]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/boot.c
1e021c4a340c7c613f13ede7a683f43db06aa421
[mirror_qemu.git] / hw / arm / boot.c
1 /*
2 * ARM kernel loader.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/tcg.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
24 #include "elf.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "qemu/units.h"
29
30 /* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
33 */
34 #define KERNEL_ARGS_ADDR 0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR 0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
38
39 #define ARM64_TEXT_OFFSET_OFFSET 8
40 #define ARM64_MAGIC_OFFSET 56
41
42 #define BOOTLOADER_MAX_SIZE (4 * KiB)
43
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45 const struct arm_boot_info *info)
46 {
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
50 */
51 int asidx;
52 CPUState *cs = CPU(cpu);
53
54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55 asidx = ARMASIdx_S;
56 } else {
57 asidx = ARMASIdx_NS;
58 }
59
60 return cpu_get_address_space(cs, asidx);
61 }
62
63 typedef enum {
64 FIXUP_NONE = 0, /* do nothing */
65 FIXUP_TERMINATOR, /* end of insns */
66 FIXUP_BOARDID, /* overwrite with board ID number */
67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
73 FIXUP_BOOTREG, /* overwrite with boot register address */
74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
75 FIXUP_MAX,
76 } FixupType;
77
78 typedef struct ARMInsnFixup {
79 uint32_t insn;
80 FixupType fixup;
81 } ARMInsnFixup;
82
83 static const ARMInsnFixup bootloader_aarch64[] = {
84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85 { 0xaa1f03e1 }, /* mov x1, xzr */
86 { 0xaa1f03e2 }, /* mov x2, xzr */
87 { 0xaa1f03e3 }, /* mov x3, xzr */
88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94 { 0, FIXUP_TERMINATOR }
95 };
96
97 /* A very small bootloader: call the board-setup code (if needed),
98 * set r0-r2, then jump to the kernel.
99 * If we're not calling boot setup code then we don't copy across
100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101 */
102
103 static const ARMInsnFixup bootloader[] = {
104 { 0xe28fe004 }, /* add lr, pc, #4 */
105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
106 { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108 { 0xe3a00000 }, /* mov r0, #0 */
109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
112 { 0, FIXUP_BOARDID },
113 { 0, FIXUP_ARGPTR_LO },
114 { 0, FIXUP_ENTRYPOINT_LO },
115 { 0, FIXUP_TERMINATOR }
116 };
117
118 /* Handling for secondary CPU boot in a multicore system.
119 * Unlike the uniprocessor/primary CPU boot, this is platform
120 * dependent. The default code here is based on the secondary
121 * CPU boot protocol used on realview/vexpress boards, with
122 * some parameterisation to increase its flexibility.
123 * QEMU platform models for which this code is not appropriate
124 * should override write_secondary_boot and secondary_cpu_reset_hook
125 * instead.
126 *
127 * This code enables the interrupt controllers for the secondary
128 * CPUs and then puts all the secondary CPUs into a loop waiting
129 * for an interprocessor interrupt and polling a configurable
130 * location for the kernel secondary CPU entry point.
131 */
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134
135 static const ARMInsnFixup smpboot[] = {
136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138 { 0xe3a01001 }, /* mov r1, #1 */
139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140 { 0xe3a010ff }, /* mov r1, #0xff */
141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142 { 0, FIXUP_DSB }, /* dsb */
143 { 0xe320f003 }, /* wfi */
144 { 0xe5901000 }, /* ldr r1, [r0] */
145 { 0xe1110001 }, /* tst r1, r1 */
146 { 0x0afffffb }, /* beq <wfi> */
147 { 0xe12fff11 }, /* bx r1 */
148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150 { 0, FIXUP_TERMINATOR }
151 };
152
153 static void write_bootloader(const char *name, hwaddr addr,
154 const ARMInsnFixup *insns, uint32_t *fixupcontext,
155 AddressSpace *as)
156 {
157 /* Fix up the specified bootloader fragment and write it into
158 * guest memory using rom_add_blob_fixed(). fixupcontext is
159 * an array giving the values to write in for the fixup types
160 * which write a value into the code array.
161 */
162 int i, len;
163 uint32_t *code;
164
165 len = 0;
166 while (insns[len].fixup != FIXUP_TERMINATOR) {
167 len++;
168 }
169
170 code = g_new0(uint32_t, len);
171
172 for (i = 0; i < len; i++) {
173 uint32_t insn = insns[i].insn;
174 FixupType fixup = insns[i].fixup;
175
176 switch (fixup) {
177 case FIXUP_NONE:
178 break;
179 case FIXUP_BOARDID:
180 case FIXUP_BOARD_SETUP:
181 case FIXUP_ARGPTR_LO:
182 case FIXUP_ARGPTR_HI:
183 case FIXUP_ENTRYPOINT_LO:
184 case FIXUP_ENTRYPOINT_HI:
185 case FIXUP_GIC_CPU_IF:
186 case FIXUP_BOOTREG:
187 case FIXUP_DSB:
188 insn = fixupcontext[fixup];
189 break;
190 default:
191 abort();
192 }
193 code[i] = tswap32(insn);
194 }
195
196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197
198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
199
200 g_free(code);
201 }
202
203 static void default_write_secondary(ARMCPU *cpu,
204 const struct arm_boot_info *info)
205 {
206 uint32_t fixupcontext[FIXUP_MAX];
207 AddressSpace *as = arm_boot_address_space(cpu, info);
208
209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212 fixupcontext[FIXUP_DSB] = DSB_INSN;
213 } else {
214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
215 }
216
217 write_bootloader("smpboot", info->smp_loader_start,
218 smpboot, fixupcontext, as);
219 }
220
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222 const struct arm_boot_info *info,
223 hwaddr mvbar_addr)
224 {
225 AddressSpace *as = arm_boot_address_space(cpu, info);
226 int n;
227 uint32_t mvbar_blob[] = {
228 /* mvbar_addr: secure monitor vectors
229 * Default unimplemented and unused vectors to spin. Makes it
230 * easier to debug (as opposed to the CPU running away).
231 */
232 0xeafffffe, /* (spin) */
233 0xeafffffe, /* (spin) */
234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
240 };
241 uint32_t board_setup_blob[] = {
242 /* board setup addr */
243 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
244 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
245 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
246 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
247 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
248 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
249 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
250 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
251 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
252 0xe1600070, /* smc #0 ;call monitor to flush SCR */
253 0xe1a0f001, /* mov pc, r1 ;return */
254 };
255
256 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
257 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
258
259 /* check that these blobs don't overlap */
260 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
261 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
262
263 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
264 mvbar_blob[n] = tswap32(mvbar_blob[n]);
265 }
266 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
267 mvbar_addr, as);
268
269 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
270 board_setup_blob[n] = tswap32(board_setup_blob[n]);
271 }
272 rom_add_blob_fixed_as("board-setup", board_setup_blob,
273 sizeof(board_setup_blob), info->board_setup_addr, as);
274 }
275
276 static void default_reset_secondary(ARMCPU *cpu,
277 const struct arm_boot_info *info)
278 {
279 AddressSpace *as = arm_boot_address_space(cpu, info);
280 CPUState *cs = CPU(cpu);
281
282 address_space_stl_notdirty(as, info->smp_bootreg_addr,
283 0, MEMTXATTRS_UNSPECIFIED, NULL);
284 cpu_set_pc(cs, info->smp_loader_start);
285 }
286
287 static inline bool have_dtb(const struct arm_boot_info *info)
288 {
289 return info->dtb_filename || info->get_dtb;
290 }
291
292 #define WRITE_WORD(p, value) do { \
293 address_space_stl_notdirty(as, p, value, \
294 MEMTXATTRS_UNSPECIFIED, NULL); \
295 p += 4; \
296 } while (0)
297
298 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
299 {
300 int initrd_size = info->initrd_size;
301 hwaddr base = info->loader_start;
302 hwaddr p;
303
304 p = base + KERNEL_ARGS_ADDR;
305 /* ATAG_CORE */
306 WRITE_WORD(p, 5);
307 WRITE_WORD(p, 0x54410001);
308 WRITE_WORD(p, 1);
309 WRITE_WORD(p, 0x1000);
310 WRITE_WORD(p, 0);
311 /* ATAG_MEM */
312 /* TODO: handle multiple chips on one ATAG list */
313 WRITE_WORD(p, 4);
314 WRITE_WORD(p, 0x54410002);
315 WRITE_WORD(p, info->ram_size);
316 WRITE_WORD(p, info->loader_start);
317 if (initrd_size) {
318 /* ATAG_INITRD2 */
319 WRITE_WORD(p, 4);
320 WRITE_WORD(p, 0x54420005);
321 WRITE_WORD(p, info->initrd_start);
322 WRITE_WORD(p, initrd_size);
323 }
324 if (info->kernel_cmdline && *info->kernel_cmdline) {
325 /* ATAG_CMDLINE */
326 int cmdline_size;
327
328 cmdline_size = strlen(info->kernel_cmdline);
329 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
330 info->kernel_cmdline, cmdline_size + 1);
331 cmdline_size = (cmdline_size >> 2) + 1;
332 WRITE_WORD(p, cmdline_size + 2);
333 WRITE_WORD(p, 0x54410009);
334 p += cmdline_size * 4;
335 }
336 if (info->atag_board) {
337 /* ATAG_BOARD */
338 int atag_board_len;
339 uint8_t atag_board_buf[0x1000];
340
341 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
342 WRITE_WORD(p, (atag_board_len + 8) >> 2);
343 WRITE_WORD(p, 0x414f4d50);
344 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
345 atag_board_buf, atag_board_len);
346 p += atag_board_len;
347 }
348 /* ATAG_END */
349 WRITE_WORD(p, 0);
350 WRITE_WORD(p, 0);
351 }
352
353 static void set_kernel_args_old(const struct arm_boot_info *info,
354 AddressSpace *as)
355 {
356 hwaddr p;
357 const char *s;
358 int initrd_size = info->initrd_size;
359 hwaddr base = info->loader_start;
360
361 /* see linux/include/asm-arm/setup.h */
362 p = base + KERNEL_ARGS_ADDR;
363 /* page_size */
364 WRITE_WORD(p, 4096);
365 /* nr_pages */
366 WRITE_WORD(p, info->ram_size / 4096);
367 /* ramdisk_size */
368 WRITE_WORD(p, 0);
369 #define FLAG_READONLY 1
370 #define FLAG_RDLOAD 4
371 #define FLAG_RDPROMPT 8
372 /* flags */
373 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
374 /* rootdev */
375 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
376 /* video_num_cols */
377 WRITE_WORD(p, 0);
378 /* video_num_rows */
379 WRITE_WORD(p, 0);
380 /* video_x */
381 WRITE_WORD(p, 0);
382 /* video_y */
383 WRITE_WORD(p, 0);
384 /* memc_control_reg */
385 WRITE_WORD(p, 0);
386 /* unsigned char sounddefault */
387 /* unsigned char adfsdrives */
388 /* unsigned char bytes_per_char_h */
389 /* unsigned char bytes_per_char_v */
390 WRITE_WORD(p, 0);
391 /* pages_in_bank[4] */
392 WRITE_WORD(p, 0);
393 WRITE_WORD(p, 0);
394 WRITE_WORD(p, 0);
395 WRITE_WORD(p, 0);
396 /* pages_in_vram */
397 WRITE_WORD(p, 0);
398 /* initrd_start */
399 if (initrd_size) {
400 WRITE_WORD(p, info->initrd_start);
401 } else {
402 WRITE_WORD(p, 0);
403 }
404 /* initrd_size */
405 WRITE_WORD(p, initrd_size);
406 /* rd_start */
407 WRITE_WORD(p, 0);
408 /* system_rev */
409 WRITE_WORD(p, 0);
410 /* system_serial_low */
411 WRITE_WORD(p, 0);
412 /* system_serial_high */
413 WRITE_WORD(p, 0);
414 /* mem_fclk_21285 */
415 WRITE_WORD(p, 0);
416 /* zero unused fields */
417 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
418 WRITE_WORD(p, 0);
419 }
420 s = info->kernel_cmdline;
421 if (s) {
422 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
423 } else {
424 WRITE_WORD(p, 0);
425 }
426 }
427
428 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
429 uint32_t scells, hwaddr mem_len,
430 int numa_node_id)
431 {
432 char *nodename;
433 int ret;
434
435 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
436 qemu_fdt_add_subnode(fdt, nodename);
437 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
438 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
439 scells, mem_len);
440 if (ret < 0) {
441 goto out;
442 }
443
444 /* only set the NUMA ID if it is specified */
445 if (numa_node_id >= 0) {
446 ret = qemu_fdt_setprop_cell(fdt, nodename,
447 "numa-node-id", numa_node_id);
448 }
449 out:
450 g_free(nodename);
451 return ret;
452 }
453
454 static void fdt_add_psci_node(void *fdt)
455 {
456 uint32_t cpu_suspend_fn;
457 uint32_t cpu_off_fn;
458 uint32_t cpu_on_fn;
459 uint32_t migrate_fn;
460 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
461 const char *psci_method;
462 int64_t psci_conduit;
463 int rc;
464
465 psci_conduit = object_property_get_int(OBJECT(armcpu),
466 "psci-conduit",
467 &error_abort);
468 switch (psci_conduit) {
469 case QEMU_PSCI_CONDUIT_DISABLED:
470 return;
471 case QEMU_PSCI_CONDUIT_HVC:
472 psci_method = "hvc";
473 break;
474 case QEMU_PSCI_CONDUIT_SMC:
475 psci_method = "smc";
476 break;
477 default:
478 g_assert_not_reached();
479 }
480
481 /*
482 * A pre-existing /psci node might specify function ID values
483 * that don't match QEMU's PSCI implementation. Delete the whole
484 * node and put our own in instead.
485 */
486 rc = fdt_path_offset(fdt, "/psci");
487 if (rc >= 0) {
488 qemu_fdt_nop_node(fdt, "/psci");
489 }
490
491 qemu_fdt_add_subnode(fdt, "/psci");
492 if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
493 if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
494 const char comp[] = "arm,psci-0.2\0arm,psci";
495 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
496 } else {
497 const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
498 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
499 }
500
501 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
502 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
503 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
504 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
505 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
506 } else {
507 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
508 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
509 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
510 }
511 } else {
512 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
513
514 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
515 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
516 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
517 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
518 }
519
520 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
521 * to the instruction that should be used to invoke PSCI functions.
522 * However, the device tree binding uses 'method' instead, so that is
523 * what we should use here.
524 */
525 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
526
527 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
528 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
529 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
530 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
531 }
532
533 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
534 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
535 {
536 void *fdt = NULL;
537 int size, rc, n = 0;
538 uint32_t acells, scells;
539 unsigned int i;
540 hwaddr mem_base, mem_len;
541 char **node_path;
542 Error *err = NULL;
543
544 if (binfo->dtb_filename) {
545 char *filename;
546 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
547 if (!filename) {
548 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
549 goto fail;
550 }
551
552 fdt = load_device_tree(filename, &size);
553 if (!fdt) {
554 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
555 g_free(filename);
556 goto fail;
557 }
558 g_free(filename);
559 } else {
560 fdt = binfo->get_dtb(binfo, &size);
561 if (!fdt) {
562 fprintf(stderr, "Board was unable to create a dtb blob\n");
563 goto fail;
564 }
565 }
566
567 if (addr_limit > addr && size > (addr_limit - addr)) {
568 /* Installing the device tree blob at addr would exceed addr_limit.
569 * Whether this constitutes failure is up to the caller to decide,
570 * so just return 0 as size, i.e., no error.
571 */
572 g_free(fdt);
573 return 0;
574 }
575
576 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
577 NULL, &error_fatal);
578 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
579 NULL, &error_fatal);
580 if (acells == 0 || scells == 0) {
581 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
582 goto fail;
583 }
584
585 if (scells < 2 && binfo->ram_size >= 4 * GiB) {
586 /* This is user error so deserves a friendlier error message
587 * than the failure of setprop_sized_cells would provide
588 */
589 fprintf(stderr, "qemu: dtb file not compatible with "
590 "RAM size > 4GB\n");
591 goto fail;
592 }
593
594 /* nop all root nodes matching /memory or /memory@unit-address */
595 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
596 if (err) {
597 error_report_err(err);
598 goto fail;
599 }
600 while (node_path[n]) {
601 if (g_str_has_prefix(node_path[n], "/memory")) {
602 qemu_fdt_nop_node(fdt, node_path[n]);
603 }
604 n++;
605 }
606 g_strfreev(node_path);
607
608 /*
609 * We drop all the memory nodes which correspond to empty NUMA nodes
610 * from the device tree, because the Linux NUMA binding document
611 * states they should not be generated. Linux will get the NUMA node
612 * IDs of the empty NUMA nodes from the distance map if they are needed.
613 * This means QEMU users may be obliged to provide command lines which
614 * configure distance maps when the empty NUMA node IDs are needed and
615 * Linux's default distance map isn't sufficient.
616 */
617 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
618 mem_base = binfo->loader_start;
619 for (i = 0; i < ms->numa_state->num_nodes; i++) {
620 mem_len = ms->numa_state->nodes[i].node_mem;
621 if (!mem_len) {
622 continue;
623 }
624
625 rc = fdt_add_memory_node(fdt, acells, mem_base,
626 scells, mem_len, i);
627 if (rc < 0) {
628 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
629 mem_base);
630 goto fail;
631 }
632
633 mem_base += mem_len;
634 }
635 } else {
636 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
637 scells, binfo->ram_size, -1);
638 if (rc < 0) {
639 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
640 binfo->loader_start);
641 goto fail;
642 }
643 }
644
645 rc = fdt_path_offset(fdt, "/chosen");
646 if (rc < 0) {
647 qemu_fdt_add_subnode(fdt, "/chosen");
648 }
649
650 if (ms->kernel_cmdline && *ms->kernel_cmdline) {
651 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
652 ms->kernel_cmdline);
653 if (rc < 0) {
654 fprintf(stderr, "couldn't set /chosen/bootargs\n");
655 goto fail;
656 }
657 }
658
659 if (binfo->initrd_size) {
660 rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
661 acells, binfo->initrd_start);
662 if (rc < 0) {
663 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
664 goto fail;
665 }
666
667 rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
668 acells,
669 binfo->initrd_start +
670 binfo->initrd_size);
671 if (rc < 0) {
672 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
673 goto fail;
674 }
675 }
676
677 fdt_add_psci_node(fdt);
678
679 if (binfo->modify_dtb) {
680 binfo->modify_dtb(binfo, fdt);
681 }
682
683 qemu_fdt_dumpdtb(fdt, size);
684
685 /* Put the DTB into the memory map as a ROM image: this will ensure
686 * the DTB is copied again upon reset, even if addr points into RAM.
687 */
688 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
689 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
690 rom_ptr_for_as(as, addr, size));
691
692 g_free(fdt);
693
694 return size;
695
696 fail:
697 g_free(fdt);
698 return -1;
699 }
700
701 static void do_cpu_reset(void *opaque)
702 {
703 ARMCPU *cpu = opaque;
704 CPUState *cs = CPU(cpu);
705 CPUARMState *env = &cpu->env;
706 const struct arm_boot_info *info = env->boot_info;
707
708 cpu_reset(cs);
709 if (info) {
710 if (!info->is_linux) {
711 int i;
712 /* Jump to the entry point. */
713 uint64_t entry = info->entry;
714
715 switch (info->endianness) {
716 case ARM_ENDIANNESS_LE:
717 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
718 for (i = 1; i < 4; ++i) {
719 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
720 }
721 env->uncached_cpsr &= ~CPSR_E;
722 break;
723 case ARM_ENDIANNESS_BE8:
724 env->cp15.sctlr_el[1] |= SCTLR_E0E;
725 for (i = 1; i < 4; ++i) {
726 env->cp15.sctlr_el[i] |= SCTLR_EE;
727 }
728 env->uncached_cpsr |= CPSR_E;
729 break;
730 case ARM_ENDIANNESS_BE32:
731 env->cp15.sctlr_el[1] |= SCTLR_B;
732 break;
733 case ARM_ENDIANNESS_UNKNOWN:
734 break; /* Board's decision */
735 default:
736 g_assert_not_reached();
737 }
738
739 cpu_set_pc(cs, entry);
740 } else {
741 /* If we are booting Linux then we need to check whether we are
742 * booting into secure or non-secure state and adjust the state
743 * accordingly. Out of reset, ARM is defined to be in secure state
744 * (SCR.NS = 0), we change that here if non-secure boot has been
745 * requested.
746 */
747 if (arm_feature(env, ARM_FEATURE_EL3)) {
748 /* AArch64 is defined to come out of reset into EL3 if enabled.
749 * If we are booting Linux then we need to adjust our EL as
750 * Linux expects us to be in EL2 or EL1. AArch32 resets into
751 * SVC, which Linux expects, so no privilege/exception level to
752 * adjust.
753 */
754 if (env->aarch64) {
755 env->cp15.scr_el3 |= SCR_RW;
756 if (arm_feature(env, ARM_FEATURE_EL2)) {
757 env->cp15.hcr_el2 |= HCR_RW;
758 env->pstate = PSTATE_MODE_EL2h;
759 } else {
760 env->pstate = PSTATE_MODE_EL1h;
761 }
762 if (cpu_isar_feature(aa64_pauth, cpu)) {
763 env->cp15.scr_el3 |= SCR_API | SCR_APK;
764 }
765 if (cpu_isar_feature(aa64_mte, cpu)) {
766 env->cp15.scr_el3 |= SCR_ATA;
767 }
768 if (cpu_isar_feature(aa64_sve, cpu)) {
769 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
770 env->vfp.zcr_el[3] = 0xf;
771 }
772 if (cpu_isar_feature(aa64_sme, cpu)) {
773 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
774 env->cp15.scr_el3 |= SCR_ENTP2;
775 env->vfp.smcr_el[3] = 0xf;
776 }
777 if (cpu_isar_feature(aa64_hcx, cpu)) {
778 env->cp15.scr_el3 |= SCR_HXEN;
779 }
780 /* AArch64 kernels never boot in secure mode */
781 assert(!info->secure_boot);
782 /* This hook is only supported for AArch32 currently:
783 * bootloader_aarch64[] will not call the hook, and
784 * the code above has already dropped us into EL2 or EL1.
785 */
786 assert(!info->secure_board_setup);
787 }
788
789 if (arm_feature(env, ARM_FEATURE_EL2)) {
790 /* If we have EL2 then Linux expects the HVC insn to work */
791 env->cp15.scr_el3 |= SCR_HCE;
792 }
793
794 /* Set to non-secure if not a secure boot */
795 if (!info->secure_boot &&
796 (cs != first_cpu || !info->secure_board_setup)) {
797 /* Linux expects non-secure state */
798 env->cp15.scr_el3 |= SCR_NS;
799 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
800 env->cp15.nsacr |= 3 << 10;
801 }
802 }
803
804 if (!env->aarch64 && !info->secure_boot &&
805 arm_feature(env, ARM_FEATURE_EL2)) {
806 /*
807 * This is an AArch32 boot not to Secure state, and
808 * we have Hyp mode available, so boot the kernel into
809 * Hyp mode. This is not how the CPU comes out of reset,
810 * so we need to manually put it there.
811 */
812 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
813 }
814
815 if (cs == first_cpu) {
816 AddressSpace *as = arm_boot_address_space(cpu, info);
817
818 cpu_set_pc(cs, info->loader_start);
819
820 if (!have_dtb(info)) {
821 if (old_param) {
822 set_kernel_args_old(info, as);
823 } else {
824 set_kernel_args(info, as);
825 }
826 }
827 } else if (info->secondary_cpu_reset_hook) {
828 info->secondary_cpu_reset_hook(cpu, info);
829 }
830 }
831
832 if (tcg_enabled()) {
833 arm_rebuild_hflags(env);
834 }
835 }
836 }
837
838 static int do_arm_linux_init(Object *obj, void *opaque)
839 {
840 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
841 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
842 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
843 struct arm_boot_info *info = opaque;
844
845 if (albifc->arm_linux_init) {
846 albifc->arm_linux_init(albif, info->secure_boot);
847 }
848 }
849 return 0;
850 }
851
852 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
853 uint64_t *lowaddr, uint64_t *highaddr,
854 int elf_machine, AddressSpace *as)
855 {
856 bool elf_is64;
857 union {
858 Elf32_Ehdr h32;
859 Elf64_Ehdr h64;
860 } elf_header;
861 int data_swab = 0;
862 bool big_endian;
863 ssize_t ret = -1;
864 Error *err = NULL;
865
866
867 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
868 if (err) {
869 error_free(err);
870 return ret;
871 }
872
873 if (elf_is64) {
874 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
875 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
876 : ARM_ENDIANNESS_LE;
877 } else {
878 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
879 if (big_endian) {
880 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
881 info->endianness = ARM_ENDIANNESS_BE8;
882 } else {
883 info->endianness = ARM_ENDIANNESS_BE32;
884 /* In BE32, the CPU has a different view of the per-byte
885 * address map than the rest of the system. BE32 ELF files
886 * are organised such that they can be programmed through
887 * the CPU's per-word byte-reversed view of the world. QEMU
888 * however loads ELF files independently of the CPU. So
889 * tell the ELF loader to byte reverse the data for us.
890 */
891 data_swab = 2;
892 }
893 } else {
894 info->endianness = ARM_ENDIANNESS_LE;
895 }
896 }
897
898 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
899 pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
900 1, data_swab, as);
901 if (ret <= 0) {
902 /* The header loaded but the image didn't */
903 exit(1);
904 }
905
906 return ret;
907 }
908
909 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
910 hwaddr *entry, AddressSpace *as)
911 {
912 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
913 uint64_t kernel_size = 0;
914 uint8_t *buffer;
915 int size;
916
917 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
918 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
919 &buffer);
920
921 if (size < 0) {
922 gsize len;
923
924 /* Load as raw file otherwise */
925 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
926 return -1;
927 }
928 size = len;
929 }
930
931 /* check the arm64 magic header value -- very old kernels may not have it */
932 if (size > ARM64_MAGIC_OFFSET + 4 &&
933 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
934 uint64_t hdrvals[2];
935
936 /* The arm64 Image header has text_offset and image_size fields at 8 and
937 * 16 bytes into the Image header, respectively. The text_offset field
938 * is only valid if the image_size is non-zero.
939 */
940 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
941
942 kernel_size = le64_to_cpu(hdrvals[1]);
943
944 if (kernel_size != 0) {
945 kernel_load_offset = le64_to_cpu(hdrvals[0]);
946
947 /*
948 * We write our startup "bootloader" at the very bottom of RAM,
949 * so that bit can't be used for the image. Luckily the Image
950 * format specification is that the image requests only an offset
951 * from a 2MB boundary, not an absolute load address. So if the
952 * image requests an offset that might mean it overlaps with the
953 * bootloader, we can just load it starting at 2MB+offset rather
954 * than 0MB + offset.
955 */
956 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
957 kernel_load_offset += 2 * MiB;
958 }
959 }
960 }
961
962 /*
963 * Kernels before v3.17 don't populate the image_size field, and
964 * raw images have no header. For those our best guess at the size
965 * is the size of the Image file itself.
966 */
967 if (kernel_size == 0) {
968 kernel_size = size;
969 }
970
971 *entry = mem_base + kernel_load_offset;
972 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
973
974 g_free(buffer);
975
976 return kernel_size;
977 }
978
979 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
980 struct arm_boot_info *info)
981 {
982 /* Set up for a direct boot of a kernel image file. */
983 CPUState *cs;
984 AddressSpace *as = arm_boot_address_space(cpu, info);
985 ssize_t kernel_size;
986 int initrd_size;
987 int is_linux = 0;
988 uint64_t elf_entry;
989 /* Addresses of first byte used and first byte not used by the image */
990 uint64_t image_low_addr = 0, image_high_addr = 0;
991 int elf_machine;
992 hwaddr entry;
993 static const ARMInsnFixup *primary_loader;
994 uint64_t ram_end = info->loader_start + info->ram_size;
995
996 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
997 primary_loader = bootloader_aarch64;
998 elf_machine = EM_AARCH64;
999 } else {
1000 primary_loader = bootloader;
1001 if (!info->write_board_setup) {
1002 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1003 }
1004 elf_machine = EM_ARM;
1005 }
1006
1007 /* Assume that raw images are linux kernels, and ELF images are not. */
1008 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1009 &image_high_addr, elf_machine, as);
1010 if (kernel_size > 0 && have_dtb(info)) {
1011 /*
1012 * If there is still some room left at the base of RAM, try and put
1013 * the DTB there like we do for images loaded with -bios or -pflash.
1014 */
1015 if (image_low_addr > info->loader_start
1016 || image_high_addr < info->loader_start) {
1017 /*
1018 * Set image_low_addr as address limit for arm_load_dtb if it may be
1019 * pointing into RAM, otherwise pass '0' (no limit)
1020 */
1021 if (image_low_addr < info->loader_start) {
1022 image_low_addr = 0;
1023 }
1024 info->dtb_start = info->loader_start;
1025 info->dtb_limit = image_low_addr;
1026 }
1027 }
1028 entry = elf_entry;
1029 if (kernel_size < 0) {
1030 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1031 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1032 &is_linux, NULL, NULL, as);
1033 if (kernel_size >= 0) {
1034 image_low_addr = loadaddr;
1035 image_high_addr = image_low_addr + kernel_size;
1036 }
1037 }
1038 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1039 kernel_size = load_aarch64_image(info->kernel_filename,
1040 info->loader_start, &entry, as);
1041 is_linux = 1;
1042 if (kernel_size >= 0) {
1043 image_low_addr = entry;
1044 image_high_addr = image_low_addr + kernel_size;
1045 }
1046 } else if (kernel_size < 0) {
1047 /* 32-bit ARM */
1048 entry = info->loader_start + KERNEL_LOAD_ADDR;
1049 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1050 ram_end - KERNEL_LOAD_ADDR, as);
1051 is_linux = 1;
1052 if (kernel_size >= 0) {
1053 image_low_addr = entry;
1054 image_high_addr = image_low_addr + kernel_size;
1055 }
1056 }
1057 if (kernel_size < 0) {
1058 error_report("could not load kernel '%s'", info->kernel_filename);
1059 exit(1);
1060 }
1061
1062 if (kernel_size > info->ram_size) {
1063 error_report("kernel '%s' is too large to fit in RAM "
1064 "(kernel size %zd, RAM size %" PRId64 ")",
1065 info->kernel_filename, kernel_size, info->ram_size);
1066 exit(1);
1067 }
1068
1069 info->entry = entry;
1070
1071 /*
1072 * We want to put the initrd far enough into RAM that when the
1073 * kernel is uncompressed it will not clobber the initrd. However
1074 * on boards without much RAM we must ensure that we still leave
1075 * enough room for a decent sized initrd, and on boards with large
1076 * amounts of RAM we must avoid the initrd being so far up in RAM
1077 * that it is outside lowmem and inaccessible to the kernel.
1078 * So for boards with less than 256MB of RAM we put the initrd
1079 * halfway into RAM, and for boards with 256MB of RAM or more we put
1080 * the initrd at 128MB.
1081 * We also refuse to put the initrd somewhere that will definitely
1082 * overlay the kernel we just loaded, though for kernel formats which
1083 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1084 * we might still make a bad choice here.
1085 */
1086 info->initrd_start = info->loader_start +
1087 MIN(info->ram_size / 2, 128 * MiB);
1088 if (image_high_addr) {
1089 info->initrd_start = MAX(info->initrd_start, image_high_addr);
1090 }
1091 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1092
1093 if (is_linux) {
1094 uint32_t fixupcontext[FIXUP_MAX];
1095
1096 if (info->initrd_filename) {
1097
1098 if (info->initrd_start >= ram_end) {
1099 error_report("not enough space after kernel to load initrd");
1100 exit(1);
1101 }
1102
1103 initrd_size = load_ramdisk_as(info->initrd_filename,
1104 info->initrd_start,
1105 ram_end - info->initrd_start, as);
1106 if (initrd_size < 0) {
1107 initrd_size = load_image_targphys_as(info->initrd_filename,
1108 info->initrd_start,
1109 ram_end -
1110 info->initrd_start,
1111 as);
1112 }
1113 if (initrd_size < 0) {
1114 error_report("could not load initrd '%s'",
1115 info->initrd_filename);
1116 exit(1);
1117 }
1118 if (info->initrd_start + initrd_size > ram_end) {
1119 error_report("could not load initrd '%s': "
1120 "too big to fit into RAM after the kernel",
1121 info->initrd_filename);
1122 exit(1);
1123 }
1124 } else {
1125 initrd_size = 0;
1126 }
1127 info->initrd_size = initrd_size;
1128
1129 fixupcontext[FIXUP_BOARDID] = info->board_id;
1130 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1131
1132 /*
1133 * for device tree boot, we pass the DTB directly in r2. Otherwise
1134 * we point to the kernel args.
1135 */
1136 if (have_dtb(info)) {
1137 hwaddr align;
1138
1139 if (elf_machine == EM_AARCH64) {
1140 /*
1141 * Some AArch64 kernels on early bootup map the fdt region as
1142 *
1143 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1144 *
1145 * Let's play safe and prealign it to 2MB to give us some space.
1146 */
1147 align = 2 * MiB;
1148 } else {
1149 /*
1150 * Some 32bit kernels will trash anything in the 4K page the
1151 * initrd ends in, so make sure the DTB isn't caught up in that.
1152 */
1153 align = 4 * KiB;
1154 }
1155
1156 /* Place the DTB after the initrd in memory with alignment. */
1157 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1158 align);
1159 if (info->dtb_start >= ram_end) {
1160 error_report("Not enough space for DTB after kernel/initrd");
1161 exit(1);
1162 }
1163 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1164 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1165 } else {
1166 fixupcontext[FIXUP_ARGPTR_LO] =
1167 info->loader_start + KERNEL_ARGS_ADDR;
1168 fixupcontext[FIXUP_ARGPTR_HI] =
1169 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1170 if (info->ram_size >= 4 * GiB) {
1171 error_report("RAM size must be less than 4GB to boot"
1172 " Linux kernel using ATAGS (try passing a device tree"
1173 " using -dtb)");
1174 exit(1);
1175 }
1176 }
1177 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1178 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1179
1180 write_bootloader("bootloader", info->loader_start,
1181 primary_loader, fixupcontext, as);
1182
1183 if (info->write_board_setup) {
1184 info->write_board_setup(cpu, info);
1185 }
1186
1187 /*
1188 * Notify devices which need to fake up firmware initialization
1189 * that we're doing a direct kernel boot.
1190 */
1191 object_child_foreach_recursive(object_get_root(),
1192 do_arm_linux_init, info);
1193 }
1194 info->is_linux = is_linux;
1195
1196 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1197 ARM_CPU(cs)->env.boot_info = info;
1198 }
1199 }
1200
1201 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1202 {
1203 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1204
1205 if (have_dtb(info)) {
1206 /*
1207 * If we have a device tree blob, but no kernel to supply it to (or
1208 * the kernel is supposed to be loaded by the bootloader), copy the
1209 * DTB to the base of RAM for the bootloader to pick up.
1210 */
1211 info->dtb_start = info->loader_start;
1212 }
1213
1214 if (info->kernel_filename) {
1215 FWCfgState *fw_cfg;
1216 bool try_decompressing_kernel;
1217
1218 fw_cfg = fw_cfg_find();
1219
1220 if (!fw_cfg) {
1221 error_report("This machine type does not support loading both "
1222 "a guest firmware/BIOS image and a guest kernel at "
1223 "the same time. You should change your QEMU command "
1224 "line to specify one or the other, but not both.");
1225 exit(1);
1226 }
1227
1228 try_decompressing_kernel = arm_feature(&cpu->env,
1229 ARM_FEATURE_AARCH64);
1230
1231 /*
1232 * Expose the kernel, the command line, and the initrd in fw_cfg.
1233 * We don't process them here at all, it's all left to the
1234 * firmware.
1235 */
1236 load_image_to_fw_cfg(fw_cfg,
1237 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1238 info->kernel_filename,
1239 try_decompressing_kernel);
1240 load_image_to_fw_cfg(fw_cfg,
1241 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1242 info->initrd_filename, false);
1243
1244 if (info->kernel_cmdline) {
1245 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1246 strlen(info->kernel_cmdline) + 1);
1247 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1248 info->kernel_cmdline);
1249 }
1250 }
1251
1252 /*
1253 * We will start from address 0 (typically a boot ROM image) in the
1254 * same way as hardware. Leave env->boot_info NULL, so that
1255 * do_cpu_reset() knows it does not need to alter the PC on reset.
1256 */
1257 }
1258
1259 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1260 {
1261 CPUState *cs;
1262 AddressSpace *as = arm_boot_address_space(cpu, info);
1263 int boot_el;
1264 CPUARMState *env = &cpu->env;
1265 int nb_cpus = 0;
1266
1267 /*
1268 * CPU objects (unlike devices) are not automatically reset on system
1269 * reset, so we must always register a handler to do so. If we're
1270 * actually loading a kernel, the handler is also responsible for
1271 * arranging that we start it correctly.
1272 */
1273 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1274 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1275 nb_cpus++;
1276 }
1277
1278 /*
1279 * The board code is not supposed to set secure_board_setup unless
1280 * running its code in secure mode is actually possible, and KVM
1281 * doesn't support secure.
1282 */
1283 assert(!(info->secure_board_setup && kvm_enabled()));
1284 info->kernel_filename = ms->kernel_filename;
1285 info->kernel_cmdline = ms->kernel_cmdline;
1286 info->initrd_filename = ms->initrd_filename;
1287 info->dtb_filename = ms->dtb;
1288 info->dtb_limit = 0;
1289
1290 /* Load the kernel. */
1291 if (!info->kernel_filename || info->firmware_loaded) {
1292 arm_setup_firmware_boot(cpu, info);
1293 } else {
1294 arm_setup_direct_kernel_boot(cpu, info);
1295 }
1296
1297 /*
1298 * Disable the PSCI conduit if it is set up to target the same
1299 * or a lower EL than the one we're going to start the guest code in.
1300 * This logic needs to agree with the code in do_cpu_reset() which
1301 * decides whether we're going to boot the guest in the highest
1302 * supported exception level or in a lower one.
1303 */
1304
1305 /*
1306 * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1307 * are never emulated to trap into guest code. It therefore does not
1308 * make sense for the board to have a setup code fragment that runs
1309 * in Secure, because this will probably need to itself issue an SMC of some
1310 * kind as part of its operation.
1311 */
1312 assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1313 !info->secure_board_setup);
1314
1315 /* Boot into highest supported EL ... */
1316 if (arm_feature(env, ARM_FEATURE_EL3)) {
1317 boot_el = 3;
1318 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1319 boot_el = 2;
1320 } else {
1321 boot_el = 1;
1322 }
1323 /* ...except that if we're booting Linux we adjust the EL we boot into */
1324 if (info->is_linux && !info->secure_boot) {
1325 boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1326 }
1327
1328 if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1329 (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1330 info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1331 }
1332
1333 if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1334 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1335 Object *cpuobj = OBJECT(cs);
1336
1337 object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1338 &error_abort);
1339 /*
1340 * Secondary CPUs start in PSCI powered-down state. Like the
1341 * code in do_cpu_reset(), we assume first_cpu is the primary
1342 * CPU.
1343 */
1344 if (cs != first_cpu) {
1345 object_property_set_bool(cpuobj, "start-powered-off", true,
1346 &error_abort);
1347 }
1348 }
1349 }
1350
1351 if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1352 info->is_linux && nb_cpus > 1) {
1353 /*
1354 * We're booting Linux but not using PSCI, so for SMP we need
1355 * to write a custom secondary CPU boot loader stub, and arrange
1356 * for the secondary CPU reset to make the accompanying initialization.
1357 */
1358 if (!info->secondary_cpu_reset_hook) {
1359 info->secondary_cpu_reset_hook = default_reset_secondary;
1360 }
1361 if (!info->write_secondary_boot) {
1362 info->write_secondary_boot = default_write_secondary;
1363 }
1364 info->write_secondary_boot(cpu, info);
1365 } else {
1366 /*
1367 * No secondary boot stub; don't use the reset hook that would
1368 * have set the CPU up to call it
1369 */
1370 info->write_secondary_boot = NULL;
1371 info->secondary_cpu_reset_hook = NULL;
1372 }
1373
1374 /*
1375 * arm_load_dtb() may add a PSCI node so it must be called after we have
1376 * decided whether to enable PSCI and set the psci-conduit CPU properties.
1377 */
1378 if (!info->skip_dtb_autoload && have_dtb(info)) {
1379 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1380 exit(1);
1381 }
1382 }
1383 }
1384
1385 static const TypeInfo arm_linux_boot_if_info = {
1386 .name = TYPE_ARM_LINUX_BOOT_IF,
1387 .parent = TYPE_INTERFACE,
1388 .class_size = sizeof(ARMLinuxBootIfClass),
1389 };
1390
1391 static void arm_linux_boot_register_types(void)
1392 {
1393 type_register_static(&arm_linux_boot_if_info);
1394 }
1395
1396 type_init(arm_linux_boot_register_types)