]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/boot.c
Merge tag 'pull-loongarch-20221215' of https://gitlab.com/gaosong/qemu into staging
[mirror_qemu.git] / hw / arm / boot.c
1 /*
2 * ARM kernel loader.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "qemu/units.h"
28
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
32 */
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR 0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
37
38 #define ARM64_TEXT_OFFSET_OFFSET 8
39 #define ARM64_MAGIC_OFFSET 56
40
41 #define BOOTLOADER_MAX_SIZE (4 * KiB)
42
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44 const struct arm_boot_info *info)
45 {
46 /* Return the address space to use for bootloader reads and writes.
47 * We prefer the secure address space if the CPU has it and we're
48 * going to boot the guest into it.
49 */
50 int asidx;
51 CPUState *cs = CPU(cpu);
52
53 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54 asidx = ARMASIdx_S;
55 } else {
56 asidx = ARMASIdx_NS;
57 }
58
59 return cpu_get_address_space(cs, asidx);
60 }
61
62 typedef enum {
63 FIXUP_NONE = 0, /* do nothing */
64 FIXUP_TERMINATOR, /* end of insns */
65 FIXUP_BOARDID, /* overwrite with board ID number */
66 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
67 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
68 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
69 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
72 FIXUP_BOOTREG, /* overwrite with boot register address */
73 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
74 FIXUP_MAX,
75 } FixupType;
76
77 typedef struct ARMInsnFixup {
78 uint32_t insn;
79 FixupType fixup;
80 } ARMInsnFixup;
81
82 static const ARMInsnFixup bootloader_aarch64[] = {
83 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84 { 0xaa1f03e1 }, /* mov x1, xzr */
85 { 0xaa1f03e2 }, /* mov x2, xzr */
86 { 0xaa1f03e3 }, /* mov x3, xzr */
87 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
89 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93 { 0, FIXUP_TERMINATOR }
94 };
95
96 /* A very small bootloader: call the board-setup code (if needed),
97 * set r0-r2, then jump to the kernel.
98 * If we're not calling boot setup code then we don't copy across
99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
100 */
101
102 static const ARMInsnFixup bootloader[] = {
103 { 0xe28fe004 }, /* add lr, pc, #4 */
104 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
105 { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107 { 0xe3a00000 }, /* mov r0, #0 */
108 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
109 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
110 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
111 { 0, FIXUP_BOARDID },
112 { 0, FIXUP_ARGPTR_LO },
113 { 0, FIXUP_ENTRYPOINT_LO },
114 { 0, FIXUP_TERMINATOR }
115 };
116
117 /* Handling for secondary CPU boot in a multicore system.
118 * Unlike the uniprocessor/primary CPU boot, this is platform
119 * dependent. The default code here is based on the secondary
120 * CPU boot protocol used on realview/vexpress boards, with
121 * some parameterisation to increase its flexibility.
122 * QEMU platform models for which this code is not appropriate
123 * should override write_secondary_boot and secondary_cpu_reset_hook
124 * instead.
125 *
126 * This code enables the interrupt controllers for the secondary
127 * CPUs and then puts all the secondary CPUs into a loop waiting
128 * for an interprocessor interrupt and polling a configurable
129 * location for the kernel secondary CPU entry point.
130 */
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
133
134 static const ARMInsnFixup smpboot[] = {
135 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137 { 0xe3a01001 }, /* mov r1, #1 */
138 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139 { 0xe3a010ff }, /* mov r1, #0xff */
140 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141 { 0, FIXUP_DSB }, /* dsb */
142 { 0xe320f003 }, /* wfi */
143 { 0xe5901000 }, /* ldr r1, [r0] */
144 { 0xe1110001 }, /* tst r1, r1 */
145 { 0x0afffffb }, /* beq <wfi> */
146 { 0xe12fff11 }, /* bx r1 */
147 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149 { 0, FIXUP_TERMINATOR }
150 };
151
152 static void write_bootloader(const char *name, hwaddr addr,
153 const ARMInsnFixup *insns, uint32_t *fixupcontext,
154 AddressSpace *as)
155 {
156 /* Fix up the specified bootloader fragment and write it into
157 * guest memory using rom_add_blob_fixed(). fixupcontext is
158 * an array giving the values to write in for the fixup types
159 * which write a value into the code array.
160 */
161 int i, len;
162 uint32_t *code;
163
164 len = 0;
165 while (insns[len].fixup != FIXUP_TERMINATOR) {
166 len++;
167 }
168
169 code = g_new0(uint32_t, len);
170
171 for (i = 0; i < len; i++) {
172 uint32_t insn = insns[i].insn;
173 FixupType fixup = insns[i].fixup;
174
175 switch (fixup) {
176 case FIXUP_NONE:
177 break;
178 case FIXUP_BOARDID:
179 case FIXUP_BOARD_SETUP:
180 case FIXUP_ARGPTR_LO:
181 case FIXUP_ARGPTR_HI:
182 case FIXUP_ENTRYPOINT_LO:
183 case FIXUP_ENTRYPOINT_HI:
184 case FIXUP_GIC_CPU_IF:
185 case FIXUP_BOOTREG:
186 case FIXUP_DSB:
187 insn = fixupcontext[fixup];
188 break;
189 default:
190 abort();
191 }
192 code[i] = tswap32(insn);
193 }
194
195 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
196
197 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
198
199 g_free(code);
200 }
201
202 static void default_write_secondary(ARMCPU *cpu,
203 const struct arm_boot_info *info)
204 {
205 uint32_t fixupcontext[FIXUP_MAX];
206 AddressSpace *as = arm_boot_address_space(cpu, info);
207
208 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211 fixupcontext[FIXUP_DSB] = DSB_INSN;
212 } else {
213 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
214 }
215
216 write_bootloader("smpboot", info->smp_loader_start,
217 smpboot, fixupcontext, as);
218 }
219
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221 const struct arm_boot_info *info,
222 hwaddr mvbar_addr)
223 {
224 AddressSpace *as = arm_boot_address_space(cpu, info);
225 int n;
226 uint32_t mvbar_blob[] = {
227 /* mvbar_addr: secure monitor vectors
228 * Default unimplemented and unused vectors to spin. Makes it
229 * easier to debug (as opposed to the CPU running away).
230 */
231 0xeafffffe, /* (spin) */
232 0xeafffffe, /* (spin) */
233 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 };
240 uint32_t board_setup_blob[] = {
241 /* board setup addr */
242 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
243 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
244 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
245 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
246 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
247 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
248 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
249 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
250 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
251 0xe1600070, /* smc #0 ;call monitor to flush SCR */
252 0xe1a0f001, /* mov pc, r1 ;return */
253 };
254
255 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
256 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
257
258 /* check that these blobs don't overlap */
259 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
260 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
261
262 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
263 mvbar_blob[n] = tswap32(mvbar_blob[n]);
264 }
265 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
266 mvbar_addr, as);
267
268 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
269 board_setup_blob[n] = tswap32(board_setup_blob[n]);
270 }
271 rom_add_blob_fixed_as("board-setup", board_setup_blob,
272 sizeof(board_setup_blob), info->board_setup_addr, as);
273 }
274
275 static void default_reset_secondary(ARMCPU *cpu,
276 const struct arm_boot_info *info)
277 {
278 AddressSpace *as = arm_boot_address_space(cpu, info);
279 CPUState *cs = CPU(cpu);
280
281 address_space_stl_notdirty(as, info->smp_bootreg_addr,
282 0, MEMTXATTRS_UNSPECIFIED, NULL);
283 cpu_set_pc(cs, info->smp_loader_start);
284 }
285
286 static inline bool have_dtb(const struct arm_boot_info *info)
287 {
288 return info->dtb_filename || info->get_dtb;
289 }
290
291 #define WRITE_WORD(p, value) do { \
292 address_space_stl_notdirty(as, p, value, \
293 MEMTXATTRS_UNSPECIFIED, NULL); \
294 p += 4; \
295 } while (0)
296
297 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
298 {
299 int initrd_size = info->initrd_size;
300 hwaddr base = info->loader_start;
301 hwaddr p;
302
303 p = base + KERNEL_ARGS_ADDR;
304 /* ATAG_CORE */
305 WRITE_WORD(p, 5);
306 WRITE_WORD(p, 0x54410001);
307 WRITE_WORD(p, 1);
308 WRITE_WORD(p, 0x1000);
309 WRITE_WORD(p, 0);
310 /* ATAG_MEM */
311 /* TODO: handle multiple chips on one ATAG list */
312 WRITE_WORD(p, 4);
313 WRITE_WORD(p, 0x54410002);
314 WRITE_WORD(p, info->ram_size);
315 WRITE_WORD(p, info->loader_start);
316 if (initrd_size) {
317 /* ATAG_INITRD2 */
318 WRITE_WORD(p, 4);
319 WRITE_WORD(p, 0x54420005);
320 WRITE_WORD(p, info->initrd_start);
321 WRITE_WORD(p, initrd_size);
322 }
323 if (info->kernel_cmdline && *info->kernel_cmdline) {
324 /* ATAG_CMDLINE */
325 int cmdline_size;
326
327 cmdline_size = strlen(info->kernel_cmdline);
328 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
329 info->kernel_cmdline, cmdline_size + 1);
330 cmdline_size = (cmdline_size >> 2) + 1;
331 WRITE_WORD(p, cmdline_size + 2);
332 WRITE_WORD(p, 0x54410009);
333 p += cmdline_size * 4;
334 }
335 if (info->atag_board) {
336 /* ATAG_BOARD */
337 int atag_board_len;
338 uint8_t atag_board_buf[0x1000];
339
340 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
341 WRITE_WORD(p, (atag_board_len + 8) >> 2);
342 WRITE_WORD(p, 0x414f4d50);
343 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
344 atag_board_buf, atag_board_len);
345 p += atag_board_len;
346 }
347 /* ATAG_END */
348 WRITE_WORD(p, 0);
349 WRITE_WORD(p, 0);
350 }
351
352 static void set_kernel_args_old(const struct arm_boot_info *info,
353 AddressSpace *as)
354 {
355 hwaddr p;
356 const char *s;
357 int initrd_size = info->initrd_size;
358 hwaddr base = info->loader_start;
359
360 /* see linux/include/asm-arm/setup.h */
361 p = base + KERNEL_ARGS_ADDR;
362 /* page_size */
363 WRITE_WORD(p, 4096);
364 /* nr_pages */
365 WRITE_WORD(p, info->ram_size / 4096);
366 /* ramdisk_size */
367 WRITE_WORD(p, 0);
368 #define FLAG_READONLY 1
369 #define FLAG_RDLOAD 4
370 #define FLAG_RDPROMPT 8
371 /* flags */
372 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
373 /* rootdev */
374 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
375 /* video_num_cols */
376 WRITE_WORD(p, 0);
377 /* video_num_rows */
378 WRITE_WORD(p, 0);
379 /* video_x */
380 WRITE_WORD(p, 0);
381 /* video_y */
382 WRITE_WORD(p, 0);
383 /* memc_control_reg */
384 WRITE_WORD(p, 0);
385 /* unsigned char sounddefault */
386 /* unsigned char adfsdrives */
387 /* unsigned char bytes_per_char_h */
388 /* unsigned char bytes_per_char_v */
389 WRITE_WORD(p, 0);
390 /* pages_in_bank[4] */
391 WRITE_WORD(p, 0);
392 WRITE_WORD(p, 0);
393 WRITE_WORD(p, 0);
394 WRITE_WORD(p, 0);
395 /* pages_in_vram */
396 WRITE_WORD(p, 0);
397 /* initrd_start */
398 if (initrd_size) {
399 WRITE_WORD(p, info->initrd_start);
400 } else {
401 WRITE_WORD(p, 0);
402 }
403 /* initrd_size */
404 WRITE_WORD(p, initrd_size);
405 /* rd_start */
406 WRITE_WORD(p, 0);
407 /* system_rev */
408 WRITE_WORD(p, 0);
409 /* system_serial_low */
410 WRITE_WORD(p, 0);
411 /* system_serial_high */
412 WRITE_WORD(p, 0);
413 /* mem_fclk_21285 */
414 WRITE_WORD(p, 0);
415 /* zero unused fields */
416 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
417 WRITE_WORD(p, 0);
418 }
419 s = info->kernel_cmdline;
420 if (s) {
421 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
422 } else {
423 WRITE_WORD(p, 0);
424 }
425 }
426
427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428 uint32_t scells, hwaddr mem_len,
429 int numa_node_id)
430 {
431 char *nodename;
432 int ret;
433
434 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435 qemu_fdt_add_subnode(fdt, nodename);
436 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438 scells, mem_len);
439 if (ret < 0) {
440 goto out;
441 }
442
443 /* only set the NUMA ID if it is specified */
444 if (numa_node_id >= 0) {
445 ret = qemu_fdt_setprop_cell(fdt, nodename,
446 "numa-node-id", numa_node_id);
447 }
448 out:
449 g_free(nodename);
450 return ret;
451 }
452
453 static void fdt_add_psci_node(void *fdt)
454 {
455 uint32_t cpu_suspend_fn;
456 uint32_t cpu_off_fn;
457 uint32_t cpu_on_fn;
458 uint32_t migrate_fn;
459 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460 const char *psci_method;
461 int64_t psci_conduit;
462 int rc;
463
464 psci_conduit = object_property_get_int(OBJECT(armcpu),
465 "psci-conduit",
466 &error_abort);
467 switch (psci_conduit) {
468 case QEMU_PSCI_CONDUIT_DISABLED:
469 return;
470 case QEMU_PSCI_CONDUIT_HVC:
471 psci_method = "hvc";
472 break;
473 case QEMU_PSCI_CONDUIT_SMC:
474 psci_method = "smc";
475 break;
476 default:
477 g_assert_not_reached();
478 }
479
480 /*
481 * A pre-existing /psci node might specify function ID values
482 * that don't match QEMU's PSCI implementation. Delete the whole
483 * node and put our own in instead.
484 */
485 rc = fdt_path_offset(fdt, "/psci");
486 if (rc >= 0) {
487 qemu_fdt_nop_node(fdt, "/psci");
488 }
489
490 qemu_fdt_add_subnode(fdt, "/psci");
491 if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
492 if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
493 const char comp[] = "arm,psci-0.2\0arm,psci";
494 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
495 } else {
496 const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
497 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
498 }
499
500 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
501 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
502 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
503 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
504 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
505 } else {
506 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
507 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
508 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
509 }
510 } else {
511 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
512
513 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
514 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
515 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
516 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
517 }
518
519 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
520 * to the instruction that should be used to invoke PSCI functions.
521 * However, the device tree binding uses 'method' instead, so that is
522 * what we should use here.
523 */
524 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
525
526 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
527 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
528 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
529 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
530 }
531
532 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
533 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
534 {
535 void *fdt = NULL;
536 int size, rc, n = 0;
537 uint32_t acells, scells;
538 unsigned int i;
539 hwaddr mem_base, mem_len;
540 char **node_path;
541 Error *err = NULL;
542
543 if (binfo->dtb_filename) {
544 char *filename;
545 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
546 if (!filename) {
547 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
548 goto fail;
549 }
550
551 fdt = load_device_tree(filename, &size);
552 if (!fdt) {
553 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
554 g_free(filename);
555 goto fail;
556 }
557 g_free(filename);
558 } else {
559 fdt = binfo->get_dtb(binfo, &size);
560 if (!fdt) {
561 fprintf(stderr, "Board was unable to create a dtb blob\n");
562 goto fail;
563 }
564 }
565
566 if (addr_limit > addr && size > (addr_limit - addr)) {
567 /* Installing the device tree blob at addr would exceed addr_limit.
568 * Whether this constitutes failure is up to the caller to decide,
569 * so just return 0 as size, i.e., no error.
570 */
571 g_free(fdt);
572 return 0;
573 }
574
575 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
576 NULL, &error_fatal);
577 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
578 NULL, &error_fatal);
579 if (acells == 0 || scells == 0) {
580 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
581 goto fail;
582 }
583
584 if (scells < 2 && binfo->ram_size >= 4 * GiB) {
585 /* This is user error so deserves a friendlier error message
586 * than the failure of setprop_sized_cells would provide
587 */
588 fprintf(stderr, "qemu: dtb file not compatible with "
589 "RAM size > 4GB\n");
590 goto fail;
591 }
592
593 /* nop all root nodes matching /memory or /memory@unit-address */
594 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
595 if (err) {
596 error_report_err(err);
597 goto fail;
598 }
599 while (node_path[n]) {
600 if (g_str_has_prefix(node_path[n], "/memory")) {
601 qemu_fdt_nop_node(fdt, node_path[n]);
602 }
603 n++;
604 }
605 g_strfreev(node_path);
606
607 /*
608 * We drop all the memory nodes which correspond to empty NUMA nodes
609 * from the device tree, because the Linux NUMA binding document
610 * states they should not be generated. Linux will get the NUMA node
611 * IDs of the empty NUMA nodes from the distance map if they are needed.
612 * This means QEMU users may be obliged to provide command lines which
613 * configure distance maps when the empty NUMA node IDs are needed and
614 * Linux's default distance map isn't sufficient.
615 */
616 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
617 mem_base = binfo->loader_start;
618 for (i = 0; i < ms->numa_state->num_nodes; i++) {
619 mem_len = ms->numa_state->nodes[i].node_mem;
620 if (!mem_len) {
621 continue;
622 }
623
624 rc = fdt_add_memory_node(fdt, acells, mem_base,
625 scells, mem_len, i);
626 if (rc < 0) {
627 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
628 mem_base);
629 goto fail;
630 }
631
632 mem_base += mem_len;
633 }
634 } else {
635 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
636 scells, binfo->ram_size, -1);
637 if (rc < 0) {
638 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
639 binfo->loader_start);
640 goto fail;
641 }
642 }
643
644 rc = fdt_path_offset(fdt, "/chosen");
645 if (rc < 0) {
646 qemu_fdt_add_subnode(fdt, "/chosen");
647 }
648
649 if (ms->kernel_cmdline && *ms->kernel_cmdline) {
650 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
651 ms->kernel_cmdline);
652 if (rc < 0) {
653 fprintf(stderr, "couldn't set /chosen/bootargs\n");
654 goto fail;
655 }
656 }
657
658 if (binfo->initrd_size) {
659 rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
660 acells, binfo->initrd_start);
661 if (rc < 0) {
662 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
663 goto fail;
664 }
665
666 rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
667 acells,
668 binfo->initrd_start +
669 binfo->initrd_size);
670 if (rc < 0) {
671 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
672 goto fail;
673 }
674 }
675
676 fdt_add_psci_node(fdt);
677
678 if (binfo->modify_dtb) {
679 binfo->modify_dtb(binfo, fdt);
680 }
681
682 qemu_fdt_dumpdtb(fdt, size);
683
684 /* Put the DTB into the memory map as a ROM image: this will ensure
685 * the DTB is copied again upon reset, even if addr points into RAM.
686 */
687 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
688 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
689 rom_ptr_for_as(as, addr, size));
690
691 g_free(fdt);
692
693 return size;
694
695 fail:
696 g_free(fdt);
697 return -1;
698 }
699
700 static void do_cpu_reset(void *opaque)
701 {
702 ARMCPU *cpu = opaque;
703 CPUState *cs = CPU(cpu);
704 CPUARMState *env = &cpu->env;
705 const struct arm_boot_info *info = env->boot_info;
706
707 cpu_reset(cs);
708 if (info) {
709 if (!info->is_linux) {
710 int i;
711 /* Jump to the entry point. */
712 uint64_t entry = info->entry;
713
714 switch (info->endianness) {
715 case ARM_ENDIANNESS_LE:
716 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
717 for (i = 1; i < 4; ++i) {
718 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
719 }
720 env->uncached_cpsr &= ~CPSR_E;
721 break;
722 case ARM_ENDIANNESS_BE8:
723 env->cp15.sctlr_el[1] |= SCTLR_E0E;
724 for (i = 1; i < 4; ++i) {
725 env->cp15.sctlr_el[i] |= SCTLR_EE;
726 }
727 env->uncached_cpsr |= CPSR_E;
728 break;
729 case ARM_ENDIANNESS_BE32:
730 env->cp15.sctlr_el[1] |= SCTLR_B;
731 break;
732 case ARM_ENDIANNESS_UNKNOWN:
733 break; /* Board's decision */
734 default:
735 g_assert_not_reached();
736 }
737
738 cpu_set_pc(cs, entry);
739 } else {
740 /* If we are booting Linux then we need to check whether we are
741 * booting into secure or non-secure state and adjust the state
742 * accordingly. Out of reset, ARM is defined to be in secure state
743 * (SCR.NS = 0), we change that here if non-secure boot has been
744 * requested.
745 */
746 if (arm_feature(env, ARM_FEATURE_EL3)) {
747 /* AArch64 is defined to come out of reset into EL3 if enabled.
748 * If we are booting Linux then we need to adjust our EL as
749 * Linux expects us to be in EL2 or EL1. AArch32 resets into
750 * SVC, which Linux expects, so no privilege/exception level to
751 * adjust.
752 */
753 if (env->aarch64) {
754 env->cp15.scr_el3 |= SCR_RW;
755 if (arm_feature(env, ARM_FEATURE_EL2)) {
756 env->cp15.hcr_el2 |= HCR_RW;
757 env->pstate = PSTATE_MODE_EL2h;
758 } else {
759 env->pstate = PSTATE_MODE_EL1h;
760 }
761 if (cpu_isar_feature(aa64_pauth, cpu)) {
762 env->cp15.scr_el3 |= SCR_API | SCR_APK;
763 }
764 if (cpu_isar_feature(aa64_mte, cpu)) {
765 env->cp15.scr_el3 |= SCR_ATA;
766 }
767 if (cpu_isar_feature(aa64_sve, cpu)) {
768 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
769 env->vfp.zcr_el[3] = 0xf;
770 }
771 if (cpu_isar_feature(aa64_sme, cpu)) {
772 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
773 env->cp15.scr_el3 |= SCR_ENTP2;
774 env->vfp.smcr_el[3] = 0xf;
775 }
776 if (cpu_isar_feature(aa64_hcx, cpu)) {
777 env->cp15.scr_el3 |= SCR_HXEN;
778 }
779 /* AArch64 kernels never boot in secure mode */
780 assert(!info->secure_boot);
781 /* This hook is only supported for AArch32 currently:
782 * bootloader_aarch64[] will not call the hook, and
783 * the code above has already dropped us into EL2 or EL1.
784 */
785 assert(!info->secure_board_setup);
786 }
787
788 if (arm_feature(env, ARM_FEATURE_EL2)) {
789 /* If we have EL2 then Linux expects the HVC insn to work */
790 env->cp15.scr_el3 |= SCR_HCE;
791 }
792
793 /* Set to non-secure if not a secure boot */
794 if (!info->secure_boot &&
795 (cs != first_cpu || !info->secure_board_setup)) {
796 /* Linux expects non-secure state */
797 env->cp15.scr_el3 |= SCR_NS;
798 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
799 env->cp15.nsacr |= 3 << 10;
800 }
801 }
802
803 if (!env->aarch64 && !info->secure_boot &&
804 arm_feature(env, ARM_FEATURE_EL2)) {
805 /*
806 * This is an AArch32 boot not to Secure state, and
807 * we have Hyp mode available, so boot the kernel into
808 * Hyp mode. This is not how the CPU comes out of reset,
809 * so we need to manually put it there.
810 */
811 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
812 }
813
814 if (cs == first_cpu) {
815 AddressSpace *as = arm_boot_address_space(cpu, info);
816
817 cpu_set_pc(cs, info->loader_start);
818
819 if (!have_dtb(info)) {
820 if (old_param) {
821 set_kernel_args_old(info, as);
822 } else {
823 set_kernel_args(info, as);
824 }
825 }
826 } else if (info->secondary_cpu_reset_hook) {
827 info->secondary_cpu_reset_hook(cpu, info);
828 }
829 }
830 arm_rebuild_hflags(env);
831 }
832 }
833
834 static int do_arm_linux_init(Object *obj, void *opaque)
835 {
836 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
837 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
838 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
839 struct arm_boot_info *info = opaque;
840
841 if (albifc->arm_linux_init) {
842 albifc->arm_linux_init(albif, info->secure_boot);
843 }
844 }
845 return 0;
846 }
847
848 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
849 uint64_t *lowaddr, uint64_t *highaddr,
850 int elf_machine, AddressSpace *as)
851 {
852 bool elf_is64;
853 union {
854 Elf32_Ehdr h32;
855 Elf64_Ehdr h64;
856 } elf_header;
857 int data_swab = 0;
858 bool big_endian;
859 ssize_t ret = -1;
860 Error *err = NULL;
861
862
863 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
864 if (err) {
865 error_free(err);
866 return ret;
867 }
868
869 if (elf_is64) {
870 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
871 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
872 : ARM_ENDIANNESS_LE;
873 } else {
874 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
875 if (big_endian) {
876 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
877 info->endianness = ARM_ENDIANNESS_BE8;
878 } else {
879 info->endianness = ARM_ENDIANNESS_BE32;
880 /* In BE32, the CPU has a different view of the per-byte
881 * address map than the rest of the system. BE32 ELF files
882 * are organised such that they can be programmed through
883 * the CPU's per-word byte-reversed view of the world. QEMU
884 * however loads ELF files independently of the CPU. So
885 * tell the ELF loader to byte reverse the data for us.
886 */
887 data_swab = 2;
888 }
889 } else {
890 info->endianness = ARM_ENDIANNESS_LE;
891 }
892 }
893
894 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
895 pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
896 1, data_swab, as);
897 if (ret <= 0) {
898 /* The header loaded but the image didn't */
899 exit(1);
900 }
901
902 return ret;
903 }
904
905 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
906 hwaddr *entry, AddressSpace *as)
907 {
908 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
909 uint64_t kernel_size = 0;
910 uint8_t *buffer;
911 int size;
912
913 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
914 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
915 &buffer);
916
917 if (size < 0) {
918 gsize len;
919
920 /* Load as raw file otherwise */
921 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
922 return -1;
923 }
924 size = len;
925 }
926
927 /* check the arm64 magic header value -- very old kernels may not have it */
928 if (size > ARM64_MAGIC_OFFSET + 4 &&
929 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
930 uint64_t hdrvals[2];
931
932 /* The arm64 Image header has text_offset and image_size fields at 8 and
933 * 16 bytes into the Image header, respectively. The text_offset field
934 * is only valid if the image_size is non-zero.
935 */
936 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
937
938 kernel_size = le64_to_cpu(hdrvals[1]);
939
940 if (kernel_size != 0) {
941 kernel_load_offset = le64_to_cpu(hdrvals[0]);
942
943 /*
944 * We write our startup "bootloader" at the very bottom of RAM,
945 * so that bit can't be used for the image. Luckily the Image
946 * format specification is that the image requests only an offset
947 * from a 2MB boundary, not an absolute load address. So if the
948 * image requests an offset that might mean it overlaps with the
949 * bootloader, we can just load it starting at 2MB+offset rather
950 * than 0MB + offset.
951 */
952 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
953 kernel_load_offset += 2 * MiB;
954 }
955 }
956 }
957
958 /*
959 * Kernels before v3.17 don't populate the image_size field, and
960 * raw images have no header. For those our best guess at the size
961 * is the size of the Image file itself.
962 */
963 if (kernel_size == 0) {
964 kernel_size = size;
965 }
966
967 *entry = mem_base + kernel_load_offset;
968 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
969
970 g_free(buffer);
971
972 return kernel_size;
973 }
974
975 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
976 struct arm_boot_info *info)
977 {
978 /* Set up for a direct boot of a kernel image file. */
979 CPUState *cs;
980 AddressSpace *as = arm_boot_address_space(cpu, info);
981 ssize_t kernel_size;
982 int initrd_size;
983 int is_linux = 0;
984 uint64_t elf_entry;
985 /* Addresses of first byte used and first byte not used by the image */
986 uint64_t image_low_addr = 0, image_high_addr = 0;
987 int elf_machine;
988 hwaddr entry;
989 static const ARMInsnFixup *primary_loader;
990 uint64_t ram_end = info->loader_start + info->ram_size;
991
992 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
993 primary_loader = bootloader_aarch64;
994 elf_machine = EM_AARCH64;
995 } else {
996 primary_loader = bootloader;
997 if (!info->write_board_setup) {
998 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
999 }
1000 elf_machine = EM_ARM;
1001 }
1002
1003 /* Assume that raw images are linux kernels, and ELF images are not. */
1004 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1005 &image_high_addr, elf_machine, as);
1006 if (kernel_size > 0 && have_dtb(info)) {
1007 /*
1008 * If there is still some room left at the base of RAM, try and put
1009 * the DTB there like we do for images loaded with -bios or -pflash.
1010 */
1011 if (image_low_addr > info->loader_start
1012 || image_high_addr < info->loader_start) {
1013 /*
1014 * Set image_low_addr as address limit for arm_load_dtb if it may be
1015 * pointing into RAM, otherwise pass '0' (no limit)
1016 */
1017 if (image_low_addr < info->loader_start) {
1018 image_low_addr = 0;
1019 }
1020 info->dtb_start = info->loader_start;
1021 info->dtb_limit = image_low_addr;
1022 }
1023 }
1024 entry = elf_entry;
1025 if (kernel_size < 0) {
1026 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1027 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1028 &is_linux, NULL, NULL, as);
1029 if (kernel_size >= 0) {
1030 image_low_addr = loadaddr;
1031 image_high_addr = image_low_addr + kernel_size;
1032 }
1033 }
1034 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1035 kernel_size = load_aarch64_image(info->kernel_filename,
1036 info->loader_start, &entry, as);
1037 is_linux = 1;
1038 if (kernel_size >= 0) {
1039 image_low_addr = entry;
1040 image_high_addr = image_low_addr + kernel_size;
1041 }
1042 } else if (kernel_size < 0) {
1043 /* 32-bit ARM */
1044 entry = info->loader_start + KERNEL_LOAD_ADDR;
1045 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1046 ram_end - KERNEL_LOAD_ADDR, as);
1047 is_linux = 1;
1048 if (kernel_size >= 0) {
1049 image_low_addr = entry;
1050 image_high_addr = image_low_addr + kernel_size;
1051 }
1052 }
1053 if (kernel_size < 0) {
1054 error_report("could not load kernel '%s'", info->kernel_filename);
1055 exit(1);
1056 }
1057
1058 if (kernel_size > info->ram_size) {
1059 error_report("kernel '%s' is too large to fit in RAM "
1060 "(kernel size %zd, RAM size %" PRId64 ")",
1061 info->kernel_filename, kernel_size, info->ram_size);
1062 exit(1);
1063 }
1064
1065 info->entry = entry;
1066
1067 /*
1068 * We want to put the initrd far enough into RAM that when the
1069 * kernel is uncompressed it will not clobber the initrd. However
1070 * on boards without much RAM we must ensure that we still leave
1071 * enough room for a decent sized initrd, and on boards with large
1072 * amounts of RAM we must avoid the initrd being so far up in RAM
1073 * that it is outside lowmem and inaccessible to the kernel.
1074 * So for boards with less than 256MB of RAM we put the initrd
1075 * halfway into RAM, and for boards with 256MB of RAM or more we put
1076 * the initrd at 128MB.
1077 * We also refuse to put the initrd somewhere that will definitely
1078 * overlay the kernel we just loaded, though for kernel formats which
1079 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1080 * we might still make a bad choice here.
1081 */
1082 info->initrd_start = info->loader_start +
1083 MIN(info->ram_size / 2, 128 * MiB);
1084 if (image_high_addr) {
1085 info->initrd_start = MAX(info->initrd_start, image_high_addr);
1086 }
1087 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1088
1089 if (is_linux) {
1090 uint32_t fixupcontext[FIXUP_MAX];
1091
1092 if (info->initrd_filename) {
1093
1094 if (info->initrd_start >= ram_end) {
1095 error_report("not enough space after kernel to load initrd");
1096 exit(1);
1097 }
1098
1099 initrd_size = load_ramdisk_as(info->initrd_filename,
1100 info->initrd_start,
1101 ram_end - info->initrd_start, as);
1102 if (initrd_size < 0) {
1103 initrd_size = load_image_targphys_as(info->initrd_filename,
1104 info->initrd_start,
1105 ram_end -
1106 info->initrd_start,
1107 as);
1108 }
1109 if (initrd_size < 0) {
1110 error_report("could not load initrd '%s'",
1111 info->initrd_filename);
1112 exit(1);
1113 }
1114 if (info->initrd_start + initrd_size > ram_end) {
1115 error_report("could not load initrd '%s': "
1116 "too big to fit into RAM after the kernel",
1117 info->initrd_filename);
1118 exit(1);
1119 }
1120 } else {
1121 initrd_size = 0;
1122 }
1123 info->initrd_size = initrd_size;
1124
1125 fixupcontext[FIXUP_BOARDID] = info->board_id;
1126 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1127
1128 /*
1129 * for device tree boot, we pass the DTB directly in r2. Otherwise
1130 * we point to the kernel args.
1131 */
1132 if (have_dtb(info)) {
1133 hwaddr align;
1134
1135 if (elf_machine == EM_AARCH64) {
1136 /*
1137 * Some AArch64 kernels on early bootup map the fdt region as
1138 *
1139 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1140 *
1141 * Let's play safe and prealign it to 2MB to give us some space.
1142 */
1143 align = 2 * MiB;
1144 } else {
1145 /*
1146 * Some 32bit kernels will trash anything in the 4K page the
1147 * initrd ends in, so make sure the DTB isn't caught up in that.
1148 */
1149 align = 4 * KiB;
1150 }
1151
1152 /* Place the DTB after the initrd in memory with alignment. */
1153 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1154 align);
1155 if (info->dtb_start >= ram_end) {
1156 error_report("Not enough space for DTB after kernel/initrd");
1157 exit(1);
1158 }
1159 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1160 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1161 } else {
1162 fixupcontext[FIXUP_ARGPTR_LO] =
1163 info->loader_start + KERNEL_ARGS_ADDR;
1164 fixupcontext[FIXUP_ARGPTR_HI] =
1165 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1166 if (info->ram_size >= 4 * GiB) {
1167 error_report("RAM size must be less than 4GB to boot"
1168 " Linux kernel using ATAGS (try passing a device tree"
1169 " using -dtb)");
1170 exit(1);
1171 }
1172 }
1173 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1174 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1175
1176 write_bootloader("bootloader", info->loader_start,
1177 primary_loader, fixupcontext, as);
1178
1179 if (info->write_board_setup) {
1180 info->write_board_setup(cpu, info);
1181 }
1182
1183 /*
1184 * Notify devices which need to fake up firmware initialization
1185 * that we're doing a direct kernel boot.
1186 */
1187 object_child_foreach_recursive(object_get_root(),
1188 do_arm_linux_init, info);
1189 }
1190 info->is_linux = is_linux;
1191
1192 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1193 ARM_CPU(cs)->env.boot_info = info;
1194 }
1195 }
1196
1197 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1198 {
1199 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1200
1201 if (have_dtb(info)) {
1202 /*
1203 * If we have a device tree blob, but no kernel to supply it to (or
1204 * the kernel is supposed to be loaded by the bootloader), copy the
1205 * DTB to the base of RAM for the bootloader to pick up.
1206 */
1207 info->dtb_start = info->loader_start;
1208 }
1209
1210 if (info->kernel_filename) {
1211 FWCfgState *fw_cfg;
1212 bool try_decompressing_kernel;
1213
1214 fw_cfg = fw_cfg_find();
1215
1216 if (!fw_cfg) {
1217 error_report("This machine type does not support loading both "
1218 "a guest firmware/BIOS image and a guest kernel at "
1219 "the same time. You should change your QEMU command "
1220 "line to specify one or the other, but not both.");
1221 exit(1);
1222 }
1223
1224 try_decompressing_kernel = arm_feature(&cpu->env,
1225 ARM_FEATURE_AARCH64);
1226
1227 /*
1228 * Expose the kernel, the command line, and the initrd in fw_cfg.
1229 * We don't process them here at all, it's all left to the
1230 * firmware.
1231 */
1232 load_image_to_fw_cfg(fw_cfg,
1233 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1234 info->kernel_filename,
1235 try_decompressing_kernel);
1236 load_image_to_fw_cfg(fw_cfg,
1237 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1238 info->initrd_filename, false);
1239
1240 if (info->kernel_cmdline) {
1241 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1242 strlen(info->kernel_cmdline) + 1);
1243 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1244 info->kernel_cmdline);
1245 }
1246 }
1247
1248 /*
1249 * We will start from address 0 (typically a boot ROM image) in the
1250 * same way as hardware. Leave env->boot_info NULL, so that
1251 * do_cpu_reset() knows it does not need to alter the PC on reset.
1252 */
1253 }
1254
1255 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1256 {
1257 CPUState *cs;
1258 AddressSpace *as = arm_boot_address_space(cpu, info);
1259 int boot_el;
1260 CPUARMState *env = &cpu->env;
1261 int nb_cpus = 0;
1262
1263 /*
1264 * CPU objects (unlike devices) are not automatically reset on system
1265 * reset, so we must always register a handler to do so. If we're
1266 * actually loading a kernel, the handler is also responsible for
1267 * arranging that we start it correctly.
1268 */
1269 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1270 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1271 nb_cpus++;
1272 }
1273
1274 /*
1275 * The board code is not supposed to set secure_board_setup unless
1276 * running its code in secure mode is actually possible, and KVM
1277 * doesn't support secure.
1278 */
1279 assert(!(info->secure_board_setup && kvm_enabled()));
1280 info->kernel_filename = ms->kernel_filename;
1281 info->kernel_cmdline = ms->kernel_cmdline;
1282 info->initrd_filename = ms->initrd_filename;
1283 info->dtb_filename = ms->dtb;
1284 info->dtb_limit = 0;
1285
1286 /* Load the kernel. */
1287 if (!info->kernel_filename || info->firmware_loaded) {
1288 arm_setup_firmware_boot(cpu, info);
1289 } else {
1290 arm_setup_direct_kernel_boot(cpu, info);
1291 }
1292
1293 /*
1294 * Disable the PSCI conduit if it is set up to target the same
1295 * or a lower EL than the one we're going to start the guest code in.
1296 * This logic needs to agree with the code in do_cpu_reset() which
1297 * decides whether we're going to boot the guest in the highest
1298 * supported exception level or in a lower one.
1299 */
1300
1301 /*
1302 * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1303 * are never emulated to trap into guest code. It therefore does not
1304 * make sense for the board to have a setup code fragment that runs
1305 * in Secure, because this will probably need to itself issue an SMC of some
1306 * kind as part of its operation.
1307 */
1308 assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1309 !info->secure_board_setup);
1310
1311 /* Boot into highest supported EL ... */
1312 if (arm_feature(env, ARM_FEATURE_EL3)) {
1313 boot_el = 3;
1314 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1315 boot_el = 2;
1316 } else {
1317 boot_el = 1;
1318 }
1319 /* ...except that if we're booting Linux we adjust the EL we boot into */
1320 if (info->is_linux && !info->secure_boot) {
1321 boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1322 }
1323
1324 if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1325 (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1326 info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1327 }
1328
1329 if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1330 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1331 Object *cpuobj = OBJECT(cs);
1332
1333 object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1334 &error_abort);
1335 /*
1336 * Secondary CPUs start in PSCI powered-down state. Like the
1337 * code in do_cpu_reset(), we assume first_cpu is the primary
1338 * CPU.
1339 */
1340 if (cs != first_cpu) {
1341 object_property_set_bool(cpuobj, "start-powered-off", true,
1342 &error_abort);
1343 }
1344 }
1345 }
1346
1347 if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1348 info->is_linux && nb_cpus > 1) {
1349 /*
1350 * We're booting Linux but not using PSCI, so for SMP we need
1351 * to write a custom secondary CPU boot loader stub, and arrange
1352 * for the secondary CPU reset to make the accompanying initialization.
1353 */
1354 if (!info->secondary_cpu_reset_hook) {
1355 info->secondary_cpu_reset_hook = default_reset_secondary;
1356 }
1357 if (!info->write_secondary_boot) {
1358 info->write_secondary_boot = default_write_secondary;
1359 }
1360 info->write_secondary_boot(cpu, info);
1361 } else {
1362 /*
1363 * No secondary boot stub; don't use the reset hook that would
1364 * have set the CPU up to call it
1365 */
1366 info->write_secondary_boot = NULL;
1367 info->secondary_cpu_reset_hook = NULL;
1368 }
1369
1370 /*
1371 * arm_load_dtb() may add a PSCI node so it must be called after we have
1372 * decided whether to enable PSCI and set the psci-conduit CPU properties.
1373 */
1374 if (!info->skip_dtb_autoload && have_dtb(info)) {
1375 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1376 exit(1);
1377 }
1378 }
1379 }
1380
1381 static const TypeInfo arm_linux_boot_if_info = {
1382 .name = TYPE_ARM_LINUX_BOOT_IF,
1383 .parent = TYPE_INTERFACE,
1384 .class_size = sizeof(ARMLinuxBootIfClass),
1385 };
1386
1387 static void arm_linux_boot_register_types(void)
1388 {
1389 type_register_static(&arm_linux_boot_if_info);
1390 }
1391
1392 type_init(arm_linux_boot_register_types)