]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/boot.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20180510' into...
[mirror_qemu.git] / hw / arm / boot.c
1 /*
2 * ARM kernel loader.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27
28 /* Kernel boot protocol is specified in the kernel docs
29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
30 * They have different preferred image load offsets from system RAM base.
31 */
32 #define KERNEL_ARGS_ADDR 0x100
33 #define KERNEL_LOAD_ADDR 0x00010000
34 #define KERNEL64_LOAD_ADDR 0x00080000
35
36 #define ARM64_TEXT_OFFSET_OFFSET 8
37 #define ARM64_MAGIC_OFFSET 56
38
39 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
40 const struct arm_boot_info *info)
41 {
42 /* Return the address space to use for bootloader reads and writes.
43 * We prefer the secure address space if the CPU has it and we're
44 * going to boot the guest into it.
45 */
46 int asidx;
47 CPUState *cs = CPU(cpu);
48
49 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
50 asidx = ARMASIdx_S;
51 } else {
52 asidx = ARMASIdx_NS;
53 }
54
55 return cpu_get_address_space(cs, asidx);
56 }
57
58 typedef enum {
59 FIXUP_NONE = 0, /* do nothing */
60 FIXUP_TERMINATOR, /* end of insns */
61 FIXUP_BOARDID, /* overwrite with board ID number */
62 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
63 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
64 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
65 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
66 FIXUP_BOOTREG, /* overwrite with boot register address */
67 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
68 FIXUP_MAX,
69 } FixupType;
70
71 typedef struct ARMInsnFixup {
72 uint32_t insn;
73 FixupType fixup;
74 } ARMInsnFixup;
75
76 static const ARMInsnFixup bootloader_aarch64[] = {
77 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
78 { 0xaa1f03e1 }, /* mov x1, xzr */
79 { 0xaa1f03e2 }, /* mov x2, xzr */
80 { 0xaa1f03e3 }, /* mov x3, xzr */
81 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
82 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
83 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
84 { 0 }, /* .word @DTB Higher 32-bits */
85 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
86 { 0 }, /* .word @Kernel Entry Higher 32-bits */
87 { 0, FIXUP_TERMINATOR }
88 };
89
90 /* A very small bootloader: call the board-setup code (if needed),
91 * set r0-r2, then jump to the kernel.
92 * If we're not calling boot setup code then we don't copy across
93 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
94 */
95
96 static const ARMInsnFixup bootloader[] = {
97 { 0xe28fe004 }, /* add lr, pc, #4 */
98 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
99 { 0, FIXUP_BOARD_SETUP },
100 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
101 { 0xe3a00000 }, /* mov r0, #0 */
102 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
103 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
104 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
105 { 0, FIXUP_BOARDID },
106 { 0, FIXUP_ARGPTR },
107 { 0, FIXUP_ENTRYPOINT },
108 { 0, FIXUP_TERMINATOR }
109 };
110
111 /* Handling for secondary CPU boot in a multicore system.
112 * Unlike the uniprocessor/primary CPU boot, this is platform
113 * dependent. The default code here is based on the secondary
114 * CPU boot protocol used on realview/vexpress boards, with
115 * some parameterisation to increase its flexibility.
116 * QEMU platform models for which this code is not appropriate
117 * should override write_secondary_boot and secondary_cpu_reset_hook
118 * instead.
119 *
120 * This code enables the interrupt controllers for the secondary
121 * CPUs and then puts all the secondary CPUs into a loop waiting
122 * for an interprocessor interrupt and polling a configurable
123 * location for the kernel secondary CPU entry point.
124 */
125 #define DSB_INSN 0xf57ff04f
126 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
127
128 static const ARMInsnFixup smpboot[] = {
129 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
130 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
131 { 0xe3a01001 }, /* mov r1, #1 */
132 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
133 { 0xe3a010ff }, /* mov r1, #0xff */
134 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
135 { 0, FIXUP_DSB }, /* dsb */
136 { 0xe320f003 }, /* wfi */
137 { 0xe5901000 }, /* ldr r1, [r0] */
138 { 0xe1110001 }, /* tst r1, r1 */
139 { 0x0afffffb }, /* beq <wfi> */
140 { 0xe12fff11 }, /* bx r1 */
141 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
142 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
143 { 0, FIXUP_TERMINATOR }
144 };
145
146 static void write_bootloader(const char *name, hwaddr addr,
147 const ARMInsnFixup *insns, uint32_t *fixupcontext,
148 AddressSpace *as)
149 {
150 /* Fix up the specified bootloader fragment and write it into
151 * guest memory using rom_add_blob_fixed(). fixupcontext is
152 * an array giving the values to write in for the fixup types
153 * which write a value into the code array.
154 */
155 int i, len;
156 uint32_t *code;
157
158 len = 0;
159 while (insns[len].fixup != FIXUP_TERMINATOR) {
160 len++;
161 }
162
163 code = g_new0(uint32_t, len);
164
165 for (i = 0; i < len; i++) {
166 uint32_t insn = insns[i].insn;
167 FixupType fixup = insns[i].fixup;
168
169 switch (fixup) {
170 case FIXUP_NONE:
171 break;
172 case FIXUP_BOARDID:
173 case FIXUP_BOARD_SETUP:
174 case FIXUP_ARGPTR:
175 case FIXUP_ENTRYPOINT:
176 case FIXUP_GIC_CPU_IF:
177 case FIXUP_BOOTREG:
178 case FIXUP_DSB:
179 insn = fixupcontext[fixup];
180 break;
181 default:
182 abort();
183 }
184 code[i] = tswap32(insn);
185 }
186
187 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
188
189 g_free(code);
190 }
191
192 static void default_write_secondary(ARMCPU *cpu,
193 const struct arm_boot_info *info)
194 {
195 uint32_t fixupcontext[FIXUP_MAX];
196 AddressSpace *as = arm_boot_address_space(cpu, info);
197
198 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
199 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
200 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
201 fixupcontext[FIXUP_DSB] = DSB_INSN;
202 } else {
203 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
204 }
205
206 write_bootloader("smpboot", info->smp_loader_start,
207 smpboot, fixupcontext, as);
208 }
209
210 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
211 const struct arm_boot_info *info,
212 hwaddr mvbar_addr)
213 {
214 AddressSpace *as = arm_boot_address_space(cpu, info);
215 int n;
216 uint32_t mvbar_blob[] = {
217 /* mvbar_addr: secure monitor vectors
218 * Default unimplemented and unused vectors to spin. Makes it
219 * easier to debug (as opposed to the CPU running away).
220 */
221 0xeafffffe, /* (spin) */
222 0xeafffffe, /* (spin) */
223 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
224 0xeafffffe, /* (spin) */
225 0xeafffffe, /* (spin) */
226 0xeafffffe, /* (spin) */
227 0xeafffffe, /* (spin) */
228 0xeafffffe, /* (spin) */
229 };
230 uint32_t board_setup_blob[] = {
231 /* board setup addr */
232 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
233 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
234 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
235 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
236 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
237 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
238 0xe1600070, /* smc #0 ;call monitor to flush SCR */
239 0xe1a0f001, /* mov pc, r1 ;return */
240 };
241
242 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
243 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
244
245 /* check that these blobs don't overlap */
246 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
247 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
248
249 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
250 mvbar_blob[n] = tswap32(mvbar_blob[n]);
251 }
252 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
253 mvbar_addr, as);
254
255 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
256 board_setup_blob[n] = tswap32(board_setup_blob[n]);
257 }
258 rom_add_blob_fixed_as("board-setup", board_setup_blob,
259 sizeof(board_setup_blob), info->board_setup_addr, as);
260 }
261
262 static void default_reset_secondary(ARMCPU *cpu,
263 const struct arm_boot_info *info)
264 {
265 AddressSpace *as = arm_boot_address_space(cpu, info);
266 CPUState *cs = CPU(cpu);
267
268 address_space_stl_notdirty(as, info->smp_bootreg_addr,
269 0, MEMTXATTRS_UNSPECIFIED, NULL);
270 cpu_set_pc(cs, info->smp_loader_start);
271 }
272
273 static inline bool have_dtb(const struct arm_boot_info *info)
274 {
275 return info->dtb_filename || info->get_dtb;
276 }
277
278 #define WRITE_WORD(p, value) do { \
279 address_space_stl_notdirty(as, p, value, \
280 MEMTXATTRS_UNSPECIFIED, NULL); \
281 p += 4; \
282 } while (0)
283
284 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
285 {
286 int initrd_size = info->initrd_size;
287 hwaddr base = info->loader_start;
288 hwaddr p;
289
290 p = base + KERNEL_ARGS_ADDR;
291 /* ATAG_CORE */
292 WRITE_WORD(p, 5);
293 WRITE_WORD(p, 0x54410001);
294 WRITE_WORD(p, 1);
295 WRITE_WORD(p, 0x1000);
296 WRITE_WORD(p, 0);
297 /* ATAG_MEM */
298 /* TODO: handle multiple chips on one ATAG list */
299 WRITE_WORD(p, 4);
300 WRITE_WORD(p, 0x54410002);
301 WRITE_WORD(p, info->ram_size);
302 WRITE_WORD(p, info->loader_start);
303 if (initrd_size) {
304 /* ATAG_INITRD2 */
305 WRITE_WORD(p, 4);
306 WRITE_WORD(p, 0x54420005);
307 WRITE_WORD(p, info->initrd_start);
308 WRITE_WORD(p, initrd_size);
309 }
310 if (info->kernel_cmdline && *info->kernel_cmdline) {
311 /* ATAG_CMDLINE */
312 int cmdline_size;
313
314 cmdline_size = strlen(info->kernel_cmdline);
315 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
316 (const uint8_t *)info->kernel_cmdline,
317 cmdline_size + 1);
318 cmdline_size = (cmdline_size >> 2) + 1;
319 WRITE_WORD(p, cmdline_size + 2);
320 WRITE_WORD(p, 0x54410009);
321 p += cmdline_size * 4;
322 }
323 if (info->atag_board) {
324 /* ATAG_BOARD */
325 int atag_board_len;
326 uint8_t atag_board_buf[0x1000];
327
328 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
329 WRITE_WORD(p, (atag_board_len + 8) >> 2);
330 WRITE_WORD(p, 0x414f4d50);
331 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
332 atag_board_buf, atag_board_len);
333 p += atag_board_len;
334 }
335 /* ATAG_END */
336 WRITE_WORD(p, 0);
337 WRITE_WORD(p, 0);
338 }
339
340 static void set_kernel_args_old(const struct arm_boot_info *info,
341 AddressSpace *as)
342 {
343 hwaddr p;
344 const char *s;
345 int initrd_size = info->initrd_size;
346 hwaddr base = info->loader_start;
347
348 /* see linux/include/asm-arm/setup.h */
349 p = base + KERNEL_ARGS_ADDR;
350 /* page_size */
351 WRITE_WORD(p, 4096);
352 /* nr_pages */
353 WRITE_WORD(p, info->ram_size / 4096);
354 /* ramdisk_size */
355 WRITE_WORD(p, 0);
356 #define FLAG_READONLY 1
357 #define FLAG_RDLOAD 4
358 #define FLAG_RDPROMPT 8
359 /* flags */
360 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
361 /* rootdev */
362 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
363 /* video_num_cols */
364 WRITE_WORD(p, 0);
365 /* video_num_rows */
366 WRITE_WORD(p, 0);
367 /* video_x */
368 WRITE_WORD(p, 0);
369 /* video_y */
370 WRITE_WORD(p, 0);
371 /* memc_control_reg */
372 WRITE_WORD(p, 0);
373 /* unsigned char sounddefault */
374 /* unsigned char adfsdrives */
375 /* unsigned char bytes_per_char_h */
376 /* unsigned char bytes_per_char_v */
377 WRITE_WORD(p, 0);
378 /* pages_in_bank[4] */
379 WRITE_WORD(p, 0);
380 WRITE_WORD(p, 0);
381 WRITE_WORD(p, 0);
382 WRITE_WORD(p, 0);
383 /* pages_in_vram */
384 WRITE_WORD(p, 0);
385 /* initrd_start */
386 if (initrd_size) {
387 WRITE_WORD(p, info->initrd_start);
388 } else {
389 WRITE_WORD(p, 0);
390 }
391 /* initrd_size */
392 WRITE_WORD(p, initrd_size);
393 /* rd_start */
394 WRITE_WORD(p, 0);
395 /* system_rev */
396 WRITE_WORD(p, 0);
397 /* system_serial_low */
398 WRITE_WORD(p, 0);
399 /* system_serial_high */
400 WRITE_WORD(p, 0);
401 /* mem_fclk_21285 */
402 WRITE_WORD(p, 0);
403 /* zero unused fields */
404 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
405 WRITE_WORD(p, 0);
406 }
407 s = info->kernel_cmdline;
408 if (s) {
409 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
410 (const uint8_t *)s, strlen(s) + 1);
411 } else {
412 WRITE_WORD(p, 0);
413 }
414 }
415
416 static void fdt_add_psci_node(void *fdt)
417 {
418 uint32_t cpu_suspend_fn;
419 uint32_t cpu_off_fn;
420 uint32_t cpu_on_fn;
421 uint32_t migrate_fn;
422 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
423 const char *psci_method;
424 int64_t psci_conduit;
425 int rc;
426
427 psci_conduit = object_property_get_int(OBJECT(armcpu),
428 "psci-conduit",
429 &error_abort);
430 switch (psci_conduit) {
431 case QEMU_PSCI_CONDUIT_DISABLED:
432 return;
433 case QEMU_PSCI_CONDUIT_HVC:
434 psci_method = "hvc";
435 break;
436 case QEMU_PSCI_CONDUIT_SMC:
437 psci_method = "smc";
438 break;
439 default:
440 g_assert_not_reached();
441 }
442
443 /*
444 * If /psci node is present in provided DTB, assume that no fixup
445 * is necessary and all PSCI configuration should be taken as-is
446 */
447 rc = fdt_path_offset(fdt, "/psci");
448 if (rc >= 0) {
449 return;
450 }
451
452 qemu_fdt_add_subnode(fdt, "/psci");
453 if (armcpu->psci_version == 2) {
454 const char comp[] = "arm,psci-0.2\0arm,psci";
455 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
456
457 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
458 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
459 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
460 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
461 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
462 } else {
463 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
464 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
465 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
466 }
467 } else {
468 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
469
470 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
471 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
472 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
473 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
474 }
475
476 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
477 * to the instruction that should be used to invoke PSCI functions.
478 * However, the device tree binding uses 'method' instead, so that is
479 * what we should use here.
480 */
481 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
482
483 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
484 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
485 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
486 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
487 }
488
489 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
490 hwaddr addr_limit, AddressSpace *as)
491 {
492 void *fdt = NULL;
493 int size, rc;
494 uint32_t acells, scells;
495 char *nodename;
496 unsigned int i;
497 hwaddr mem_base, mem_len;
498
499 if (binfo->dtb_filename) {
500 char *filename;
501 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
502 if (!filename) {
503 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
504 goto fail;
505 }
506
507 fdt = load_device_tree(filename, &size);
508 if (!fdt) {
509 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
510 g_free(filename);
511 goto fail;
512 }
513 g_free(filename);
514 } else {
515 fdt = binfo->get_dtb(binfo, &size);
516 if (!fdt) {
517 fprintf(stderr, "Board was unable to create a dtb blob\n");
518 goto fail;
519 }
520 }
521
522 if (addr_limit > addr && size > (addr_limit - addr)) {
523 /* Installing the device tree blob at addr would exceed addr_limit.
524 * Whether this constitutes failure is up to the caller to decide,
525 * so just return 0 as size, i.e., no error.
526 */
527 g_free(fdt);
528 return 0;
529 }
530
531 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
532 NULL, &error_fatal);
533 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
534 NULL, &error_fatal);
535 if (acells == 0 || scells == 0) {
536 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
537 goto fail;
538 }
539
540 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
541 /* This is user error so deserves a friendlier error message
542 * than the failure of setprop_sized_cells would provide
543 */
544 fprintf(stderr, "qemu: dtb file not compatible with "
545 "RAM size > 4GB\n");
546 goto fail;
547 }
548
549 if (nb_numa_nodes > 0) {
550 /*
551 * Turn the /memory node created before into a NOP node, then create
552 * /memory@addr nodes for all numa nodes respectively.
553 */
554 qemu_fdt_nop_node(fdt, "/memory");
555 mem_base = binfo->loader_start;
556 for (i = 0; i < nb_numa_nodes; i++) {
557 mem_len = numa_info[i].node_mem;
558 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
559 qemu_fdt_add_subnode(fdt, nodename);
560 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
561 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
562 acells, mem_base,
563 scells, mem_len);
564 if (rc < 0) {
565 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
566 i);
567 goto fail;
568 }
569
570 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
571 mem_base += mem_len;
572 g_free(nodename);
573 }
574 } else {
575 Error *err = NULL;
576
577 rc = fdt_path_offset(fdt, "/memory");
578 if (rc < 0) {
579 qemu_fdt_add_subnode(fdt, "/memory");
580 }
581
582 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
583 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
584 }
585
586 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
587 acells, binfo->loader_start,
588 scells, binfo->ram_size);
589 if (rc < 0) {
590 fprintf(stderr, "couldn't set /memory/reg\n");
591 goto fail;
592 }
593 }
594
595 rc = fdt_path_offset(fdt, "/chosen");
596 if (rc < 0) {
597 qemu_fdt_add_subnode(fdt, "/chosen");
598 }
599
600 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
601 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
602 binfo->kernel_cmdline);
603 if (rc < 0) {
604 fprintf(stderr, "couldn't set /chosen/bootargs\n");
605 goto fail;
606 }
607 }
608
609 if (binfo->initrd_size) {
610 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
611 binfo->initrd_start);
612 if (rc < 0) {
613 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
614 goto fail;
615 }
616
617 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
618 binfo->initrd_start + binfo->initrd_size);
619 if (rc < 0) {
620 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
621 goto fail;
622 }
623 }
624
625 fdt_add_psci_node(fdt);
626
627 if (binfo->modify_dtb) {
628 binfo->modify_dtb(binfo, fdt);
629 }
630
631 qemu_fdt_dumpdtb(fdt, size);
632
633 /* Put the DTB into the memory map as a ROM image: this will ensure
634 * the DTB is copied again upon reset, even if addr points into RAM.
635 */
636 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
637
638 g_free(fdt);
639
640 return size;
641
642 fail:
643 g_free(fdt);
644 return -1;
645 }
646
647 static void do_cpu_reset(void *opaque)
648 {
649 ARMCPU *cpu = opaque;
650 CPUState *cs = CPU(cpu);
651 CPUARMState *env = &cpu->env;
652 const struct arm_boot_info *info = env->boot_info;
653
654 cpu_reset(cs);
655 if (info) {
656 if (!info->is_linux) {
657 int i;
658 /* Jump to the entry point. */
659 uint64_t entry = info->entry;
660
661 switch (info->endianness) {
662 case ARM_ENDIANNESS_LE:
663 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
664 for (i = 1; i < 4; ++i) {
665 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
666 }
667 env->uncached_cpsr &= ~CPSR_E;
668 break;
669 case ARM_ENDIANNESS_BE8:
670 env->cp15.sctlr_el[1] |= SCTLR_E0E;
671 for (i = 1; i < 4; ++i) {
672 env->cp15.sctlr_el[i] |= SCTLR_EE;
673 }
674 env->uncached_cpsr |= CPSR_E;
675 break;
676 case ARM_ENDIANNESS_BE32:
677 env->cp15.sctlr_el[1] |= SCTLR_B;
678 break;
679 case ARM_ENDIANNESS_UNKNOWN:
680 break; /* Board's decision */
681 default:
682 g_assert_not_reached();
683 }
684
685 if (!env->aarch64) {
686 env->thumb = info->entry & 1;
687 entry &= 0xfffffffe;
688 }
689 cpu_set_pc(cs, entry);
690 } else {
691 /* If we are booting Linux then we need to check whether we are
692 * booting into secure or non-secure state and adjust the state
693 * accordingly. Out of reset, ARM is defined to be in secure state
694 * (SCR.NS = 0), we change that here if non-secure boot has been
695 * requested.
696 */
697 if (arm_feature(env, ARM_FEATURE_EL3)) {
698 /* AArch64 is defined to come out of reset into EL3 if enabled.
699 * If we are booting Linux then we need to adjust our EL as
700 * Linux expects us to be in EL2 or EL1. AArch32 resets into
701 * SVC, which Linux expects, so no privilege/exception level to
702 * adjust.
703 */
704 if (env->aarch64) {
705 env->cp15.scr_el3 |= SCR_RW;
706 if (arm_feature(env, ARM_FEATURE_EL2)) {
707 env->cp15.hcr_el2 |= HCR_RW;
708 env->pstate = PSTATE_MODE_EL2h;
709 } else {
710 env->pstate = PSTATE_MODE_EL1h;
711 }
712 /* AArch64 kernels never boot in secure mode */
713 assert(!info->secure_boot);
714 /* This hook is only supported for AArch32 currently:
715 * bootloader_aarch64[] will not call the hook, and
716 * the code above has already dropped us into EL2 or EL1.
717 */
718 assert(!info->secure_board_setup);
719 }
720
721 if (arm_feature(env, ARM_FEATURE_EL2)) {
722 /* If we have EL2 then Linux expects the HVC insn to work */
723 env->cp15.scr_el3 |= SCR_HCE;
724 }
725
726 /* Set to non-secure if not a secure boot */
727 if (!info->secure_boot &&
728 (cs != first_cpu || !info->secure_board_setup)) {
729 /* Linux expects non-secure state */
730 env->cp15.scr_el3 |= SCR_NS;
731 }
732 }
733
734 if (cs == first_cpu) {
735 AddressSpace *as = arm_boot_address_space(cpu, info);
736
737 cpu_set_pc(cs, info->loader_start);
738
739 if (!have_dtb(info)) {
740 if (old_param) {
741 set_kernel_args_old(info, as);
742 } else {
743 set_kernel_args(info, as);
744 }
745 }
746 } else {
747 info->secondary_cpu_reset_hook(cpu, info);
748 }
749 }
750 }
751 }
752
753 /**
754 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
755 * by key.
756 * @fw_cfg: The firmware config instance to store the data in.
757 * @size_key: The firmware config key to store the size of the loaded
758 * data under, with fw_cfg_add_i32().
759 * @data_key: The firmware config key to store the loaded data under,
760 * with fw_cfg_add_bytes().
761 * @image_name: The name of the image file to load. If it is NULL, the
762 * function returns without doing anything.
763 * @try_decompress: Whether the image should be decompressed (gunzipped) before
764 * adding it to fw_cfg. If decompression fails, the image is
765 * loaded as-is.
766 *
767 * In case of failure, the function prints an error message to stderr and the
768 * process exits with status 1.
769 */
770 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
771 uint16_t data_key, const char *image_name,
772 bool try_decompress)
773 {
774 size_t size = -1;
775 uint8_t *data;
776
777 if (image_name == NULL) {
778 return;
779 }
780
781 if (try_decompress) {
782 size = load_image_gzipped_buffer(image_name,
783 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
784 }
785
786 if (size == (size_t)-1) {
787 gchar *contents;
788 gsize length;
789
790 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
791 error_report("failed to load \"%s\"", image_name);
792 exit(1);
793 }
794 size = length;
795 data = (uint8_t *)contents;
796 }
797
798 fw_cfg_add_i32(fw_cfg, size_key, size);
799 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
800 }
801
802 static int do_arm_linux_init(Object *obj, void *opaque)
803 {
804 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
805 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
806 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
807 struct arm_boot_info *info = opaque;
808
809 if (albifc->arm_linux_init) {
810 albifc->arm_linux_init(albif, info->secure_boot);
811 }
812 }
813 return 0;
814 }
815
816 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
817 uint64_t *lowaddr, uint64_t *highaddr,
818 int elf_machine, AddressSpace *as)
819 {
820 bool elf_is64;
821 union {
822 Elf32_Ehdr h32;
823 Elf64_Ehdr h64;
824 } elf_header;
825 int data_swab = 0;
826 bool big_endian;
827 uint64_t ret = -1;
828 Error *err = NULL;
829
830
831 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
832 if (err) {
833 error_free(err);
834 return ret;
835 }
836
837 if (elf_is64) {
838 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
839 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
840 : ARM_ENDIANNESS_LE;
841 } else {
842 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
843 if (big_endian) {
844 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
845 info->endianness = ARM_ENDIANNESS_BE8;
846 } else {
847 info->endianness = ARM_ENDIANNESS_BE32;
848 /* In BE32, the CPU has a different view of the per-byte
849 * address map than the rest of the system. BE32 ELF files
850 * are organised such that they can be programmed through
851 * the CPU's per-word byte-reversed view of the world. QEMU
852 * however loads ELF files independently of the CPU. So
853 * tell the ELF loader to byte reverse the data for us.
854 */
855 data_swab = 2;
856 }
857 } else {
858 info->endianness = ARM_ENDIANNESS_LE;
859 }
860 }
861
862 ret = load_elf_as(info->kernel_filename, NULL, NULL,
863 pentry, lowaddr, highaddr, big_endian, elf_machine,
864 1, data_swab, as);
865 if (ret <= 0) {
866 /* The header loaded but the image didn't */
867 exit(1);
868 }
869
870 return ret;
871 }
872
873 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
874 hwaddr *entry, AddressSpace *as)
875 {
876 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
877 uint8_t *buffer;
878 int size;
879
880 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
881 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
882 &buffer);
883
884 if (size < 0) {
885 gsize len;
886
887 /* Load as raw file otherwise */
888 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
889 return -1;
890 }
891 size = len;
892 }
893
894 /* check the arm64 magic header value -- very old kernels may not have it */
895 if (size > ARM64_MAGIC_OFFSET + 4 &&
896 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
897 uint64_t hdrvals[2];
898
899 /* The arm64 Image header has text_offset and image_size fields at 8 and
900 * 16 bytes into the Image header, respectively. The text_offset field
901 * is only valid if the image_size is non-zero.
902 */
903 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
904 if (hdrvals[1] != 0) {
905 kernel_load_offset = le64_to_cpu(hdrvals[0]);
906 }
907 }
908
909 *entry = mem_base + kernel_load_offset;
910 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
911
912 g_free(buffer);
913
914 return size;
915 }
916
917 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
918 {
919 CPUState *cs;
920 int kernel_size;
921 int initrd_size;
922 int is_linux = 0;
923 uint64_t elf_entry, elf_low_addr, elf_high_addr;
924 int elf_machine;
925 hwaddr entry;
926 static const ARMInsnFixup *primary_loader;
927 AddressSpace *as = arm_boot_address_space(cpu, info);
928
929 /* The board code is not supposed to set secure_board_setup unless
930 * running its code in secure mode is actually possible, and KVM
931 * doesn't support secure.
932 */
933 assert(!(info->secure_board_setup && kvm_enabled()));
934
935 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
936 info->dtb_limit = 0;
937
938 /* Load the kernel. */
939 if (!info->kernel_filename || info->firmware_loaded) {
940
941 if (have_dtb(info)) {
942 /* If we have a device tree blob, but no kernel to supply it to (or
943 * the kernel is supposed to be loaded by the bootloader), copy the
944 * DTB to the base of RAM for the bootloader to pick up.
945 */
946 info->dtb_start = info->loader_start;
947 }
948
949 if (info->kernel_filename) {
950 FWCfgState *fw_cfg;
951 bool try_decompressing_kernel;
952
953 fw_cfg = fw_cfg_find();
954 try_decompressing_kernel = arm_feature(&cpu->env,
955 ARM_FEATURE_AARCH64);
956
957 /* Expose the kernel, the command line, and the initrd in fw_cfg.
958 * We don't process them here at all, it's all left to the
959 * firmware.
960 */
961 load_image_to_fw_cfg(fw_cfg,
962 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
963 info->kernel_filename,
964 try_decompressing_kernel);
965 load_image_to_fw_cfg(fw_cfg,
966 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
967 info->initrd_filename, false);
968
969 if (info->kernel_cmdline) {
970 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
971 strlen(info->kernel_cmdline) + 1);
972 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
973 info->kernel_cmdline);
974 }
975 }
976
977 /* We will start from address 0 (typically a boot ROM image) in the
978 * same way as hardware.
979 */
980 return;
981 }
982
983 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
984 primary_loader = bootloader_aarch64;
985 elf_machine = EM_AARCH64;
986 } else {
987 primary_loader = bootloader;
988 if (!info->write_board_setup) {
989 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
990 }
991 elf_machine = EM_ARM;
992 }
993
994 if (!info->secondary_cpu_reset_hook) {
995 info->secondary_cpu_reset_hook = default_reset_secondary;
996 }
997 if (!info->write_secondary_boot) {
998 info->write_secondary_boot = default_write_secondary;
999 }
1000
1001 if (info->nb_cpus == 0)
1002 info->nb_cpus = 1;
1003
1004 /* We want to put the initrd far enough into RAM that when the
1005 * kernel is uncompressed it will not clobber the initrd. However
1006 * on boards without much RAM we must ensure that we still leave
1007 * enough room for a decent sized initrd, and on boards with large
1008 * amounts of RAM we must avoid the initrd being so far up in RAM
1009 * that it is outside lowmem and inaccessible to the kernel.
1010 * So for boards with less than 256MB of RAM we put the initrd
1011 * halfway into RAM, and for boards with 256MB of RAM or more we put
1012 * the initrd at 128MB.
1013 */
1014 info->initrd_start = info->loader_start +
1015 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1016
1017 /* Assume that raw images are linux kernels, and ELF images are not. */
1018 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1019 &elf_high_addr, elf_machine, as);
1020 if (kernel_size > 0 && have_dtb(info)) {
1021 /* If there is still some room left at the base of RAM, try and put
1022 * the DTB there like we do for images loaded with -bios or -pflash.
1023 */
1024 if (elf_low_addr > info->loader_start
1025 || elf_high_addr < info->loader_start) {
1026 /* Set elf_low_addr as address limit for arm_load_dtb if it may be
1027 * pointing into RAM, otherwise pass '0' (no limit)
1028 */
1029 if (elf_low_addr < info->loader_start) {
1030 elf_low_addr = 0;
1031 }
1032 info->dtb_start = info->loader_start;
1033 info->dtb_limit = elf_low_addr;
1034 }
1035 }
1036 entry = elf_entry;
1037 if (kernel_size < 0) {
1038 kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1039 &is_linux, NULL, NULL, as);
1040 }
1041 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1042 kernel_size = load_aarch64_image(info->kernel_filename,
1043 info->loader_start, &entry, as);
1044 is_linux = 1;
1045 } else if (kernel_size < 0) {
1046 /* 32-bit ARM */
1047 entry = info->loader_start + KERNEL_LOAD_ADDR;
1048 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1049 info->ram_size - KERNEL_LOAD_ADDR,
1050 as);
1051 is_linux = 1;
1052 }
1053 if (kernel_size < 0) {
1054 error_report("could not load kernel '%s'", info->kernel_filename);
1055 exit(1);
1056 }
1057 info->entry = entry;
1058 if (is_linux) {
1059 uint32_t fixupcontext[FIXUP_MAX];
1060
1061 if (info->initrd_filename) {
1062 initrd_size = load_ramdisk_as(info->initrd_filename,
1063 info->initrd_start,
1064 info->ram_size - info->initrd_start,
1065 as);
1066 if (initrd_size < 0) {
1067 initrd_size = load_image_targphys_as(info->initrd_filename,
1068 info->initrd_start,
1069 info->ram_size -
1070 info->initrd_start,
1071 as);
1072 }
1073 if (initrd_size < 0) {
1074 error_report("could not load initrd '%s'",
1075 info->initrd_filename);
1076 exit(1);
1077 }
1078 } else {
1079 initrd_size = 0;
1080 }
1081 info->initrd_size = initrd_size;
1082
1083 fixupcontext[FIXUP_BOARDID] = info->board_id;
1084 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1085
1086 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1087 * we point to the kernel args.
1088 */
1089 if (have_dtb(info)) {
1090 hwaddr align;
1091
1092 if (elf_machine == EM_AARCH64) {
1093 /*
1094 * Some AArch64 kernels on early bootup map the fdt region as
1095 *
1096 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1097 *
1098 * Let's play safe and prealign it to 2MB to give us some space.
1099 */
1100 align = 2 * 1024 * 1024;
1101 } else {
1102 /*
1103 * Some 32bit kernels will trash anything in the 4K page the
1104 * initrd ends in, so make sure the DTB isn't caught up in that.
1105 */
1106 align = 4096;
1107 }
1108
1109 /* Place the DTB after the initrd in memory with alignment. */
1110 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1111 align);
1112 fixupcontext[FIXUP_ARGPTR] = info->dtb_start;
1113 } else {
1114 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1115 if (info->ram_size >= (1ULL << 32)) {
1116 error_report("RAM size must be less than 4GB to boot"
1117 " Linux kernel using ATAGS (try passing a device tree"
1118 " using -dtb)");
1119 exit(1);
1120 }
1121 }
1122 fixupcontext[FIXUP_ENTRYPOINT] = entry;
1123
1124 write_bootloader("bootloader", info->loader_start,
1125 primary_loader, fixupcontext, as);
1126
1127 if (info->nb_cpus > 1) {
1128 info->write_secondary_boot(cpu, info);
1129 }
1130 if (info->write_board_setup) {
1131 info->write_board_setup(cpu, info);
1132 }
1133
1134 /* Notify devices which need to fake up firmware initialization
1135 * that we're doing a direct kernel boot.
1136 */
1137 object_child_foreach_recursive(object_get_root(),
1138 do_arm_linux_init, info);
1139 }
1140 info->is_linux = is_linux;
1141
1142 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1143 ARM_CPU(cs)->env.boot_info = info;
1144 }
1145
1146 /* CPU objects (unlike devices) are not automatically reset on system
1147 * reset, so we must always register a handler to do so. If we're
1148 * actually loading a kernel, the handler is also responsible for
1149 * arranging that we start it correctly.
1150 */
1151 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1152 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1153 }
1154
1155 if (!info->skip_dtb_autoload && have_dtb(info)) {
1156 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1157 exit(1);
1158 }
1159 }
1160 }
1161
1162 static const TypeInfo arm_linux_boot_if_info = {
1163 .name = TYPE_ARM_LINUX_BOOT_IF,
1164 .parent = TYPE_INTERFACE,
1165 .class_size = sizeof(ARMLinuxBootIfClass),
1166 };
1167
1168 static void arm_linux_boot_register_types(void)
1169 {
1170 type_register_static(&arm_linux_boot_if_info);
1171 }
1172
1173 type_init(arm_linux_boot_register_types)