]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/mps2-tz.c
sd/milkymist-memcard: Fix error API violation
[mirror_qemu.git] / hw / arm / mps2-tz.c
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3 *
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 *
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23 *
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30 *
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37 *
38 */
39
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/net/lan9118.h"
62 #include "net/net.h"
63 #include "hw/core/split-irq.h"
64
65 #define MPS2TZ_NUMIRQ 92
66
67 typedef enum MPS2TZFPGAType {
68 FPGA_AN505,
69 FPGA_AN521,
70 } MPS2TZFPGAType;
71
72 typedef struct {
73 MachineClass parent;
74 MPS2TZFPGAType fpga_type;
75 uint32_t scc_id;
76 const char *armsse_type;
77 } MPS2TZMachineClass;
78
79 typedef struct {
80 MachineState parent;
81
82 ARMSSE iotkit;
83 MemoryRegion ssram[3];
84 MemoryRegion ssram1_m;
85 MPS2SCC scc;
86 MPS2FPGAIO fpgaio;
87 TZPPC ppc[5];
88 TZMPC ssram_mpc[3];
89 PL022State spi[5];
90 UnimplementedDeviceState i2c[4];
91 UnimplementedDeviceState i2s_audio;
92 UnimplementedDeviceState gpio[4];
93 UnimplementedDeviceState gfx;
94 PL080State dma[4];
95 TZMSC msc[4];
96 CMSDKAPBUART uart[5];
97 SplitIRQ sec_resp_splitter;
98 qemu_or_irq uart_irq_orgate;
99 DeviceState *lan9118;
100 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
101 } MPS2TZMachineState;
102
103 #define TYPE_MPS2TZ_MACHINE "mps2tz"
104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
106
107 #define MPS2TZ_MACHINE(obj) \
108 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
110 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111 #define MPS2TZ_MACHINE_CLASS(klass) \
112 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116
117 /* Create an alias of an entire original MemoryRegion @orig
118 * located at @base in the memory map.
119 */
120 static void make_ram_alias(MemoryRegion *mr, const char *name,
121 MemoryRegion *orig, hwaddr base)
122 {
123 memory_region_init_alias(mr, NULL, name, orig, 0,
124 memory_region_size(orig));
125 memory_region_add_subregion(get_system_memory(), base, mr);
126 }
127
128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 {
130 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132
133 assert(irqno < MPS2TZ_NUMIRQ);
134
135 switch (mmc->fpga_type) {
136 case FPGA_AN505:
137 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138 case FPGA_AN521:
139 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140 default:
141 g_assert_not_reached();
142 }
143 }
144
145 /* Most of the devices in the AN505 FPGA image sit behind
146 * Peripheral Protection Controllers. These data structures
147 * define the layout of which devices sit behind which PPCs.
148 * The devfn for each port is a function which creates, configures
149 * and initializes the device, returning the MemoryRegion which
150 * needs to be plugged into the downstream end of the PPC port.
151 */
152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153 const char *name, hwaddr size);
154
155 typedef struct PPCPortInfo {
156 const char *name;
157 MakeDevFn *devfn;
158 void *opaque;
159 hwaddr addr;
160 hwaddr size;
161 } PPCPortInfo;
162
163 typedef struct PPCInfo {
164 const char *name;
165 PPCPortInfo ports[TZ_NUM_PORTS];
166 } PPCInfo;
167
168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169 void *opaque,
170 const char *name, hwaddr size)
171 {
172 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173 * and return a pointer to its MemoryRegion.
174 */
175 UnimplementedDeviceState *uds = opaque;
176
177 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
178 qdev_prop_set_string(DEVICE(uds), "name", name);
179 qdev_prop_set_uint64(DEVICE(uds), "size", size);
180 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
181 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
182 }
183
184 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
185 const char *name, hwaddr size)
186 {
187 CMSDKAPBUART *uart = opaque;
188 int i = uart - &mms->uart[0];
189 int rxirqno = i * 2;
190 int txirqno = i * 2 + 1;
191 int combirqno = i + 10;
192 SysBusDevice *s;
193 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
194
195 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
196 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
197 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
198 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
199 s = SYS_BUS_DEVICE(uart);
200 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
201 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
202 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
203 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
204 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
205 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
206 }
207
208 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
209 const char *name, hwaddr size)
210 {
211 MPS2SCC *scc = opaque;
212 DeviceState *sccdev;
213 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
214
215 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
216 sccdev = DEVICE(scc);
217 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
218 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
219 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
220 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
221 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
222 }
223
224 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
225 const char *name, hwaddr size)
226 {
227 MPS2FPGAIO *fpgaio = opaque;
228
229 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
230 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
231 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
232 }
233
234 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
235 const char *name, hwaddr size)
236 {
237 SysBusDevice *s;
238 NICInfo *nd = &nd_table[0];
239
240 /* In hardware this is a LAN9220; the LAN9118 is software compatible
241 * except that it doesn't support the checksum-offload feature.
242 */
243 qemu_check_nic_model(nd, "lan9118");
244 mms->lan9118 = qdev_new(TYPE_LAN9118);
245 qdev_set_nic_properties(mms->lan9118, nd);
246
247 s = SYS_BUS_DEVICE(mms->lan9118);
248 sysbus_realize_and_unref(s, &error_fatal);
249 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
250 return sysbus_mmio_get_region(s, 0);
251 }
252
253 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
254 const char *name, hwaddr size)
255 {
256 TZMPC *mpc = opaque;
257 int i = mpc - &mms->ssram_mpc[0];
258 MemoryRegion *ssram = &mms->ssram[i];
259 MemoryRegion *upstream;
260 char *mpcname = g_strdup_printf("%s-mpc", name);
261 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
262 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
263
264 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
265
266 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
267 object_property_set_link(OBJECT(mpc), OBJECT(ssram),
268 "downstream", &error_fatal);
269 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
270 /* Map the upstream end of the MPC into system memory */
271 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
272 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
273 /* and connect its interrupt to the IoTKit */
274 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
275 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
276 "mpcexp_status", i));
277
278 /* The first SSRAM is a special case as it has an alias; accesses to
279 * the alias region at 0x00400000 must also go to the MPC upstream.
280 */
281 if (i == 0) {
282 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
283 }
284
285 g_free(mpcname);
286 /* Return the register interface MR for our caller to map behind the PPC */
287 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
288 }
289
290 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
291 const char *name, hwaddr size)
292 {
293 PL080State *dma = opaque;
294 int i = dma - &mms->dma[0];
295 SysBusDevice *s;
296 char *mscname = g_strdup_printf("%s-msc", name);
297 TZMSC *msc = &mms->msc[i];
298 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
299 MemoryRegion *msc_upstream;
300 MemoryRegion *msc_downstream;
301
302 /*
303 * Each DMA device is a PL081 whose transaction master interface
304 * is guarded by a Master Security Controller. The downstream end of
305 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
306 * DMA devices can see all devices and memory that the CPU does.
307 */
308 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
309 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
310 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
311 "downstream", &error_fatal);
312 object_property_set_link(OBJECT(msc), OBJECT(mms),
313 "idau", &error_fatal);
314 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
315
316 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
317 qdev_get_gpio_in_named(iotkitdev,
318 "mscexp_status", i));
319 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
320 qdev_get_gpio_in_named(DEVICE(msc),
321 "irq_clear", 0));
322 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
323 qdev_get_gpio_in_named(DEVICE(msc),
324 "cfg_nonsec", 0));
325 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
326 ARRAY_SIZE(mms->ppc) + i,
327 qdev_get_gpio_in_named(DEVICE(msc),
328 "cfg_sec_resp", 0));
329 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
330
331 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
332 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
333 "downstream", &error_fatal);
334 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
335
336 s = SYS_BUS_DEVICE(dma);
337 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
338 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
339 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
340 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
341
342 g_free(mscname);
343 return sysbus_mmio_get_region(s, 0);
344 }
345
346 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
347 const char *name, hwaddr size)
348 {
349 /*
350 * The AN505 has five PL022 SPI controllers.
351 * One of these should have the LCD controller behind it; the others
352 * are connected only to the FPGA's "general purpose SPI connector"
353 * or "shield" expansion connectors.
354 * Note that if we do implement devices behind SPI, the chip select
355 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
356 */
357 PL022State *spi = opaque;
358 int i = spi - &mms->spi[0];
359 SysBusDevice *s;
360
361 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
362 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
363 s = SYS_BUS_DEVICE(spi);
364 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
365 return sysbus_mmio_get_region(s, 0);
366 }
367
368 static void mps2tz_common_init(MachineState *machine)
369 {
370 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
371 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
372 MachineClass *mc = MACHINE_GET_CLASS(machine);
373 MemoryRegion *system_memory = get_system_memory();
374 DeviceState *iotkitdev;
375 DeviceState *dev_splitter;
376 int i;
377
378 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
379 error_report("This board can only be used with CPU %s",
380 mc->default_cpu_type);
381 exit(1);
382 }
383
384 if (machine->ram_size != mc->default_ram_size) {
385 char *sz = size_to_str(mc->default_ram_size);
386 error_report("Invalid RAM size, should be %s", sz);
387 g_free(sz);
388 exit(EXIT_FAILURE);
389 }
390
391 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
392 mmc->armsse_type);
393 iotkitdev = DEVICE(&mms->iotkit);
394 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
395 "memory", &error_abort);
396 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
397 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
398 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
399
400 /*
401 * The AN521 needs us to create splitters to feed the IRQ inputs
402 * for each CPU in the SSE-200 from each device in the board.
403 */
404 if (mmc->fpga_type == FPGA_AN521) {
405 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
406 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
407 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
408
409 object_initialize_child_with_props(OBJECT(machine), name,
410 splitter, sizeof(*splitter),
411 TYPE_SPLIT_IRQ, &error_fatal,
412 NULL);
413 g_free(name);
414
415 object_property_set_int(OBJECT(splitter), 2, "num-lines",
416 &error_fatal);
417 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
418 qdev_connect_gpio_out(DEVICE(splitter), 0,
419 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
420 "EXP_IRQ", i));
421 qdev_connect_gpio_out(DEVICE(splitter), 1,
422 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
423 "EXP_CPU1_IRQ", i));
424 }
425 }
426
427 /* The sec_resp_cfg output from the IoTKit must be split into multiple
428 * lines, one for each of the PPCs we create here, plus one per MSC.
429 */
430 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
431 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
432 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
433 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
434 "num-lines", &error_fatal);
435 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
436 dev_splitter = DEVICE(&mms->sec_resp_splitter);
437 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
438 qdev_get_gpio_in(dev_splitter, 0));
439
440 /* The IoTKit sets up much of the memory layout, including
441 * the aliases between secure and non-secure regions in the
442 * address space. The FPGA itself contains:
443 *
444 * 0x00000000..0x003fffff SSRAM1
445 * 0x00400000..0x007fffff alias of SSRAM1
446 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
447 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
448 * 0x80000000..0x80ffffff 16MB PSRAM
449 */
450
451 /* The FPGA images have an odd combination of different RAMs,
452 * because in hardware they are different implementations and
453 * connected to different buses, giving varying performance/size
454 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
455 * call the 16MB our "system memory", as it's the largest lump.
456 */
457 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
458
459 /* The overflow IRQs for all UARTs are ORed together.
460 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
461 * Create the OR gate for this.
462 */
463 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
464 &mms->uart_irq_orgate, TYPE_OR_IRQ);
465 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
466 &error_fatal);
467 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
468 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
469 get_sse_irq_in(mms, 15));
470
471 /* Most of the devices in the FPGA are behind Peripheral Protection
472 * Controllers. The required order for initializing things is:
473 * + initialize the PPC
474 * + initialize, configure and realize downstream devices
475 * + connect downstream device MemoryRegions to the PPC
476 * + realize the PPC
477 * + map the PPC's MemoryRegions to the places in the address map
478 * where the downstream devices should appear
479 * + wire up the PPC's control lines to the IoTKit object
480 */
481
482 const PPCInfo ppcs[] = { {
483 .name = "apb_ppcexp0",
484 .ports = {
485 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
486 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
487 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
488 },
489 }, {
490 .name = "apb_ppcexp1",
491 .ports = {
492 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
493 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
494 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
495 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
496 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
497 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
498 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
499 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
500 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
501 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
502 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
503 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
504 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
505 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
506 },
507 }, {
508 .name = "apb_ppcexp2",
509 .ports = {
510 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
511 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
512 0x40301000, 0x1000 },
513 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
514 },
515 }, {
516 .name = "ahb_ppcexp0",
517 .ports = {
518 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
519 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
520 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
521 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
522 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
523 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
524 },
525 }, {
526 .name = "ahb_ppcexp1",
527 .ports = {
528 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
529 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
530 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
531 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
532 },
533 },
534 };
535
536 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
537 const PPCInfo *ppcinfo = &ppcs[i];
538 TZPPC *ppc = &mms->ppc[i];
539 DeviceState *ppcdev;
540 int port;
541 char *gpioname;
542
543 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
544 TYPE_TZ_PPC);
545 ppcdev = DEVICE(ppc);
546
547 for (port = 0; port < TZ_NUM_PORTS; port++) {
548 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
549 MemoryRegion *mr;
550 char *portname;
551
552 if (!pinfo->devfn) {
553 continue;
554 }
555
556 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
557 portname = g_strdup_printf("port[%d]", port);
558 object_property_set_link(OBJECT(ppc), OBJECT(mr),
559 portname, &error_fatal);
560 g_free(portname);
561 }
562
563 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
564
565 for (port = 0; port < TZ_NUM_PORTS; port++) {
566 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
567
568 if (!pinfo->devfn) {
569 continue;
570 }
571 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
572
573 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
574 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
575 qdev_get_gpio_in_named(ppcdev,
576 "cfg_nonsec",
577 port));
578 g_free(gpioname);
579 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
580 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
581 qdev_get_gpio_in_named(ppcdev,
582 "cfg_ap", port));
583 g_free(gpioname);
584 }
585
586 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
587 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
588 qdev_get_gpio_in_named(ppcdev,
589 "irq_enable", 0));
590 g_free(gpioname);
591 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
592 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
593 qdev_get_gpio_in_named(ppcdev,
594 "irq_clear", 0));
595 g_free(gpioname);
596 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
597 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
598 qdev_get_gpio_in_named(iotkitdev,
599 gpioname, 0));
600 g_free(gpioname);
601
602 qdev_connect_gpio_out(dev_splitter, i,
603 qdev_get_gpio_in_named(ppcdev,
604 "cfg_sec_resp", 0));
605 }
606
607 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
608
609 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
610 }
611
612 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
613 int *iregion, bool *exempt, bool *ns, bool *nsc)
614 {
615 /*
616 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
617 * the Master Security Controllers. Thes have the same logic as
618 * is used by the IoTKit for the IDAU connected to the CPU, except
619 * that MSCs don't care about the NSC attribute.
620 */
621 int region = extract32(address, 28, 4);
622
623 *ns = !(region & 1);
624 *nsc = false;
625 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
626 *exempt = (address & 0xeff00000) == 0xe0000000;
627 *iregion = region;
628 }
629
630 static void mps2tz_class_init(ObjectClass *oc, void *data)
631 {
632 MachineClass *mc = MACHINE_CLASS(oc);
633 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
634
635 mc->init = mps2tz_common_init;
636 iic->check = mps2_tz_idau_check;
637 mc->default_ram_size = 16 * MiB;
638 mc->default_ram_id = "mps.ram";
639 }
640
641 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
642 {
643 MachineClass *mc = MACHINE_CLASS(oc);
644 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
645
646 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
647 mc->default_cpus = 1;
648 mc->min_cpus = mc->default_cpus;
649 mc->max_cpus = mc->default_cpus;
650 mmc->fpga_type = FPGA_AN505;
651 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
652 mmc->scc_id = 0x41045050;
653 mmc->armsse_type = TYPE_IOTKIT;
654 }
655
656 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
657 {
658 MachineClass *mc = MACHINE_CLASS(oc);
659 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
660
661 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
662 mc->default_cpus = 2;
663 mc->min_cpus = mc->default_cpus;
664 mc->max_cpus = mc->default_cpus;
665 mmc->fpga_type = FPGA_AN521;
666 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
667 mmc->scc_id = 0x41045210;
668 mmc->armsse_type = TYPE_SSE200;
669 }
670
671 static const TypeInfo mps2tz_info = {
672 .name = TYPE_MPS2TZ_MACHINE,
673 .parent = TYPE_MACHINE,
674 .abstract = true,
675 .instance_size = sizeof(MPS2TZMachineState),
676 .class_size = sizeof(MPS2TZMachineClass),
677 .class_init = mps2tz_class_init,
678 .interfaces = (InterfaceInfo[]) {
679 { TYPE_IDAU_INTERFACE },
680 { }
681 },
682 };
683
684 static const TypeInfo mps2tz_an505_info = {
685 .name = TYPE_MPS2TZ_AN505_MACHINE,
686 .parent = TYPE_MPS2TZ_MACHINE,
687 .class_init = mps2tz_an505_class_init,
688 };
689
690 static const TypeInfo mps2tz_an521_info = {
691 .name = TYPE_MPS2TZ_AN521_MACHINE,
692 .parent = TYPE_MPS2TZ_MACHINE,
693 .class_init = mps2tz_an521_class_init,
694 };
695
696 static void mps2tz_machine_init(void)
697 {
698 type_register_static(&mps2tz_info);
699 type_register_static(&mps2tz_an505_info);
700 type_register_static(&mps2tz_an521_info);
701 }
702
703 type_init(mps2tz_machine_init);