]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/armsse.c
sysbus: Convert qdev_set_parent_bus() use with Coccinelle, part 2
[mirror_qemu.git] / hw / arm / armsse.c
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27 IoTKitFormat,
28 SSE200Format,
29 } SysConfigFormat;
30
31 struct ARMSSEInfo {
32 const char *name;
33 int sram_banks;
34 int num_cpus;
35 uint32_t sys_version;
36 uint32_t cpuwait_rst;
37 SysConfigFormat sys_config_format;
38 bool has_mhus;
39 bool has_ppus;
40 bool has_cachectrl;
41 bool has_cpusecctrl;
42 bool has_cpuid;
43 Property *props;
44 };
45
46 static Property iotkit_properties[] = {
47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48 MemoryRegion *),
49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55 DEFINE_PROP_END_OF_LIST()
56 };
57
58 static Property armsse_properties[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60 MemoryRegion *),
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69 DEFINE_PROP_END_OF_LIST()
70 };
71
72 static const ARMSSEInfo armsse_variants[] = {
73 {
74 .name = TYPE_IOTKIT,
75 .sram_banks = 1,
76 .num_cpus = 1,
77 .sys_version = 0x41743,
78 .cpuwait_rst = 0,
79 .sys_config_format = IoTKitFormat,
80 .has_mhus = false,
81 .has_ppus = false,
82 .has_cachectrl = false,
83 .has_cpusecctrl = false,
84 .has_cpuid = false,
85 .props = iotkit_properties,
86 },
87 {
88 .name = TYPE_SSE200,
89 .sram_banks = 4,
90 .num_cpus = 2,
91 .sys_version = 0x22041743,
92 .cpuwait_rst = 2,
93 .sys_config_format = SSE200Format,
94 .has_mhus = true,
95 .has_ppus = true,
96 .has_cachectrl = true,
97 .has_cpusecctrl = true,
98 .has_cpuid = true,
99 .props = armsse_properties,
100 },
101 };
102
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105 /* Return the SYS_CONFIG value for this SSE */
106 uint32_t sys_config;
107
108 switch (info->sys_config_format) {
109 case IoTKitFormat:
110 sys_config = 0;
111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113 break;
114 case SSE200Format:
115 sys_config = 0;
116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118 sys_config = deposit32(sys_config, 24, 4, 2);
119 if (info->num_cpus > 1) {
120 sys_config = deposit32(sys_config, 10, 1, 1);
121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122 sys_config = deposit32(sys_config, 28, 4, 2);
123 }
124 break;
125 default:
126 g_assert_not_reached();
127 }
128 return sys_config;
129 }
130
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136 [0 ... 5] = true,
137 /* 6, 7: per-CPU MHU interrupts */
138 [8 ... 12] = true,
139 /* 13: per-CPU icache interrupt */
140 /* 14: reserved */
141 [15 ... 20] = true,
142 /* 21: reserved */
143 [22 ... 26] = true,
144 /* 27: reserved */
145 /* 28, 29: per-CPU CTI interrupts */
146 /* 30, 31: reserved */
147 };
148
149 /*
150 * Create an alias region in @container of @size bytes starting at @base
151 * which mirrors the memory starting at @orig.
152 */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154 const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156 memory_region_init_alias(mr, NULL, name, container, orig, size);
157 /* The alias is even lower priority than unimplemented_device regions */
158 memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163 qemu_irq destirq = opaque;
164
165 qemu_set_irq(destirq, level);
166 }
167
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170 ARMSSE *s = ARMSSE(opaque);
171
172 s->nsccfg = level;
173 }
174
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178 * system using the ARMSSE has a collection of control lines which
179 * are provided by the security controller and which we want to
180 * expose as control lines on the ARMSSE device itself, so the
181 * code using the ARMSSE can wire them up to the PPCs.
182 */
183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184 DeviceState *armssedev = DEVICE(s);
185 DeviceState *dev_secctl = DEVICE(&s->secctl);
186 DeviceState *dev_splitter = DEVICE(splitter);
187 char *name;
188
189 name = g_strdup_printf("%s_nonsec", ppcname);
190 qdev_pass_gpios(dev_secctl, armssedev, name);
191 g_free(name);
192 name = g_strdup_printf("%s_ap", ppcname);
193 qdev_pass_gpios(dev_secctl, armssedev, name);
194 g_free(name);
195 name = g_strdup_printf("%s_irq_enable", ppcname);
196 qdev_pass_gpios(dev_secctl, armssedev, name);
197 g_free(name);
198 name = g_strdup_printf("%s_irq_clear", ppcname);
199 qdev_pass_gpios(dev_secctl, armssedev, name);
200 g_free(name);
201
202 /* irq_status is a little more tricky, because we need to
203 * split it so we can send it both to the security controller
204 * and to our OR gate for the NVIC interrupt line.
205 * Connect up the splitter's outputs, and create a GPIO input
206 * which will pass the line state to the input splitter.
207 */
208 name = g_strdup_printf("%s_irq_status", ppcname);
209 qdev_connect_gpio_out(dev_splitter, 0,
210 qdev_get_gpio_in_named(dev_secctl,
211 name, 0));
212 qdev_connect_gpio_out(dev_splitter, 1,
213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216 s->irq_status_in[ppcnum], name, 1);
217 g_free(name);
218 }
219
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222 /* Forward the 3rd output from the splitter device as a
223 * named GPIO output of the armsse object.
224 */
225 DeviceState *dev = DEVICE(s);
226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227
228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230 s->sec_resp_cfg, 1);
231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233
234 static void armsse_init(Object *obj)
235 {
236 ARMSSE *s = ARMSSE(obj);
237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238 const ARMSSEInfo *info = asc->info;
239 int i;
240
241 assert(info->sram_banks <= MAX_SRAM_BANKS);
242 assert(info->num_cpus <= SSE_MAX_CPUS);
243
244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245
246 for (i = 0; i < info->num_cpus; i++) {
247 /*
248 * We put each CPU in its own cluster as they are logically
249 * distinct and may be configured differently.
250 */
251 char *name;
252
253 name = g_strdup_printf("cluster%d", i);
254 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256 g_free(name);
257
258 name = g_strdup_printf("armv7m%d", i);
259 sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
260 &s->armv7m[i], sizeof(s->armv7m[i]),
261 TYPE_ARMV7M);
262 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
263 ARM_CPU_TYPE_NAME("cortex-m33"));
264 g_free(name);
265 name = g_strdup_printf("arm-sse-cpu-container%d", i);
266 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
267 g_free(name);
268 if (i > 0) {
269 name = g_strdup_printf("arm-sse-container-alias%d", i);
270 memory_region_init_alias(&s->container_alias[i - 1], obj,
271 name, &s->container, 0, UINT64_MAX);
272 g_free(name);
273 }
274 }
275
276 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
277 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
278 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
279 for (i = 0; i < info->sram_banks; i++) {
280 char *name = g_strdup_printf("mpc%d", i);
281 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
282 g_free(name);
283 }
284 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
285 TYPE_OR_IRQ);
286
287 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
288 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
289 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
290
291 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
292 g_free(name);
293 }
294 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
295 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
296 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
297 TYPE_CMSDK_APB_TIMER);
298 object_initialize_child(obj, "dualtimer", &s->dualtimer,
299 TYPE_CMSDK_APB_DUALTIMER);
300 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
301 TYPE_CMSDK_APB_WATCHDOG);
302 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
303 TYPE_CMSDK_APB_WATCHDOG);
304 object_initialize_child(obj, "swatchdog", &s->swatchdog,
305 TYPE_CMSDK_APB_WATCHDOG);
306 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
307 TYPE_IOTKIT_SYSCTL);
308 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
309 TYPE_IOTKIT_SYSINFO);
310 if (info->has_mhus) {
311 sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
312 TYPE_ARMSSE_MHU);
313 sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
314 TYPE_ARMSSE_MHU);
315 }
316 if (info->has_ppus) {
317 for (i = 0; i < info->num_cpus; i++) {
318 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
319 int ppuidx = CPU0CORE_PPU + i;
320
321 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
322 sizeof(s->ppu[ppuidx]),
323 TYPE_UNIMPLEMENTED_DEVICE);
324 g_free(name);
325 }
326 sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
327 sizeof(s->ppu[DBG_PPU]),
328 TYPE_UNIMPLEMENTED_DEVICE);
329 for (i = 0; i < info->sram_banks; i++) {
330 char *name = g_strdup_printf("RAM%d_PPU", i);
331 int ppuidx = RAM0_PPU + i;
332
333 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
334 sizeof(s->ppu[ppuidx]),
335 TYPE_UNIMPLEMENTED_DEVICE);
336 g_free(name);
337 }
338 }
339 if (info->has_cachectrl) {
340 for (i = 0; i < info->num_cpus; i++) {
341 char *name = g_strdup_printf("cachectrl%d", i);
342
343 object_initialize_child(obj, name, &s->cachectrl[i],
344 TYPE_UNIMPLEMENTED_DEVICE);
345 g_free(name);
346 }
347 }
348 if (info->has_cpusecctrl) {
349 for (i = 0; i < info->num_cpus; i++) {
350 char *name = g_strdup_printf("cpusecctrl%d", i);
351
352 object_initialize_child(obj, name, &s->cpusecctrl[i],
353 TYPE_UNIMPLEMENTED_DEVICE);
354 g_free(name);
355 }
356 }
357 if (info->has_cpuid) {
358 for (i = 0; i < info->num_cpus; i++) {
359 char *name = g_strdup_printf("cpuid%d", i);
360
361 object_initialize_child(obj, name, &s->cpuid[i],
362 TYPE_ARMSSE_CPUID);
363 g_free(name);
364 }
365 }
366 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
367 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
368 TYPE_OR_IRQ);
369 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
370 TYPE_SPLIT_IRQ);
371 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
372 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
373 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
374
375 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
376 g_free(name);
377 }
378 if (info->num_cpus > 1) {
379 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
380 if (irq_is_common[i]) {
381 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
382 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
383
384 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
385 g_free(name);
386 }
387 }
388 }
389 }
390
391 static void armsse_exp_irq(void *opaque, int n, int level)
392 {
393 qemu_irq *irqarray = opaque;
394
395 qemu_set_irq(irqarray[n], level);
396 }
397
398 static void armsse_mpcexp_status(void *opaque, int n, int level)
399 {
400 ARMSSE *s = ARMSSE(opaque);
401 qemu_set_irq(s->mpcexp_status_in[n], level);
402 }
403
404 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
405 {
406 /*
407 * Return a qemu_irq which can be used to signal IRQ n to
408 * all CPUs in the SSE.
409 */
410 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
411 const ARMSSEInfo *info = asc->info;
412
413 assert(irq_is_common[irqno]);
414
415 if (info->num_cpus == 1) {
416 /* Only one CPU -- just connect directly to it */
417 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
418 } else {
419 /* Connect to the splitter which feeds all CPUs */
420 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
421 }
422 }
423
424 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
425 {
426 /* Map a PPU unimplemented device stub */
427 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
428
429 qdev_prop_set_string(dev, "name", name);
430 qdev_prop_set_uint64(dev, "size", 0x1000);
431 qdev_init_nofail(dev);
432 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
433 }
434
435 static void armsse_realize(DeviceState *dev, Error **errp)
436 {
437 ARMSSE *s = ARMSSE(dev);
438 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
439 const ARMSSEInfo *info = asc->info;
440 int i;
441 MemoryRegion *mr;
442 Error *err = NULL;
443 SysBusDevice *sbd_apb_ppc0;
444 SysBusDevice *sbd_secctl;
445 DeviceState *dev_apb_ppc0;
446 DeviceState *dev_apb_ppc1;
447 DeviceState *dev_secctl;
448 DeviceState *dev_splitter;
449 uint32_t addr_width_max;
450
451 if (!s->board_memory) {
452 error_setg(errp, "memory property was not set");
453 return;
454 }
455
456 if (!s->mainclk_frq) {
457 error_setg(errp, "MAINCLK property was not set");
458 return;
459 }
460
461 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
462 assert(is_power_of_2(info->sram_banks));
463 addr_width_max = 24 - ctz32(info->sram_banks);
464 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
465 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
466 addr_width_max);
467 return;
468 }
469
470 /* Handling of which devices should be available only to secure
471 * code is usually done differently for M profile than for A profile.
472 * Instead of putting some devices only into the secure address space,
473 * devices exist in both address spaces but with hard-wired security
474 * permissions that will cause the CPU to fault for non-secure accesses.
475 *
476 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
477 * which specifies hard-wired security permissions for different
478 * areas of the physical address space. For the ARMSSE IDAU, the
479 * top 4 bits of the physical address are the IDAU region ID, and
480 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
481 * region, otherwise it is an S region.
482 *
483 * The various devices and RAMs are generally all mapped twice,
484 * once into a region that the IDAU defines as secure and once
485 * into a non-secure region. They sit behind either a Memory
486 * Protection Controller (for RAM) or a Peripheral Protection
487 * Controller (for devices), which allow a more fine grained
488 * configuration of whether non-secure accesses are permitted.
489 *
490 * (The other place that guest software can configure security
491 * permissions is in the architected SAU (Security Attribution
492 * Unit), which is entirely inside the CPU. The IDAU can upgrade
493 * the security attributes for a region to more restrictive than
494 * the SAU specifies, but cannot downgrade them.)
495 *
496 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
497 * 0x20000000..0x2007ffff 32KB FPGA block RAM
498 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
499 * 0x40000000..0x4000ffff base peripheral region 1
500 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
501 * 0x40020000..0x4002ffff system control element peripherals
502 * 0x40080000..0x400fffff base peripheral region 2
503 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
504 */
505
506 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
507
508 for (i = 0; i < info->num_cpus; i++) {
509 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
510 Object *cpuobj = OBJECT(&s->armv7m[i]);
511 int j;
512 char *gpioname;
513
514 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
515 /*
516 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
517 * registers in the IoT Kit System Control Register block. In QEMU
518 * we set the initial value here, and also the reset value of the
519 * sysctl register, from this object's QOM init-svtor property.
520 * If the guest changes the INITSVTOR* registers at runtime then the
521 * code in iotkit-sysctl.c will update the CPU init-svtor property
522 * (which will then take effect on the next CPU warm-reset).
523 *
524 * Note that typically a board using the SSE-200 will have a system
525 * control processor whose boot firmware initializes the INITSVTOR*
526 * registers before powering up the CPUs. QEMU doesn't emulate
527 * the control processor, so instead we behave in the way that the
528 * firmware does: the initial value should be set by the board code
529 * (using the init-svtor property on the ARMSSE object) to match
530 * whatever its firmware does.
531 */
532 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
533 /*
534 * CPUs start powered down if the corresponding bit in the CPUWAIT
535 * register is 1. In real hardware the CPUWAIT register reset value is
536 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
537 * CPUWAIT1_RST parameters), but since all the boards we care about
538 * start CPU0 and leave CPU1 powered off, we hard-code that in
539 * info->cpuwait_rst for now. We can add QOM properties for this
540 * later if necessary.
541 */
542 if (extract32(info->cpuwait_rst, i, 1)) {
543 object_property_set_bool(cpuobj, true, "start-powered-off", &err);
544 if (err) {
545 error_propagate(errp, err);
546 return;
547 }
548 }
549 if (!s->cpu_fpu[i]) {
550 object_property_set_bool(cpuobj, false, "vfp", &err);
551 if (err) {
552 error_propagate(errp, err);
553 return;
554 }
555 }
556 if (!s->cpu_dsp[i]) {
557 object_property_set_bool(cpuobj, false, "dsp", &err);
558 if (err) {
559 error_propagate(errp, err);
560 return;
561 }
562 }
563
564 if (i > 0) {
565 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
566 &s->container_alias[i - 1], -1);
567 } else {
568 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
569 &s->container, -1);
570 }
571 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
572 "memory", &err);
573 if (err) {
574 error_propagate(errp, err);
575 return;
576 }
577 object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
578 if (err) {
579 error_propagate(errp, err);
580 return;
581 }
582 object_property_set_bool(cpuobj, true, "realized", &err);
583 if (err) {
584 error_propagate(errp, err);
585 return;
586 }
587 /*
588 * The cluster must be realized after the armv7m container, as
589 * the container's CPU object is only created on realize, and the
590 * CPU must exist and have been parented into the cluster before
591 * the cluster is realized.
592 */
593 object_property_set_bool(OBJECT(&s->cluster[i]),
594 true, "realized", &err);
595 if (err) {
596 error_propagate(errp, err);
597 return;
598 }
599
600 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
601 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
602 for (j = 0; j < s->exp_numirq; j++) {
603 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
604 }
605 if (i == 0) {
606 gpioname = g_strdup("EXP_IRQ");
607 } else {
608 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
609 }
610 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
611 s->exp_irqs[i],
612 gpioname, s->exp_numirq);
613 g_free(gpioname);
614 }
615
616 /* Wire up the splitters that connect common IRQs to all CPUs */
617 if (info->num_cpus > 1) {
618 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
619 if (irq_is_common[i]) {
620 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
621 DeviceState *devs = DEVICE(splitter);
622 int cpunum;
623
624 object_property_set_int(splitter, info->num_cpus,
625 "num-lines", &err);
626 if (err) {
627 error_propagate(errp, err);
628 return;
629 }
630 object_property_set_bool(splitter, true, "realized", &err);
631 if (err) {
632 error_propagate(errp, err);
633 return;
634 }
635 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
636 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
637
638 qdev_connect_gpio_out(devs, cpunum,
639 qdev_get_gpio_in(cpudev, i));
640 }
641 }
642 }
643 }
644
645 /* Set up the big aliases first */
646 make_alias(s, &s->alias1, &s->container, "alias 1",
647 0x10000000, 0x10000000, 0x00000000);
648 make_alias(s, &s->alias2, &s->container,
649 "alias 2", 0x30000000, 0x10000000, 0x20000000);
650 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
651 * a few extra devices that only appear there (generally the
652 * control interfaces for the protection controllers).
653 * We implement this by mapping those devices over the top of this
654 * alias MR at a higher priority. Some of the devices in this range
655 * are per-CPU, so we must put this alias in the per-cpu containers.
656 */
657 for (i = 0; i < info->num_cpus; i++) {
658 make_alias(s, &s->alias3[i], &s->cpu_container[i],
659 "alias 3", 0x50000000, 0x10000000, 0x40000000);
660 }
661
662 /* Security controller */
663 sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err);
664 if (err) {
665 error_propagate(errp, err);
666 return;
667 }
668 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
669 dev_secctl = DEVICE(&s->secctl);
670 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
671 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
672
673 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
674 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
675
676 /* The sec_resp_cfg output from the security controller must be split into
677 * multiple lines, one for each of the PPCs within the ARMSSE and one
678 * that will be an output from the ARMSSE to the system.
679 */
680 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
681 "num-lines", &err);
682 if (err) {
683 error_propagate(errp, err);
684 return;
685 }
686 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
687 "realized", &err);
688 if (err) {
689 error_propagate(errp, err);
690 return;
691 }
692 dev_splitter = DEVICE(&s->sec_resp_splitter);
693 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
694 qdev_get_gpio_in(dev_splitter, 0));
695
696 /* Each SRAM bank lives behind its own Memory Protection Controller */
697 for (i = 0; i < info->sram_banks; i++) {
698 char *ramname = g_strdup_printf("armsse.sram%d", i);
699 SysBusDevice *sbd_mpc;
700 uint32_t sram_bank_size = 1 << s->sram_addr_width;
701
702 memory_region_init_ram(&s->sram[i], NULL, ramname,
703 sram_bank_size, &err);
704 g_free(ramname);
705 if (err) {
706 error_propagate(errp, err);
707 return;
708 }
709 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
710 "downstream", &err);
711 if (err) {
712 error_propagate(errp, err);
713 return;
714 }
715 sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err);
716 if (err) {
717 error_propagate(errp, err);
718 return;
719 }
720 /* Map the upstream end of the MPC into the right place... */
721 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
722 memory_region_add_subregion(&s->container,
723 0x20000000 + i * sram_bank_size,
724 sysbus_mmio_get_region(sbd_mpc, 1));
725 /* ...and its register interface */
726 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
727 sysbus_mmio_get_region(sbd_mpc, 0));
728 }
729
730 /* We must OR together lines from the MPC splitters to go to the NVIC */
731 object_property_set_int(OBJECT(&s->mpc_irq_orgate),
732 IOTS_NUM_EXP_MPC + info->sram_banks,
733 "num-lines", &err);
734 if (err) {
735 error_propagate(errp, err);
736 return;
737 }
738 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
739 "realized", &err);
740 if (err) {
741 error_propagate(errp, err);
742 return;
743 }
744 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
745 armsse_get_common_irq_in(s, 9));
746
747 /* Devices behind APB PPC0:
748 * 0x40000000: timer0
749 * 0x40001000: timer1
750 * 0x40002000: dual timer
751 * 0x40003000: MHU0 (SSE-200 only)
752 * 0x40004000: MHU1 (SSE-200 only)
753 * We must configure and realize each downstream device and connect
754 * it to the appropriate PPC port; then we can realize the PPC and
755 * map its upstream ends to the right place in the container.
756 */
757 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
758 sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err);
759 if (err) {
760 error_propagate(errp, err);
761 return;
762 }
763 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
764 armsse_get_common_irq_in(s, 3));
765 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
766 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
767 if (err) {
768 error_propagate(errp, err);
769 return;
770 }
771
772 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
773 sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err);
774 if (err) {
775 error_propagate(errp, err);
776 return;
777 }
778 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
779 armsse_get_common_irq_in(s, 4));
780 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
781 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
782 if (err) {
783 error_propagate(errp, err);
784 return;
785 }
786
787
788 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
789 sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err);
790 if (err) {
791 error_propagate(errp, err);
792 return;
793 }
794 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
795 armsse_get_common_irq_in(s, 5));
796 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
797 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
798 if (err) {
799 error_propagate(errp, err);
800 return;
801 }
802
803 if (info->has_mhus) {
804 /*
805 * An SSE-200 with only one CPU should have only one MHU created,
806 * with the region where the second MHU usually is being RAZ/WI.
807 * We don't implement that SSE-200 config; if we want to support
808 * it then this code needs to be enhanced to handle creating the
809 * RAZ/WI region instead of the second MHU.
810 */
811 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
812
813 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
814 char *port;
815 int cpunum;
816 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
817
818 object_property_set_bool(OBJECT(&s->mhu[i]), true,
819 "realized", &err);
820 if (err) {
821 error_propagate(errp, err);
822 return;
823 }
824 port = g_strdup_printf("port[%d]", i + 3);
825 mr = sysbus_mmio_get_region(mhu_sbd, 0);
826 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
827 port, &err);
828 g_free(port);
829 if (err) {
830 error_propagate(errp, err);
831 return;
832 }
833
834 /*
835 * Each MHU has an irq line for each CPU:
836 * MHU 0 irq line 0 -> CPU 0 IRQ 6
837 * MHU 0 irq line 1 -> CPU 1 IRQ 6
838 * MHU 1 irq line 0 -> CPU 0 IRQ 7
839 * MHU 1 irq line 1 -> CPU 1 IRQ 7
840 */
841 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
842 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
843
844 sysbus_connect_irq(mhu_sbd, cpunum,
845 qdev_get_gpio_in(cpudev, 6 + i));
846 }
847 }
848 }
849
850 sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err);
851 if (err) {
852 error_propagate(errp, err);
853 return;
854 }
855
856 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
857 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
858
859 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
860 memory_region_add_subregion(&s->container, 0x40000000, mr);
861 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
862 memory_region_add_subregion(&s->container, 0x40001000, mr);
863 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
864 memory_region_add_subregion(&s->container, 0x40002000, mr);
865 if (info->has_mhus) {
866 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
867 memory_region_add_subregion(&s->container, 0x40003000, mr);
868 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
869 memory_region_add_subregion(&s->container, 0x40004000, mr);
870 }
871 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
872 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
873 qdev_get_gpio_in_named(dev_apb_ppc0,
874 "cfg_nonsec", i));
875 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
876 qdev_get_gpio_in_named(dev_apb_ppc0,
877 "cfg_ap", i));
878 }
879 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
880 qdev_get_gpio_in_named(dev_apb_ppc0,
881 "irq_enable", 0));
882 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
883 qdev_get_gpio_in_named(dev_apb_ppc0,
884 "irq_clear", 0));
885 qdev_connect_gpio_out(dev_splitter, 0,
886 qdev_get_gpio_in_named(dev_apb_ppc0,
887 "cfg_sec_resp", 0));
888
889 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
890 * ones) are sent individually to the security controller, and also
891 * ORed together to give a single combined PPC interrupt to the NVIC.
892 */
893 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
894 NUM_PPCS, "num-lines", &err);
895 if (err) {
896 error_propagate(errp, err);
897 return;
898 }
899 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
900 "realized", &err);
901 if (err) {
902 error_propagate(errp, err);
903 return;
904 }
905 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
906 armsse_get_common_irq_in(s, 10));
907
908 /*
909 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
910 * private per-CPU region (all these devices are SSE-200 only):
911 * 0x50010000: L1 icache control registers
912 * 0x50011000: CPUSECCTRL (CPU local security control registers)
913 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
914 */
915 if (info->has_cachectrl) {
916 for (i = 0; i < info->num_cpus; i++) {
917 char *name = g_strdup_printf("cachectrl%d", i);
918 MemoryRegion *mr;
919
920 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
921 g_free(name);
922 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
923 sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err);
924 if (err) {
925 error_propagate(errp, err);
926 return;
927 }
928
929 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
930 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
931 }
932 }
933 if (info->has_cpusecctrl) {
934 for (i = 0; i < info->num_cpus; i++) {
935 char *name = g_strdup_printf("CPUSECCTRL%d", i);
936 MemoryRegion *mr;
937
938 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
939 g_free(name);
940 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
941 sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err);
942 if (err) {
943 error_propagate(errp, err);
944 return;
945 }
946
947 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
948 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
949 }
950 }
951 if (info->has_cpuid) {
952 for (i = 0; i < info->num_cpus; i++) {
953 MemoryRegion *mr;
954
955 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
956 sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err);
957 if (err) {
958 error_propagate(errp, err);
959 return;
960 }
961
962 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
963 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
964 }
965 }
966
967 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
968 /* Devices behind APB PPC1:
969 * 0x4002f000: S32K timer
970 */
971 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
972 sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err);
973 if (err) {
974 error_propagate(errp, err);
975 return;
976 }
977 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
978 armsse_get_common_irq_in(s, 2));
979 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
980 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
981 if (err) {
982 error_propagate(errp, err);
983 return;
984 }
985
986 sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err);
987 if (err) {
988 error_propagate(errp, err);
989 return;
990 }
991 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
992 memory_region_add_subregion(&s->container, 0x4002f000, mr);
993
994 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
995 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
996 qdev_get_gpio_in_named(dev_apb_ppc1,
997 "cfg_nonsec", 0));
998 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
999 qdev_get_gpio_in_named(dev_apb_ppc1,
1000 "cfg_ap", 0));
1001 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1002 qdev_get_gpio_in_named(dev_apb_ppc1,
1003 "irq_enable", 0));
1004 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1005 qdev_get_gpio_in_named(dev_apb_ppc1,
1006 "irq_clear", 0));
1007 qdev_connect_gpio_out(dev_splitter, 1,
1008 qdev_get_gpio_in_named(dev_apb_ppc1,
1009 "cfg_sec_resp", 0));
1010
1011 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1012 "SYS_VERSION", &err);
1013 if (err) {
1014 error_propagate(errp, err);
1015 return;
1016 }
1017 object_property_set_int(OBJECT(&s->sysinfo),
1018 armsse_sys_config_value(s, info),
1019 "SYS_CONFIG", &err);
1020 if (err) {
1021 error_propagate(errp, err);
1022 return;
1023 }
1024 sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err);
1025 if (err) {
1026 error_propagate(errp, err);
1027 return;
1028 }
1029 /* System information registers */
1030 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1031 /* System control registers */
1032 object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1033 "SYS_VERSION", &err);
1034 object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1035 "CPUWAIT_RST", &err);
1036 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1037 "INITSVTOR0_RST", &err);
1038 object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1039 "INITSVTOR1_RST", &err);
1040 sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err);
1041 if (err) {
1042 error_propagate(errp, err);
1043 return;
1044 }
1045 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1046
1047 if (info->has_ppus) {
1048 /* CPUnCORE_PPU for each CPU */
1049 for (i = 0; i < info->num_cpus; i++) {
1050 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1051
1052 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1053 /*
1054 * We don't support CPU debug so don't create the
1055 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1056 */
1057 g_free(name);
1058 }
1059 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1060
1061 for (i = 0; i < info->sram_banks; i++) {
1062 char *name = g_strdup_printf("RAM%d_PPU", i);
1063
1064 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1065 g_free(name);
1066 }
1067 }
1068
1069 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1070 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1071 if (err) {
1072 error_propagate(errp, err);
1073 return;
1074 }
1075 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1076 if (err) {
1077 error_propagate(errp, err);
1078 return;
1079 }
1080 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1081 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1082
1083 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1084 sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err);
1085 if (err) {
1086 error_propagate(errp, err);
1087 return;
1088 }
1089 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1090 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1091 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1092
1093 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1094
1095 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1096 sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err);
1097 if (err) {
1098 error_propagate(errp, err);
1099 return;
1100 }
1101 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1102 armsse_get_common_irq_in(s, 1));
1103 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1104
1105 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1106 sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err);
1107 if (err) {
1108 error_propagate(errp, err);
1109 return;
1110 }
1111 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1112 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1113 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1114
1115 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1116 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1117
1118 object_property_set_int(splitter, 2, "num-lines", &err);
1119 if (err) {
1120 error_propagate(errp, err);
1121 return;
1122 }
1123 object_property_set_bool(splitter, true, "realized", &err);
1124 if (err) {
1125 error_propagate(errp, err);
1126 return;
1127 }
1128 }
1129
1130 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1131 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1132
1133 armsse_forward_ppc(s, ppcname, i);
1134 g_free(ppcname);
1135 }
1136
1137 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1138 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1139
1140 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1141 g_free(ppcname);
1142 }
1143
1144 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1145 /* Wire up IRQ splitter for internal PPCs */
1146 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1147 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1148 i - NUM_EXTERNAL_PPCS);
1149 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1150
1151 qdev_connect_gpio_out(devs, 0,
1152 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1153 qdev_connect_gpio_out(devs, 1,
1154 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1155 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1156 qdev_get_gpio_in(devs, 0));
1157 g_free(gpioname);
1158 }
1159
1160 /* Wire up the splitters for the MPC IRQs */
1161 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1162 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1163 DeviceState *dev_splitter = DEVICE(splitter);
1164
1165 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1166 if (err) {
1167 error_propagate(errp, err);
1168 return;
1169 }
1170 object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1171 if (err) {
1172 error_propagate(errp, err);
1173 return;
1174 }
1175
1176 if (i < IOTS_NUM_EXP_MPC) {
1177 /* Splitter input is from GPIO input line */
1178 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1179 qdev_connect_gpio_out(dev_splitter, 0,
1180 qdev_get_gpio_in_named(dev_secctl,
1181 "mpcexp_status", i));
1182 } else {
1183 /* Splitter input is from our own MPC */
1184 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1185 "irq", 0,
1186 qdev_get_gpio_in(dev_splitter, 0));
1187 qdev_connect_gpio_out(dev_splitter, 0,
1188 qdev_get_gpio_in_named(dev_secctl,
1189 "mpc_status", 0));
1190 }
1191
1192 qdev_connect_gpio_out(dev_splitter, 1,
1193 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1194 }
1195 /* Create GPIO inputs which will pass the line state for our
1196 * mpcexp_irq inputs to the correct splitter devices.
1197 */
1198 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1199 IOTS_NUM_EXP_MPC);
1200
1201 armsse_forward_sec_resp_cfg(s);
1202
1203 /* Forward the MSC related signals */
1204 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1205 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1206 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1207 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1208 armsse_get_common_irq_in(s, 11));
1209
1210 /*
1211 * Expose our container region to the board model; this corresponds
1212 * to the AHB Slave Expansion ports which allow bus master devices
1213 * (eg DMA controllers) in the board model to make transactions into
1214 * devices in the ARMSSE.
1215 */
1216 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1217
1218 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1219 }
1220
1221 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1222 int *iregion, bool *exempt, bool *ns, bool *nsc)
1223 {
1224 /*
1225 * For ARMSSE systems the IDAU responses are simple logical functions
1226 * of the address bits. The NSC attribute is guest-adjustable via the
1227 * NSCCFG register in the security controller.
1228 */
1229 ARMSSE *s = ARMSSE(ii);
1230 int region = extract32(address, 28, 4);
1231
1232 *ns = !(region & 1);
1233 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1234 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1235 *exempt = (address & 0xeff00000) == 0xe0000000;
1236 *iregion = region;
1237 }
1238
1239 static const VMStateDescription armsse_vmstate = {
1240 .name = "iotkit",
1241 .version_id = 1,
1242 .minimum_version_id = 1,
1243 .fields = (VMStateField[]) {
1244 VMSTATE_UINT32(nsccfg, ARMSSE),
1245 VMSTATE_END_OF_LIST()
1246 }
1247 };
1248
1249 static void armsse_reset(DeviceState *dev)
1250 {
1251 ARMSSE *s = ARMSSE(dev);
1252
1253 s->nsccfg = 0;
1254 }
1255
1256 static void armsse_class_init(ObjectClass *klass, void *data)
1257 {
1258 DeviceClass *dc = DEVICE_CLASS(klass);
1259 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1260 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1261 const ARMSSEInfo *info = data;
1262
1263 dc->realize = armsse_realize;
1264 dc->vmsd = &armsse_vmstate;
1265 device_class_set_props(dc, info->props);
1266 dc->reset = armsse_reset;
1267 iic->check = armsse_idau_check;
1268 asc->info = info;
1269 }
1270
1271 static const TypeInfo armsse_info = {
1272 .name = TYPE_ARMSSE,
1273 .parent = TYPE_SYS_BUS_DEVICE,
1274 .instance_size = sizeof(ARMSSE),
1275 .instance_init = armsse_init,
1276 .abstract = true,
1277 .interfaces = (InterfaceInfo[]) {
1278 { TYPE_IDAU_INTERFACE },
1279 { }
1280 }
1281 };
1282
1283 static void armsse_register_types(void)
1284 {
1285 int i;
1286
1287 type_register_static(&armsse_info);
1288
1289 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1290 TypeInfo ti = {
1291 .name = armsse_variants[i].name,
1292 .parent = TYPE_ARMSSE,
1293 .class_init = armsse_class_init,
1294 .class_data = (void *)&armsse_variants[i],
1295 };
1296 type_register(&ti);
1297 }
1298 }
1299
1300 type_init(armsse_register_types);