
892 .minimum_version_id = 1,
893 .fields = (VMStateField[]) {
894 VMSTATE_UINT32(nsccfg, ARMSSE),
895 VMSTATE_END_OF_LIST()
896 }
897 };
898
899 static Property armsse_properties[] = {
900 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
901 MemoryRegion *),
902 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
903 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
904 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
905 DEFINE_PROP_END_OF_LIST()
906 };
907
908 static void armsse_reset(DeviceState *dev)
909 {
910 ARMSSE *s = ARMSSE(dev);
911
912 s->nsccfg = 0;
913 }
914
915 static void armsse_class_init(ObjectClass *klass, void *data)
916 {
917 DeviceClass *dc = DEVICE_CLASS(klass);
918 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
919 ARMSSEClass *asc = ARMSSE_CLASS(klass);
920
921 dc->realize = armsse_realize;
922 dc->vmsd = &armsse_vmstate;
923 dc->props = armsse_properties;
924 dc->reset = armsse_reset;
925 iic->check = armsse_idau_check;
926 asc->info = data;
927 }
928
929 static const TypeInfo armsse_info = {
930 .name = TYPE_ARMSSE,
931 .parent = TYPE_SYS_BUS_DEVICE,
932 .instance_size = sizeof(ARMSSE),
933 .instance_init = armsse_init,
934 .abstract = true,
935 .interfaces = (InterfaceInfo[]) {
936 { TYPE_IDAU_INTERFACE },
937 { }
938 }
939 };
940
941 static void armsse_register_types(void)
942 {
943 int i;
944
945 type_register_static(&armsse_info);
946
947 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
948 TypeInfo ti = {
949 .name = armsse_variants[i].name,
950 .parent = TYPE_ARMSSE,
951 .class_init = armsse_class_init,
952 .class_data = (void *)&armsse_variants[i],
953 };
954 type_register(&ti);
955 }
956 }
957
958 type_init(armsse_register_types);