]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/musca.c
Use DECLARE_*CHECKER* macros
[mirror_qemu.git] / hw / arm / musca.c
1 /*
2 * Arm Musca-B1 test chip board emulation
3 *
4 * Copyright (c) 2019 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 /*
13 * The Musca boards are a reference implementation of a system using
14 * the SSE-200 subsystem for embedded:
15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17 * We model the A and B1 variants of this board, as described in the TRMs:
18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "qom/object.h"
37
38 #define MUSCA_NUMIRQ_MAX 96
39 #define MUSCA_PPC_MAX 3
40 #define MUSCA_MPC_MAX 5
41
42 typedef struct MPCInfo MPCInfo;
43
44 typedef enum MuscaType {
45 MUSCA_A,
46 MUSCA_B1,
47 } MuscaType;
48
49 struct MuscaMachineClass {
50 MachineClass parent;
51 MuscaType type;
52 uint32_t init_svtor;
53 int sram_addr_width;
54 int num_irqs;
55 const MPCInfo *mpc_info;
56 int num_mpcs;
57 };
58 typedef struct MuscaMachineClass MuscaMachineClass;
59
60 struct MuscaMachineState {
61 MachineState parent;
62
63 ARMSSE sse;
64 /* RAM and flash */
65 MemoryRegion ram[MUSCA_MPC_MAX];
66 SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
67 SplitIRQ sec_resp_splitter;
68 TZPPC ppc[MUSCA_PPC_MAX];
69 MemoryRegion container;
70 UnimplementedDeviceState eflash[2];
71 UnimplementedDeviceState qspi;
72 TZMPC mpc[MUSCA_MPC_MAX];
73 UnimplementedDeviceState mhu[2];
74 UnimplementedDeviceState pwm[3];
75 UnimplementedDeviceState i2s;
76 PL011State uart[2];
77 UnimplementedDeviceState i2c[2];
78 UnimplementedDeviceState spi;
79 UnimplementedDeviceState scc;
80 UnimplementedDeviceState timer;
81 PL031State rtc;
82 UnimplementedDeviceState pvt;
83 UnimplementedDeviceState sdio;
84 UnimplementedDeviceState gpio;
85 UnimplementedDeviceState cryptoisland;
86 };
87 typedef struct MuscaMachineState MuscaMachineState;
88
89 #define TYPE_MUSCA_MACHINE "musca"
90 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
91 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
92
93 DECLARE_OBJ_CHECKERS(MuscaMachineState, MuscaMachineClass,
94 MUSCA_MACHINE, TYPE_MUSCA_MACHINE)
95
96 /*
97 * Main SYSCLK frequency in Hz
98 * TODO this should really be different for the two cores, but we
99 * don't model that in our SSE-200 model yet.
100 */
101 #define SYSCLK_FRQ 40000000
102
103 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
104 {
105 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
106 assert(irqno < MUSCA_NUMIRQ_MAX);
107
108 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
109 }
110
111 /*
112 * Most of the devices in the Musca board sit behind Peripheral Protection
113 * Controllers. These data structures define the layout of which devices
114 * sit behind which PPCs.
115 * The devfn for each port is a function which creates, configures
116 * and initializes the device, returning the MemoryRegion which
117 * needs to be plugged into the downstream end of the PPC port.
118 */
119 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
120 const char *name, hwaddr size);
121
122 typedef struct PPCPortInfo {
123 const char *name;
124 MakeDevFn *devfn;
125 void *opaque;
126 hwaddr addr;
127 hwaddr size;
128 } PPCPortInfo;
129
130 typedef struct PPCInfo {
131 const char *name;
132 PPCPortInfo ports[TZ_NUM_PORTS];
133 } PPCInfo;
134
135 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
136 void *opaque, const char *name, hwaddr size)
137 {
138 /*
139 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
140 * and return a pointer to its MemoryRegion.
141 */
142 UnimplementedDeviceState *uds = opaque;
143
144 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
145 qdev_prop_set_string(DEVICE(uds), "name", name);
146 qdev_prop_set_uint64(DEVICE(uds), "size", size);
147 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
148 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
149 }
150
151 typedef enum MPCInfoType {
152 MPC_RAM,
153 MPC_ROM,
154 MPC_CRYPTOISLAND,
155 } MPCInfoType;
156
157 struct MPCInfo {
158 const char *name;
159 hwaddr addr;
160 hwaddr size;
161 MPCInfoType type;
162 };
163
164 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
165 static const MPCInfo a_mpc_info[] = { {
166 .name = "qspi",
167 .type = MPC_ROM,
168 .addr = 0x00200000,
169 .size = 0x00800000,
170 }, {
171 .name = "sram",
172 .type = MPC_RAM,
173 .addr = 0x00000000,
174 .size = 0x00200000,
175 }
176 };
177
178 static const MPCInfo b1_mpc_info[] = { {
179 .name = "qspi",
180 .type = MPC_ROM,
181 .addr = 0x00000000,
182 .size = 0x02000000,
183 }, {
184 .name = "sram",
185 .type = MPC_RAM,
186 .addr = 0x0a400000,
187 .size = 0x00080000,
188 }, {
189 .name = "eflash0",
190 .type = MPC_ROM,
191 .addr = 0x0a000000,
192 .size = 0x00200000,
193 }, {
194 .name = "eflash1",
195 .type = MPC_ROM,
196 .addr = 0x0a200000,
197 .size = 0x00200000,
198 }, {
199 .name = "cryptoisland",
200 .type = MPC_CRYPTOISLAND,
201 .addr = 0x0a000000,
202 .size = 0x00200000,
203 }
204 };
205
206 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
207 const char *name, hwaddr size)
208 {
209 /*
210 * Create an MPC and the RAM or flash behind it.
211 * MPC 0: eFlash 0
212 * MPC 1: eFlash 1
213 * MPC 2: SRAM
214 * MPC 3: QSPI flash
215 * MPC 4: CryptoIsland
216 * For now we implement the flash regions as ROM (ie not programmable)
217 * (with their control interface memory regions being unimplemented
218 * stubs behind the PPCs).
219 * The whole CryptoIsland region behind its MPC is an unimplemented stub.
220 */
221 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
222 TZMPC *mpc = opaque;
223 int i = mpc - &mms->mpc[0];
224 MemoryRegion *downstream;
225 MemoryRegion *upstream;
226 UnimplementedDeviceState *uds;
227 char *mpcname;
228 const MPCInfo *mpcinfo = mmc->mpc_info;
229
230 mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
231
232 switch (mpcinfo[i].type) {
233 case MPC_ROM:
234 downstream = &mms->ram[i];
235 memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
236 mpcinfo[i].size, &error_fatal);
237 break;
238 case MPC_RAM:
239 downstream = &mms->ram[i];
240 memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
241 mpcinfo[i].size, &error_fatal);
242 break;
243 case MPC_CRYPTOISLAND:
244 /* We don't implement the CryptoIsland yet */
245 uds = &mms->cryptoisland;
246 object_initialize_child(OBJECT(mms), name, uds,
247 TYPE_UNIMPLEMENTED_DEVICE);
248 qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
249 qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
250 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
251 downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
252 break;
253 default:
254 g_assert_not_reached();
255 }
256
257 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
258 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
259 &error_fatal);
260 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
261 /* Map the upstream end of the MPC into system memory */
262 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
263 memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
264 /* and connect its interrupt to the SSE-200 */
265 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
266 qdev_get_gpio_in_named(DEVICE(&mms->sse),
267 "mpcexp_status", i));
268
269 g_free(mpcname);
270 /* Return the register interface MR for our caller to map behind the PPC */
271 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
272 }
273
274 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
275 const char *name, hwaddr size)
276 {
277 PL031State *rtc = opaque;
278
279 object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
280 sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
281 sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
282 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
283 }
284
285 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
286 const char *name, hwaddr size)
287 {
288 PL011State *uart = opaque;
289 int i = uart - &mms->uart[0];
290 int irqbase = 7 + i * 6;
291 SysBusDevice *s;
292
293 object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
294 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
295 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
296 s = SYS_BUS_DEVICE(uart);
297 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
298 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
299 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
300 sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
301 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
302 sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
303 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
304 }
305
306 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
307 const char *name, hwaddr size)
308 {
309 /*
310 * Create the container MemoryRegion for all the devices that live
311 * behind the Musca-A PPC's single port. These devices don't have a PPC
312 * port each, but we use the PPCPortInfo struct as a convenient way
313 * to describe them. Note that addresses here are relative to the base
314 * address of the PPC port region: 0x40100000, and devices appear both
315 * at the 0x4... NS region and the 0x5... S region.
316 */
317 int i;
318 MemoryRegion *container = &mms->container;
319
320 const PPCPortInfo devices[] = {
321 { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
322 { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
323 { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
324 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
325 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
326 { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
327 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
328 { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
329 { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
330 { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
331 { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
332 { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
333 { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
334 { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
335 { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
336 { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
337 };
338
339 memory_region_init(container, OBJECT(mms), "musca-device-container", size);
340
341 for (i = 0; i < ARRAY_SIZE(devices); i++) {
342 const PPCPortInfo *pinfo = &devices[i];
343 MemoryRegion *mr;
344
345 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
346 memory_region_add_subregion(container, pinfo->addr, mr);
347 }
348
349 return &mms->container;
350 }
351
352 static void musca_init(MachineState *machine)
353 {
354 MuscaMachineState *mms = MUSCA_MACHINE(machine);
355 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
356 MachineClass *mc = MACHINE_GET_CLASS(machine);
357 MemoryRegion *system_memory = get_system_memory();
358 DeviceState *ssedev;
359 DeviceState *dev_splitter;
360 const PPCInfo *ppcs;
361 int num_ppcs;
362 int i;
363
364 assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
365 assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
366
367 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
368 error_report("This board can only be used with CPU %s",
369 mc->default_cpu_type);
370 exit(1);
371 }
372
373 object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
374 TYPE_SSE200);
375 ssedev = DEVICE(&mms->sse);
376 object_property_set_link(OBJECT(&mms->sse), "memory",
377 OBJECT(system_memory), &error_fatal);
378 qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
379 qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
380 qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
381 qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
382 /*
383 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
384 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
385 */
386 if (mmc->type == MUSCA_B1) {
387 qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
388 qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
389 }
390 sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
391
392 /*
393 * We need to create splitters to feed the IRQ inputs
394 * for each CPU in the SSE-200 from each device in the board.
395 */
396 for (i = 0; i < mmc->num_irqs; i++) {
397 char *name = g_strdup_printf("musca-irq-splitter%d", i);
398 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
399
400 object_initialize_child_with_props(OBJECT(machine), name, splitter,
401 sizeof(*splitter), TYPE_SPLIT_IRQ,
402 &error_fatal, NULL);
403 g_free(name);
404
405 object_property_set_int(OBJECT(splitter), "num-lines", 2,
406 &error_fatal);
407 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
408 qdev_connect_gpio_out(DEVICE(splitter), 0,
409 qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
410 qdev_connect_gpio_out(DEVICE(splitter), 1,
411 qdev_get_gpio_in_named(ssedev,
412 "EXP_CPU1_IRQ", i));
413 }
414
415 /*
416 * The sec_resp_cfg output from the SSE-200 must be split into multiple
417 * lines, one for each of the PPCs we create here.
418 */
419 object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
420 &mms->sec_resp_splitter,
421 sizeof(mms->sec_resp_splitter),
422 TYPE_SPLIT_IRQ, &error_fatal, NULL);
423
424 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
425 ARRAY_SIZE(mms->ppc), &error_fatal);
426 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
427 dev_splitter = DEVICE(&mms->sec_resp_splitter);
428 qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
429 qdev_get_gpio_in(dev_splitter, 0));
430
431 /*
432 * Most of the devices in the board are behind Peripheral Protection
433 * Controllers. The required order for initializing things is:
434 * + initialize the PPC
435 * + initialize, configure and realize downstream devices
436 * + connect downstream device MemoryRegions to the PPC
437 * + realize the PPC
438 * + map the PPC's MemoryRegions to the places in the address map
439 * where the downstream devices should appear
440 * + wire up the PPC's control lines to the SSE object
441 *
442 * The PPC mapping differs for the -A and -B1 variants; the -A version
443 * is much simpler, using only a single port of a single PPC and putting
444 * all the devices behind that.
445 */
446 const PPCInfo a_ppcs[] = { {
447 .name = "ahb_ppcexp0",
448 .ports = {
449 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
450 },
451 },
452 };
453
454 /*
455 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
456 * and the 0x5.. S region. Devices listed with an 0x5.. address appear
457 * only in the S region.
458 */
459 const PPCInfo b1_ppcs[] = { {
460 .name = "apb_ppcexp0",
461 .ports = {
462 { "eflash0", make_unimp_dev, &mms->eflash[0],
463 0x52400000, 0x1000 },
464 { "eflash1", make_unimp_dev, &mms->eflash[1],
465 0x52500000, 0x1000 },
466 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
467 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
468 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
469 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
470 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
471 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
472 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
473 { }, /* port 9: unused */
474 { }, /* port 10: unused */
475 { }, /* port 11: unused */
476 { }, /* port 12: unused */
477 { }, /* port 13: unused */
478 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
479 },
480 }, {
481 .name = "apb_ppcexp1",
482 .ports = {
483 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
484 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
485 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
486 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
487 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
488 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
489 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
490 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
491 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
492 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
493 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
494 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
495 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
496 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
497 },
498 }, {
499 .name = "ahb_ppcexp0",
500 .ports = {
501 { }, /* port 0: unused */
502 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
503 },
504 },
505 };
506
507 switch (mmc->type) {
508 case MUSCA_A:
509 ppcs = a_ppcs;
510 num_ppcs = ARRAY_SIZE(a_ppcs);
511 break;
512 case MUSCA_B1:
513 ppcs = b1_ppcs;
514 num_ppcs = ARRAY_SIZE(b1_ppcs);
515 break;
516 default:
517 g_assert_not_reached();
518 }
519 assert(num_ppcs <= MUSCA_PPC_MAX);
520
521 for (i = 0; i < num_ppcs; i++) {
522 const PPCInfo *ppcinfo = &ppcs[i];
523 TZPPC *ppc = &mms->ppc[i];
524 DeviceState *ppcdev;
525 int port;
526 char *gpioname;
527
528 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
529 TYPE_TZ_PPC);
530 ppcdev = DEVICE(ppc);
531
532 for (port = 0; port < TZ_NUM_PORTS; port++) {
533 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
534 MemoryRegion *mr;
535 char *portname;
536
537 if (!pinfo->devfn) {
538 continue;
539 }
540
541 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
542 portname = g_strdup_printf("port[%d]", port);
543 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
544 &error_fatal);
545 g_free(portname);
546 }
547
548 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
549
550 for (port = 0; port < TZ_NUM_PORTS; port++) {
551 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
552
553 if (!pinfo->devfn) {
554 continue;
555 }
556 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
557
558 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
559 qdev_connect_gpio_out_named(ssedev, gpioname, port,
560 qdev_get_gpio_in_named(ppcdev,
561 "cfg_nonsec",
562 port));
563 g_free(gpioname);
564 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
565 qdev_connect_gpio_out_named(ssedev, gpioname, port,
566 qdev_get_gpio_in_named(ppcdev,
567 "cfg_ap", port));
568 g_free(gpioname);
569 }
570
571 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
572 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
573 qdev_get_gpio_in_named(ppcdev,
574 "irq_enable", 0));
575 g_free(gpioname);
576 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
577 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
578 qdev_get_gpio_in_named(ppcdev,
579 "irq_clear", 0));
580 g_free(gpioname);
581 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
582 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
583 qdev_get_gpio_in_named(ssedev,
584 gpioname, 0));
585 g_free(gpioname);
586
587 qdev_connect_gpio_out(dev_splitter, i,
588 qdev_get_gpio_in_named(ppcdev,
589 "cfg_sec_resp", 0));
590 }
591
592 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
593 }
594
595 static void musca_class_init(ObjectClass *oc, void *data)
596 {
597 MachineClass *mc = MACHINE_CLASS(oc);
598
599 mc->default_cpus = 2;
600 mc->min_cpus = mc->default_cpus;
601 mc->max_cpus = mc->default_cpus;
602 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
603 mc->init = musca_init;
604 }
605
606 static void musca_a_class_init(ObjectClass *oc, void *data)
607 {
608 MachineClass *mc = MACHINE_CLASS(oc);
609 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
610
611 mc->desc = "ARM Musca-A board (dual Cortex-M33)";
612 mmc->type = MUSCA_A;
613 mmc->init_svtor = 0x10200000;
614 mmc->sram_addr_width = 15;
615 mmc->num_irqs = 64;
616 mmc->mpc_info = a_mpc_info;
617 mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
618 }
619
620 static void musca_b1_class_init(ObjectClass *oc, void *data)
621 {
622 MachineClass *mc = MACHINE_CLASS(oc);
623 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
624
625 mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
626 mmc->type = MUSCA_B1;
627 /*
628 * This matches the DAPlink firmware which boots from QSPI. There
629 * is also a firmware blob which boots from the eFlash, which
630 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
631 * though we could in theory expose a machine property on the command
632 * line to allow the user to request eFlash boot.
633 */
634 mmc->init_svtor = 0x10000000;
635 mmc->sram_addr_width = 17;
636 mmc->num_irqs = 96;
637 mmc->mpc_info = b1_mpc_info;
638 mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
639 }
640
641 static const TypeInfo musca_info = {
642 .name = TYPE_MUSCA_MACHINE,
643 .parent = TYPE_MACHINE,
644 .abstract = true,
645 .instance_size = sizeof(MuscaMachineState),
646 .class_size = sizeof(MuscaMachineClass),
647 .class_init = musca_class_init,
648 };
649
650 static const TypeInfo musca_a_info = {
651 .name = TYPE_MUSCA_A_MACHINE,
652 .parent = TYPE_MUSCA_MACHINE,
653 .class_init = musca_a_class_init,
654 };
655
656 static const TypeInfo musca_b1_info = {
657 .name = TYPE_MUSCA_B1_MACHINE,
658 .parent = TYPE_MUSCA_MACHINE,
659 .class_init = musca_b1_class_init,
660 };
661
662 static void musca_machine_init(void)
663 {
664 type_register_static(&musca_info);
665 type_register_static(&musca_a_info);
666 type_register_static(&musca_b1_info);
667 }
668
669 type_init(musca_machine_init);