]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/omap1.c
Change references to serial_hds[] to serial_hd()
[mirror_qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "hw/boards.h"
26 #include "hw/hw.h"
27 #include "hw/arm/arm.h"
28 #include "hw/arm/omap.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/arm/soc_dma.h"
31 #include "sysemu/block-backend.h"
32 #include "sysemu/blockdev.h"
33 #include "qemu/range.h"
34 #include "hw/sysbus.h"
35 #include "qemu/cutils.h"
36 #include "qemu/bcd.h"
37
38 /* Should signal the TCMI/GPMC */
39 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
40 {
41 uint8_t ret;
42
43 OMAP_8B_REG(addr);
44 cpu_physical_memory_read(addr, &ret, 1);
45 return ret;
46 }
47
48 void omap_badwidth_write8(void *opaque, hwaddr addr,
49 uint32_t value)
50 {
51 uint8_t val8 = value;
52
53 OMAP_8B_REG(addr);
54 cpu_physical_memory_write(addr, &val8, 1);
55 }
56
57 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
58 {
59 uint16_t ret;
60
61 OMAP_16B_REG(addr);
62 cpu_physical_memory_read(addr, &ret, 2);
63 return ret;
64 }
65
66 void omap_badwidth_write16(void *opaque, hwaddr addr,
67 uint32_t value)
68 {
69 uint16_t val16 = value;
70
71 OMAP_16B_REG(addr);
72 cpu_physical_memory_write(addr, &val16, 2);
73 }
74
75 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
76 {
77 uint32_t ret;
78
79 OMAP_32B_REG(addr);
80 cpu_physical_memory_read(addr, &ret, 4);
81 return ret;
82 }
83
84 void omap_badwidth_write32(void *opaque, hwaddr addr,
85 uint32_t value)
86 {
87 OMAP_32B_REG(addr);
88 cpu_physical_memory_write(addr, &value, 4);
89 }
90
91 /* MPU OS timers */
92 struct omap_mpu_timer_s {
93 MemoryRegion iomem;
94 qemu_irq irq;
95 omap_clk clk;
96 uint32_t val;
97 int64_t time;
98 QEMUTimer *timer;
99 QEMUBH *tick;
100 int64_t rate;
101 int it_ena;
102
103 int enable;
104 int ptv;
105 int ar;
106 int st;
107 uint32_t reset_val;
108 };
109
110 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
111 {
112 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
113
114 if (timer->st && timer->enable && timer->rate)
115 return timer->val - muldiv64(distance >> (timer->ptv + 1),
116 timer->rate, NANOSECONDS_PER_SECOND);
117 else
118 return timer->val;
119 }
120
121 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
122 {
123 timer->val = omap_timer_read(timer);
124 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
125 }
126
127 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
128 {
129 int64_t expires;
130
131 if (timer->enable && timer->st && timer->rate) {
132 timer->val = timer->reset_val; /* Should skip this on clk enable */
133 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
134 NANOSECONDS_PER_SECOND, timer->rate);
135
136 /* If timer expiry would be sooner than in about 1 ms and
137 * auto-reload isn't set, then fire immediately. This is a hack
138 * to make systems like PalmOS run in acceptable time. PalmOS
139 * sets the interval to a very low value and polls the status bit
140 * in a busy loop when it wants to sleep just a couple of CPU
141 * ticks. */
142 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
143 timer_mod(timer->timer, timer->time + expires);
144 } else {
145 qemu_bh_schedule(timer->tick);
146 }
147 } else
148 timer_del(timer->timer);
149 }
150
151 static void omap_timer_fire(void *opaque)
152 {
153 struct omap_mpu_timer_s *timer = opaque;
154
155 if (!timer->ar) {
156 timer->val = 0;
157 timer->st = 0;
158 }
159
160 if (timer->it_ena)
161 /* Edge-triggered irq */
162 qemu_irq_pulse(timer->irq);
163 }
164
165 static void omap_timer_tick(void *opaque)
166 {
167 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168
169 omap_timer_sync(timer);
170 omap_timer_fire(timer);
171 omap_timer_update(timer);
172 }
173
174 static void omap_timer_clk_update(void *opaque, int line, int on)
175 {
176 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
177
178 omap_timer_sync(timer);
179 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
180 omap_timer_update(timer);
181 }
182
183 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
184 {
185 omap_clk_adduser(timer->clk,
186 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
187 timer->rate = omap_clk_getrate(timer->clk);
188 }
189
190 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
191 unsigned size)
192 {
193 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
194
195 if (size != 4) {
196 return omap_badwidth_read32(opaque, addr);
197 }
198
199 switch (addr) {
200 case 0x00: /* CNTL_TIMER */
201 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
202
203 case 0x04: /* LOAD_TIM */
204 break;
205
206 case 0x08: /* READ_TIM */
207 return omap_timer_read(s);
208 }
209
210 OMAP_BAD_REG(addr);
211 return 0;
212 }
213
214 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
215 uint64_t value, unsigned size)
216 {
217 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
218
219 if (size != 4) {
220 omap_badwidth_write32(opaque, addr, value);
221 return;
222 }
223
224 switch (addr) {
225 case 0x00: /* CNTL_TIMER */
226 omap_timer_sync(s);
227 s->enable = (value >> 5) & 1;
228 s->ptv = (value >> 2) & 7;
229 s->ar = (value >> 1) & 1;
230 s->st = value & 1;
231 omap_timer_update(s);
232 return;
233
234 case 0x04: /* LOAD_TIM */
235 s->reset_val = value;
236 return;
237
238 case 0x08: /* READ_TIM */
239 OMAP_RO_REG(addr);
240 break;
241
242 default:
243 OMAP_BAD_REG(addr);
244 }
245 }
246
247 static const MemoryRegionOps omap_mpu_timer_ops = {
248 .read = omap_mpu_timer_read,
249 .write = omap_mpu_timer_write,
250 .endianness = DEVICE_LITTLE_ENDIAN,
251 };
252
253 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
254 {
255 timer_del(s->timer);
256 s->enable = 0;
257 s->reset_val = 31337;
258 s->val = 0;
259 s->ptv = 0;
260 s->ar = 0;
261 s->st = 0;
262 s->it_ena = 1;
263 }
264
265 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
266 hwaddr base,
267 qemu_irq irq, omap_clk clk)
268 {
269 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
270
271 s->irq = irq;
272 s->clk = clk;
273 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
274 s->tick = qemu_bh_new(omap_timer_fire, s);
275 omap_mpu_timer_reset(s);
276 omap_timer_clk_setup(s);
277
278 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
279 "omap-mpu-timer", 0x100);
280
281 memory_region_add_subregion(system_memory, base, &s->iomem);
282
283 return s;
284 }
285
286 /* Watchdog timer */
287 struct omap_watchdog_timer_s {
288 struct omap_mpu_timer_s timer;
289 MemoryRegion iomem;
290 uint8_t last_wr;
291 int mode;
292 int free;
293 int reset;
294 };
295
296 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
297 unsigned size)
298 {
299 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
300
301 if (size != 2) {
302 return omap_badwidth_read16(opaque, addr);
303 }
304
305 switch (addr) {
306 case 0x00: /* CNTL_TIMER */
307 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
308 (s->timer.st << 7) | (s->free << 1);
309
310 case 0x04: /* READ_TIMER */
311 return omap_timer_read(&s->timer);
312
313 case 0x08: /* TIMER_MODE */
314 return s->mode << 15;
315 }
316
317 OMAP_BAD_REG(addr);
318 return 0;
319 }
320
321 static void omap_wd_timer_write(void *opaque, hwaddr addr,
322 uint64_t value, unsigned size)
323 {
324 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
325
326 if (size != 2) {
327 omap_badwidth_write16(opaque, addr, value);
328 return;
329 }
330
331 switch (addr) {
332 case 0x00: /* CNTL_TIMER */
333 omap_timer_sync(&s->timer);
334 s->timer.ptv = (value >> 9) & 7;
335 s->timer.ar = (value >> 8) & 1;
336 s->timer.st = (value >> 7) & 1;
337 s->free = (value >> 1) & 1;
338 omap_timer_update(&s->timer);
339 break;
340
341 case 0x04: /* LOAD_TIMER */
342 s->timer.reset_val = value & 0xffff;
343 break;
344
345 case 0x08: /* TIMER_MODE */
346 if (!s->mode && ((value >> 15) & 1))
347 omap_clk_get(s->timer.clk);
348 s->mode |= (value >> 15) & 1;
349 if (s->last_wr == 0xf5) {
350 if ((value & 0xff) == 0xa0) {
351 if (s->mode) {
352 s->mode = 0;
353 omap_clk_put(s->timer.clk);
354 }
355 } else {
356 /* XXX: on T|E hardware somehow this has no effect,
357 * on Zire 71 it works as specified. */
358 s->reset = 1;
359 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
360 }
361 }
362 s->last_wr = value & 0xff;
363 break;
364
365 default:
366 OMAP_BAD_REG(addr);
367 }
368 }
369
370 static const MemoryRegionOps omap_wd_timer_ops = {
371 .read = omap_wd_timer_read,
372 .write = omap_wd_timer_write,
373 .endianness = DEVICE_NATIVE_ENDIAN,
374 };
375
376 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
377 {
378 timer_del(s->timer.timer);
379 if (!s->mode)
380 omap_clk_get(s->timer.clk);
381 s->mode = 1;
382 s->free = 1;
383 s->reset = 0;
384 s->timer.enable = 1;
385 s->timer.it_ena = 1;
386 s->timer.reset_val = 0xffff;
387 s->timer.val = 0;
388 s->timer.st = 0;
389 s->timer.ptv = 0;
390 s->timer.ar = 0;
391 omap_timer_update(&s->timer);
392 }
393
394 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
395 hwaddr base,
396 qemu_irq irq, omap_clk clk)
397 {
398 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
399
400 s->timer.irq = irq;
401 s->timer.clk = clk;
402 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
403 omap_wd_timer_reset(s);
404 omap_timer_clk_setup(&s->timer);
405
406 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
407 "omap-wd-timer", 0x100);
408 memory_region_add_subregion(memory, base, &s->iomem);
409
410 return s;
411 }
412
413 /* 32-kHz timer */
414 struct omap_32khz_timer_s {
415 struct omap_mpu_timer_s timer;
416 MemoryRegion iomem;
417 };
418
419 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
420 unsigned size)
421 {
422 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
423 int offset = addr & OMAP_MPUI_REG_MASK;
424
425 if (size != 4) {
426 return omap_badwidth_read32(opaque, addr);
427 }
428
429 switch (offset) {
430 case 0x00: /* TVR */
431 return s->timer.reset_val;
432
433 case 0x04: /* TCR */
434 return omap_timer_read(&s->timer);
435
436 case 0x08: /* CR */
437 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
438
439 default:
440 break;
441 }
442 OMAP_BAD_REG(addr);
443 return 0;
444 }
445
446 static void omap_os_timer_write(void *opaque, hwaddr addr,
447 uint64_t value, unsigned size)
448 {
449 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
450 int offset = addr & OMAP_MPUI_REG_MASK;
451
452 if (size != 4) {
453 omap_badwidth_write32(opaque, addr, value);
454 return;
455 }
456
457 switch (offset) {
458 case 0x00: /* TVR */
459 s->timer.reset_val = value & 0x00ffffff;
460 break;
461
462 case 0x04: /* TCR */
463 OMAP_RO_REG(addr);
464 break;
465
466 case 0x08: /* CR */
467 s->timer.ar = (value >> 3) & 1;
468 s->timer.it_ena = (value >> 2) & 1;
469 if (s->timer.st != (value & 1) || (value & 2)) {
470 omap_timer_sync(&s->timer);
471 s->timer.enable = value & 1;
472 s->timer.st = value & 1;
473 omap_timer_update(&s->timer);
474 }
475 break;
476
477 default:
478 OMAP_BAD_REG(addr);
479 }
480 }
481
482 static const MemoryRegionOps omap_os_timer_ops = {
483 .read = omap_os_timer_read,
484 .write = omap_os_timer_write,
485 .endianness = DEVICE_NATIVE_ENDIAN,
486 };
487
488 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
489 {
490 timer_del(s->timer.timer);
491 s->timer.enable = 0;
492 s->timer.it_ena = 0;
493 s->timer.reset_val = 0x00ffffff;
494 s->timer.val = 0;
495 s->timer.st = 0;
496 s->timer.ptv = 0;
497 s->timer.ar = 1;
498 }
499
500 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
501 hwaddr base,
502 qemu_irq irq, omap_clk clk)
503 {
504 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
505
506 s->timer.irq = irq;
507 s->timer.clk = clk;
508 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
509 omap_os_timer_reset(s);
510 omap_timer_clk_setup(&s->timer);
511
512 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
513 "omap-os-timer", 0x800);
514 memory_region_add_subregion(memory, base, &s->iomem);
515
516 return s;
517 }
518
519 /* Ultra Low-Power Device Module */
520 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
521 unsigned size)
522 {
523 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
524 uint16_t ret;
525
526 if (size != 2) {
527 return omap_badwidth_read16(opaque, addr);
528 }
529
530 switch (addr) {
531 case 0x14: /* IT_STATUS */
532 ret = s->ulpd_pm_regs[addr >> 2];
533 s->ulpd_pm_regs[addr >> 2] = 0;
534 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
535 return ret;
536
537 case 0x18: /* Reserved */
538 case 0x1c: /* Reserved */
539 case 0x20: /* Reserved */
540 case 0x28: /* Reserved */
541 case 0x2c: /* Reserved */
542 OMAP_BAD_REG(addr);
543 /* fall through */
544 case 0x00: /* COUNTER_32_LSB */
545 case 0x04: /* COUNTER_32_MSB */
546 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
547 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
548 case 0x10: /* GAUGING_CTRL */
549 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
550 case 0x30: /* CLOCK_CTRL */
551 case 0x34: /* SOFT_REQ */
552 case 0x38: /* COUNTER_32_FIQ */
553 case 0x3c: /* DPLL_CTRL */
554 case 0x40: /* STATUS_REQ */
555 /* XXX: check clk::usecount state for every clock */
556 case 0x48: /* LOCL_TIME */
557 case 0x4c: /* APLL_CTRL */
558 case 0x50: /* POWER_CTRL */
559 return s->ulpd_pm_regs[addr >> 2];
560 }
561
562 OMAP_BAD_REG(addr);
563 return 0;
564 }
565
566 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
567 uint16_t diff, uint16_t value)
568 {
569 if (diff & (1 << 4)) /* USB_MCLK_EN */
570 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
571 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
572 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
573 }
574
575 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
576 uint16_t diff, uint16_t value)
577 {
578 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
579 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
580 if (diff & (1 << 1)) /* SOFT_COM_REQ */
581 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
582 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
583 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
584 if (diff & (1 << 3)) /* SOFT_USB_REQ */
585 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
586 }
587
588 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
589 uint64_t value, unsigned size)
590 {
591 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
592 int64_t now, ticks;
593 int div, mult;
594 static const int bypass_div[4] = { 1, 2, 4, 4 };
595 uint16_t diff;
596
597 if (size != 2) {
598 omap_badwidth_write16(opaque, addr, value);
599 return;
600 }
601
602 switch (addr) {
603 case 0x00: /* COUNTER_32_LSB */
604 case 0x04: /* COUNTER_32_MSB */
605 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
606 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
607 case 0x14: /* IT_STATUS */
608 case 0x40: /* STATUS_REQ */
609 OMAP_RO_REG(addr);
610 break;
611
612 case 0x10: /* GAUGING_CTRL */
613 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
614 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
615 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
616
617 if (value & 1)
618 s->ulpd_gauge_start = now;
619 else {
620 now -= s->ulpd_gauge_start;
621
622 /* 32-kHz ticks */
623 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
624 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
625 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
626 if (ticks >> 32) /* OVERFLOW_32K */
627 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
628
629 /* High frequency ticks */
630 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
631 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
632 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
633 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
634 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
635
636 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
637 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
638 }
639 }
640 s->ulpd_pm_regs[addr >> 2] = value;
641 break;
642
643 case 0x18: /* Reserved */
644 case 0x1c: /* Reserved */
645 case 0x20: /* Reserved */
646 case 0x28: /* Reserved */
647 case 0x2c: /* Reserved */
648 OMAP_BAD_REG(addr);
649 /* fall through */
650 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
651 case 0x38: /* COUNTER_32_FIQ */
652 case 0x48: /* LOCL_TIME */
653 case 0x50: /* POWER_CTRL */
654 s->ulpd_pm_regs[addr >> 2] = value;
655 break;
656
657 case 0x30: /* CLOCK_CTRL */
658 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
659 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
660 omap_ulpd_clk_update(s, diff, value);
661 break;
662
663 case 0x34: /* SOFT_REQ */
664 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
665 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
666 omap_ulpd_req_update(s, diff, value);
667 break;
668
669 case 0x3c: /* DPLL_CTRL */
670 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
671 * omitted altogether, probably a typo. */
672 /* This register has identical semantics with DPLL(1:3) control
673 * registers, see omap_dpll_write() */
674 diff = s->ulpd_pm_regs[addr >> 2] & value;
675 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
676 if (diff & (0x3ff << 2)) {
677 if (value & (1 << 4)) { /* PLL_ENABLE */
678 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
679 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
680 } else {
681 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
682 mult = 1;
683 }
684 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
685 }
686
687 /* Enter the desired mode. */
688 s->ulpd_pm_regs[addr >> 2] =
689 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
690 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
691
692 /* Act as if the lock is restored. */
693 s->ulpd_pm_regs[addr >> 2] |= 2;
694 break;
695
696 case 0x4c: /* APLL_CTRL */
697 diff = s->ulpd_pm_regs[addr >> 2] & value;
698 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
699 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
700 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
701 (value & (1 << 0)) ? "apll" : "dpll4"));
702 break;
703
704 default:
705 OMAP_BAD_REG(addr);
706 }
707 }
708
709 static const MemoryRegionOps omap_ulpd_pm_ops = {
710 .read = omap_ulpd_pm_read,
711 .write = omap_ulpd_pm_write,
712 .endianness = DEVICE_NATIVE_ENDIAN,
713 };
714
715 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
716 {
717 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
718 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
719 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
720 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
721 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
722 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
723 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
724 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
725 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
726 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
727 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
728 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
729 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
730 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
731 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
732 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
733 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
734 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
735 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
736 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
737 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
738 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
739 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
740 }
741
742 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
743 hwaddr base,
744 struct omap_mpu_state_s *mpu)
745 {
746 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
747 "omap-ulpd-pm", 0x800);
748 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
749 omap_ulpd_pm_reset(mpu);
750 }
751
752 /* OMAP Pin Configuration */
753 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
754 unsigned size)
755 {
756 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
757
758 if (size != 4) {
759 return omap_badwidth_read32(opaque, addr);
760 }
761
762 switch (addr) {
763 case 0x00: /* FUNC_MUX_CTRL_0 */
764 case 0x04: /* FUNC_MUX_CTRL_1 */
765 case 0x08: /* FUNC_MUX_CTRL_2 */
766 return s->func_mux_ctrl[addr >> 2];
767
768 case 0x0c: /* COMP_MODE_CTRL_0 */
769 return s->comp_mode_ctrl[0];
770
771 case 0x10: /* FUNC_MUX_CTRL_3 */
772 case 0x14: /* FUNC_MUX_CTRL_4 */
773 case 0x18: /* FUNC_MUX_CTRL_5 */
774 case 0x1c: /* FUNC_MUX_CTRL_6 */
775 case 0x20: /* FUNC_MUX_CTRL_7 */
776 case 0x24: /* FUNC_MUX_CTRL_8 */
777 case 0x28: /* FUNC_MUX_CTRL_9 */
778 case 0x2c: /* FUNC_MUX_CTRL_A */
779 case 0x30: /* FUNC_MUX_CTRL_B */
780 case 0x34: /* FUNC_MUX_CTRL_C */
781 case 0x38: /* FUNC_MUX_CTRL_D */
782 return s->func_mux_ctrl[(addr >> 2) - 1];
783
784 case 0x40: /* PULL_DWN_CTRL_0 */
785 case 0x44: /* PULL_DWN_CTRL_1 */
786 case 0x48: /* PULL_DWN_CTRL_2 */
787 case 0x4c: /* PULL_DWN_CTRL_3 */
788 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
789
790 case 0x50: /* GATE_INH_CTRL_0 */
791 return s->gate_inh_ctrl[0];
792
793 case 0x60: /* VOLTAGE_CTRL_0 */
794 return s->voltage_ctrl[0];
795
796 case 0x70: /* TEST_DBG_CTRL_0 */
797 return s->test_dbg_ctrl[0];
798
799 case 0x80: /* MOD_CONF_CTRL_0 */
800 return s->mod_conf_ctrl[0];
801 }
802
803 OMAP_BAD_REG(addr);
804 return 0;
805 }
806
807 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
808 uint32_t diff, uint32_t value)
809 {
810 if (s->compat1509) {
811 if (diff & (1 << 9)) /* BLUETOOTH */
812 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
813 (~value >> 9) & 1);
814 if (diff & (1 << 7)) /* USB.CLKO */
815 omap_clk_onoff(omap_findclk(s, "usb.clko"),
816 (value >> 7) & 1);
817 }
818 }
819
820 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
821 uint32_t diff, uint32_t value)
822 {
823 if (s->compat1509) {
824 if (diff & (1U << 31)) {
825 /* MCBSP3_CLK_HIZ_DI */
826 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
827 }
828 if (diff & (1 << 1)) {
829 /* CLK32K */
830 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
831 }
832 }
833 }
834
835 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
836 uint32_t diff, uint32_t value)
837 {
838 if (diff & (1U << 31)) {
839 /* CONF_MOD_UART3_CLK_MODE_R */
840 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
841 omap_findclk(s, ((value >> 31) & 1) ?
842 "ck_48m" : "armper_ck"));
843 }
844 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
845 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
846 omap_findclk(s, ((value >> 30) & 1) ?
847 "ck_48m" : "armper_ck"));
848 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
849 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
850 omap_findclk(s, ((value >> 29) & 1) ?
851 "ck_48m" : "armper_ck"));
852 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
853 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
854 omap_findclk(s, ((value >> 23) & 1) ?
855 "ck_48m" : "armper_ck"));
856 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
857 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
858 omap_findclk(s, ((value >> 12) & 1) ?
859 "ck_48m" : "armper_ck"));
860 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
861 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
862 }
863
864 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
865 uint64_t value, unsigned size)
866 {
867 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
868 uint32_t diff;
869
870 if (size != 4) {
871 omap_badwidth_write32(opaque, addr, value);
872 return;
873 }
874
875 switch (addr) {
876 case 0x00: /* FUNC_MUX_CTRL_0 */
877 diff = s->func_mux_ctrl[addr >> 2] ^ value;
878 s->func_mux_ctrl[addr >> 2] = value;
879 omap_pin_funcmux0_update(s, diff, value);
880 return;
881
882 case 0x04: /* FUNC_MUX_CTRL_1 */
883 diff = s->func_mux_ctrl[addr >> 2] ^ value;
884 s->func_mux_ctrl[addr >> 2] = value;
885 omap_pin_funcmux1_update(s, diff, value);
886 return;
887
888 case 0x08: /* FUNC_MUX_CTRL_2 */
889 s->func_mux_ctrl[addr >> 2] = value;
890 return;
891
892 case 0x0c: /* COMP_MODE_CTRL_0 */
893 s->comp_mode_ctrl[0] = value;
894 s->compat1509 = (value != 0x0000eaef);
895 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
896 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
897 return;
898
899 case 0x10: /* FUNC_MUX_CTRL_3 */
900 case 0x14: /* FUNC_MUX_CTRL_4 */
901 case 0x18: /* FUNC_MUX_CTRL_5 */
902 case 0x1c: /* FUNC_MUX_CTRL_6 */
903 case 0x20: /* FUNC_MUX_CTRL_7 */
904 case 0x24: /* FUNC_MUX_CTRL_8 */
905 case 0x28: /* FUNC_MUX_CTRL_9 */
906 case 0x2c: /* FUNC_MUX_CTRL_A */
907 case 0x30: /* FUNC_MUX_CTRL_B */
908 case 0x34: /* FUNC_MUX_CTRL_C */
909 case 0x38: /* FUNC_MUX_CTRL_D */
910 s->func_mux_ctrl[(addr >> 2) - 1] = value;
911 return;
912
913 case 0x40: /* PULL_DWN_CTRL_0 */
914 case 0x44: /* PULL_DWN_CTRL_1 */
915 case 0x48: /* PULL_DWN_CTRL_2 */
916 case 0x4c: /* PULL_DWN_CTRL_3 */
917 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
918 return;
919
920 case 0x50: /* GATE_INH_CTRL_0 */
921 s->gate_inh_ctrl[0] = value;
922 return;
923
924 case 0x60: /* VOLTAGE_CTRL_0 */
925 s->voltage_ctrl[0] = value;
926 return;
927
928 case 0x70: /* TEST_DBG_CTRL_0 */
929 s->test_dbg_ctrl[0] = value;
930 return;
931
932 case 0x80: /* MOD_CONF_CTRL_0 */
933 diff = s->mod_conf_ctrl[0] ^ value;
934 s->mod_conf_ctrl[0] = value;
935 omap_pin_modconf1_update(s, diff, value);
936 return;
937
938 default:
939 OMAP_BAD_REG(addr);
940 }
941 }
942
943 static const MemoryRegionOps omap_pin_cfg_ops = {
944 .read = omap_pin_cfg_read,
945 .write = omap_pin_cfg_write,
946 .endianness = DEVICE_NATIVE_ENDIAN,
947 };
948
949 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
950 {
951 /* Start in Compatibility Mode. */
952 mpu->compat1509 = 1;
953 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
954 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
955 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
956 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
957 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
958 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
959 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
960 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
961 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
962 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
963 }
964
965 static void omap_pin_cfg_init(MemoryRegion *system_memory,
966 hwaddr base,
967 struct omap_mpu_state_s *mpu)
968 {
969 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
970 "omap-pin-cfg", 0x800);
971 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
972 omap_pin_cfg_reset(mpu);
973 }
974
975 /* Device Identification, Die Identification */
976 static uint64_t omap_id_read(void *opaque, hwaddr addr,
977 unsigned size)
978 {
979 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
980
981 if (size != 4) {
982 return omap_badwidth_read32(opaque, addr);
983 }
984
985 switch (addr) {
986 case 0xfffe1800: /* DIE_ID_LSB */
987 return 0xc9581f0e;
988 case 0xfffe1804: /* DIE_ID_MSB */
989 return 0xa8858bfa;
990
991 case 0xfffe2000: /* PRODUCT_ID_LSB */
992 return 0x00aaaafc;
993 case 0xfffe2004: /* PRODUCT_ID_MSB */
994 return 0xcafeb574;
995
996 case 0xfffed400: /* JTAG_ID_LSB */
997 switch (s->mpu_model) {
998 case omap310:
999 return 0x03310315;
1000 case omap1510:
1001 return 0x03310115;
1002 default:
1003 hw_error("%s: bad mpu model\n", __func__);
1004 }
1005 break;
1006
1007 case 0xfffed404: /* JTAG_ID_MSB */
1008 switch (s->mpu_model) {
1009 case omap310:
1010 return 0xfb57402f;
1011 case omap1510:
1012 return 0xfb47002f;
1013 default:
1014 hw_error("%s: bad mpu model\n", __func__);
1015 }
1016 break;
1017 }
1018
1019 OMAP_BAD_REG(addr);
1020 return 0;
1021 }
1022
1023 static void omap_id_write(void *opaque, hwaddr addr,
1024 uint64_t value, unsigned size)
1025 {
1026 if (size != 4) {
1027 omap_badwidth_write32(opaque, addr, value);
1028 return;
1029 }
1030
1031 OMAP_BAD_REG(addr);
1032 }
1033
1034 static const MemoryRegionOps omap_id_ops = {
1035 .read = omap_id_read,
1036 .write = omap_id_write,
1037 .endianness = DEVICE_NATIVE_ENDIAN,
1038 };
1039
1040 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1041 {
1042 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1043 "omap-id", 0x100000000ULL);
1044 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1045 0xfffe1800, 0x800);
1046 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1047 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1048 0xfffed400, 0x100);
1049 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1050 if (!cpu_is_omap15xx(mpu)) {
1051 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1052 &mpu->id_iomem, 0xfffe2000, 0x800);
1053 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1054 }
1055 }
1056
1057 /* MPUI Control (Dummy) */
1058 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1059 unsigned size)
1060 {
1061 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1062
1063 if (size != 4) {
1064 return omap_badwidth_read32(opaque, addr);
1065 }
1066
1067 switch (addr) {
1068 case 0x00: /* CTRL */
1069 return s->mpui_ctrl;
1070 case 0x04: /* DEBUG_ADDR */
1071 return 0x01ffffff;
1072 case 0x08: /* DEBUG_DATA */
1073 return 0xffffffff;
1074 case 0x0c: /* DEBUG_FLAG */
1075 return 0x00000800;
1076 case 0x10: /* STATUS */
1077 return 0x00000000;
1078
1079 /* Not in OMAP310 */
1080 case 0x14: /* DSP_STATUS */
1081 case 0x18: /* DSP_BOOT_CONFIG */
1082 return 0x00000000;
1083 case 0x1c: /* DSP_MPUI_CONFIG */
1084 return 0x0000ffff;
1085 }
1086
1087 OMAP_BAD_REG(addr);
1088 return 0;
1089 }
1090
1091 static void omap_mpui_write(void *opaque, hwaddr addr,
1092 uint64_t value, unsigned size)
1093 {
1094 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1095
1096 if (size != 4) {
1097 omap_badwidth_write32(opaque, addr, value);
1098 return;
1099 }
1100
1101 switch (addr) {
1102 case 0x00: /* CTRL */
1103 s->mpui_ctrl = value & 0x007fffff;
1104 break;
1105
1106 case 0x04: /* DEBUG_ADDR */
1107 case 0x08: /* DEBUG_DATA */
1108 case 0x0c: /* DEBUG_FLAG */
1109 case 0x10: /* STATUS */
1110 /* Not in OMAP310 */
1111 case 0x14: /* DSP_STATUS */
1112 OMAP_RO_REG(addr);
1113 break;
1114 case 0x18: /* DSP_BOOT_CONFIG */
1115 case 0x1c: /* DSP_MPUI_CONFIG */
1116 break;
1117
1118 default:
1119 OMAP_BAD_REG(addr);
1120 }
1121 }
1122
1123 static const MemoryRegionOps omap_mpui_ops = {
1124 .read = omap_mpui_read,
1125 .write = omap_mpui_write,
1126 .endianness = DEVICE_NATIVE_ENDIAN,
1127 };
1128
1129 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1130 {
1131 s->mpui_ctrl = 0x0003ff1b;
1132 }
1133
1134 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1135 struct omap_mpu_state_s *mpu)
1136 {
1137 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1138 "omap-mpui", 0x100);
1139 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1140
1141 omap_mpui_reset(mpu);
1142 }
1143
1144 /* TIPB Bridges */
1145 struct omap_tipb_bridge_s {
1146 qemu_irq abort;
1147 MemoryRegion iomem;
1148
1149 int width_intr;
1150 uint16_t control;
1151 uint16_t alloc;
1152 uint16_t buffer;
1153 uint16_t enh_control;
1154 };
1155
1156 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1157 unsigned size)
1158 {
1159 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1160
1161 if (size < 2) {
1162 return omap_badwidth_read16(opaque, addr);
1163 }
1164
1165 switch (addr) {
1166 case 0x00: /* TIPB_CNTL */
1167 return s->control;
1168 case 0x04: /* TIPB_BUS_ALLOC */
1169 return s->alloc;
1170 case 0x08: /* MPU_TIPB_CNTL */
1171 return s->buffer;
1172 case 0x0c: /* ENHANCED_TIPB_CNTL */
1173 return s->enh_control;
1174 case 0x10: /* ADDRESS_DBG */
1175 case 0x14: /* DATA_DEBUG_LOW */
1176 case 0x18: /* DATA_DEBUG_HIGH */
1177 return 0xffff;
1178 case 0x1c: /* DEBUG_CNTR_SIG */
1179 return 0x00f8;
1180 }
1181
1182 OMAP_BAD_REG(addr);
1183 return 0;
1184 }
1185
1186 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1187 uint64_t value, unsigned size)
1188 {
1189 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1190
1191 if (size < 2) {
1192 omap_badwidth_write16(opaque, addr, value);
1193 return;
1194 }
1195
1196 switch (addr) {
1197 case 0x00: /* TIPB_CNTL */
1198 s->control = value & 0xffff;
1199 break;
1200
1201 case 0x04: /* TIPB_BUS_ALLOC */
1202 s->alloc = value & 0x003f;
1203 break;
1204
1205 case 0x08: /* MPU_TIPB_CNTL */
1206 s->buffer = value & 0x0003;
1207 break;
1208
1209 case 0x0c: /* ENHANCED_TIPB_CNTL */
1210 s->width_intr = !(value & 2);
1211 s->enh_control = value & 0x000f;
1212 break;
1213
1214 case 0x10: /* ADDRESS_DBG */
1215 case 0x14: /* DATA_DEBUG_LOW */
1216 case 0x18: /* DATA_DEBUG_HIGH */
1217 case 0x1c: /* DEBUG_CNTR_SIG */
1218 OMAP_RO_REG(addr);
1219 break;
1220
1221 default:
1222 OMAP_BAD_REG(addr);
1223 }
1224 }
1225
1226 static const MemoryRegionOps omap_tipb_bridge_ops = {
1227 .read = omap_tipb_bridge_read,
1228 .write = omap_tipb_bridge_write,
1229 .endianness = DEVICE_NATIVE_ENDIAN,
1230 };
1231
1232 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1233 {
1234 s->control = 0xffff;
1235 s->alloc = 0x0009;
1236 s->buffer = 0x0000;
1237 s->enh_control = 0x000f;
1238 }
1239
1240 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1241 MemoryRegion *memory, hwaddr base,
1242 qemu_irq abort_irq, omap_clk clk)
1243 {
1244 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1245
1246 s->abort = abort_irq;
1247 omap_tipb_bridge_reset(s);
1248
1249 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1250 "omap-tipb-bridge", 0x100);
1251 memory_region_add_subregion(memory, base, &s->iomem);
1252
1253 return s;
1254 }
1255
1256 /* Dummy Traffic Controller's Memory Interface */
1257 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1258 unsigned size)
1259 {
1260 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1261 uint32_t ret;
1262
1263 if (size != 4) {
1264 return omap_badwidth_read32(opaque, addr);
1265 }
1266
1267 switch (addr) {
1268 case 0x00: /* IMIF_PRIO */
1269 case 0x04: /* EMIFS_PRIO */
1270 case 0x08: /* EMIFF_PRIO */
1271 case 0x0c: /* EMIFS_CONFIG */
1272 case 0x10: /* EMIFS_CS0_CONFIG */
1273 case 0x14: /* EMIFS_CS1_CONFIG */
1274 case 0x18: /* EMIFS_CS2_CONFIG */
1275 case 0x1c: /* EMIFS_CS3_CONFIG */
1276 case 0x24: /* EMIFF_MRS */
1277 case 0x28: /* TIMEOUT1 */
1278 case 0x2c: /* TIMEOUT2 */
1279 case 0x30: /* TIMEOUT3 */
1280 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1281 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1282 return s->tcmi_regs[addr >> 2];
1283
1284 case 0x20: /* EMIFF_SDRAM_CONFIG */
1285 ret = s->tcmi_regs[addr >> 2];
1286 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1287 /* XXX: We can try using the VGA_DIRTY flag for this */
1288 return ret;
1289 }
1290
1291 OMAP_BAD_REG(addr);
1292 return 0;
1293 }
1294
1295 static void omap_tcmi_write(void *opaque, hwaddr addr,
1296 uint64_t value, unsigned size)
1297 {
1298 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1299
1300 if (size != 4) {
1301 omap_badwidth_write32(opaque, addr, value);
1302 return;
1303 }
1304
1305 switch (addr) {
1306 case 0x00: /* IMIF_PRIO */
1307 case 0x04: /* EMIFS_PRIO */
1308 case 0x08: /* EMIFF_PRIO */
1309 case 0x10: /* EMIFS_CS0_CONFIG */
1310 case 0x14: /* EMIFS_CS1_CONFIG */
1311 case 0x18: /* EMIFS_CS2_CONFIG */
1312 case 0x1c: /* EMIFS_CS3_CONFIG */
1313 case 0x20: /* EMIFF_SDRAM_CONFIG */
1314 case 0x24: /* EMIFF_MRS */
1315 case 0x28: /* TIMEOUT1 */
1316 case 0x2c: /* TIMEOUT2 */
1317 case 0x30: /* TIMEOUT3 */
1318 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1319 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1320 s->tcmi_regs[addr >> 2] = value;
1321 break;
1322 case 0x0c: /* EMIFS_CONFIG */
1323 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1324 break;
1325
1326 default:
1327 OMAP_BAD_REG(addr);
1328 }
1329 }
1330
1331 static const MemoryRegionOps omap_tcmi_ops = {
1332 .read = omap_tcmi_read,
1333 .write = omap_tcmi_write,
1334 .endianness = DEVICE_NATIVE_ENDIAN,
1335 };
1336
1337 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1338 {
1339 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1340 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1341 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1342 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1343 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1344 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1345 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1346 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1347 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1348 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1349 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1353 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1354 }
1355
1356 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1357 struct omap_mpu_state_s *mpu)
1358 {
1359 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1360 "omap-tcmi", 0x100);
1361 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1362 omap_tcmi_reset(mpu);
1363 }
1364
1365 /* Digital phase-locked loops control */
1366 struct dpll_ctl_s {
1367 MemoryRegion iomem;
1368 uint16_t mode;
1369 omap_clk dpll;
1370 };
1371
1372 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1373 unsigned size)
1374 {
1375 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1376
1377 if (size != 2) {
1378 return omap_badwidth_read16(opaque, addr);
1379 }
1380
1381 if (addr == 0x00) /* CTL_REG */
1382 return s->mode;
1383
1384 OMAP_BAD_REG(addr);
1385 return 0;
1386 }
1387
1388 static void omap_dpll_write(void *opaque, hwaddr addr,
1389 uint64_t value, unsigned size)
1390 {
1391 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1392 uint16_t diff;
1393 static const int bypass_div[4] = { 1, 2, 4, 4 };
1394 int div, mult;
1395
1396 if (size != 2) {
1397 omap_badwidth_write16(opaque, addr, value);
1398 return;
1399 }
1400
1401 if (addr == 0x00) { /* CTL_REG */
1402 /* See omap_ulpd_pm_write() too */
1403 diff = s->mode & value;
1404 s->mode = value & 0x2fff;
1405 if (diff & (0x3ff << 2)) {
1406 if (value & (1 << 4)) { /* PLL_ENABLE */
1407 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1408 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1409 } else {
1410 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1411 mult = 1;
1412 }
1413 omap_clk_setrate(s->dpll, div, mult);
1414 }
1415
1416 /* Enter the desired mode. */
1417 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1418
1419 /* Act as if the lock is restored. */
1420 s->mode |= 2;
1421 } else {
1422 OMAP_BAD_REG(addr);
1423 }
1424 }
1425
1426 static const MemoryRegionOps omap_dpll_ops = {
1427 .read = omap_dpll_read,
1428 .write = omap_dpll_write,
1429 .endianness = DEVICE_NATIVE_ENDIAN,
1430 };
1431
1432 static void omap_dpll_reset(struct dpll_ctl_s *s)
1433 {
1434 s->mode = 0x2002;
1435 omap_clk_setrate(s->dpll, 1, 1);
1436 }
1437
1438 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1439 hwaddr base, omap_clk clk)
1440 {
1441 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1442 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1443
1444 s->dpll = clk;
1445 omap_dpll_reset(s);
1446
1447 memory_region_add_subregion(memory, base, &s->iomem);
1448 return s;
1449 }
1450
1451 /* MPU Clock/Reset/Power Mode Control */
1452 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1453 unsigned size)
1454 {
1455 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1456
1457 if (size != 2) {
1458 return omap_badwidth_read16(opaque, addr);
1459 }
1460
1461 switch (addr) {
1462 case 0x00: /* ARM_CKCTL */
1463 return s->clkm.arm_ckctl;
1464
1465 case 0x04: /* ARM_IDLECT1 */
1466 return s->clkm.arm_idlect1;
1467
1468 case 0x08: /* ARM_IDLECT2 */
1469 return s->clkm.arm_idlect2;
1470
1471 case 0x0c: /* ARM_EWUPCT */
1472 return s->clkm.arm_ewupct;
1473
1474 case 0x10: /* ARM_RSTCT1 */
1475 return s->clkm.arm_rstct1;
1476
1477 case 0x14: /* ARM_RSTCT2 */
1478 return s->clkm.arm_rstct2;
1479
1480 case 0x18: /* ARM_SYSST */
1481 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1482
1483 case 0x1c: /* ARM_CKOUT1 */
1484 return s->clkm.arm_ckout1;
1485
1486 case 0x20: /* ARM_CKOUT2 */
1487 break;
1488 }
1489
1490 OMAP_BAD_REG(addr);
1491 return 0;
1492 }
1493
1494 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1495 uint16_t diff, uint16_t value)
1496 {
1497 omap_clk clk;
1498
1499 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1500 if (value & (1 << 14))
1501 /* Reserved */;
1502 else {
1503 clk = omap_findclk(s, "arminth_ck");
1504 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1505 }
1506 }
1507 if (diff & (1 << 12)) { /* ARM_TIMXO */
1508 clk = omap_findclk(s, "armtim_ck");
1509 if (value & (1 << 12))
1510 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1511 else
1512 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1513 }
1514 /* XXX: en_dspck */
1515 if (diff & (3 << 10)) { /* DSPMMUDIV */
1516 clk = omap_findclk(s, "dspmmu_ck");
1517 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1518 }
1519 if (diff & (3 << 8)) { /* TCDIV */
1520 clk = omap_findclk(s, "tc_ck");
1521 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1522 }
1523 if (diff & (3 << 6)) { /* DSPDIV */
1524 clk = omap_findclk(s, "dsp_ck");
1525 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1526 }
1527 if (diff & (3 << 4)) { /* ARMDIV */
1528 clk = omap_findclk(s, "arm_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1530 }
1531 if (diff & (3 << 2)) { /* LCDDIV */
1532 clk = omap_findclk(s, "lcd_ck");
1533 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1534 }
1535 if (diff & (3 << 0)) { /* PERDIV */
1536 clk = omap_findclk(s, "armper_ck");
1537 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1538 }
1539 }
1540
1541 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1542 uint16_t diff, uint16_t value)
1543 {
1544 omap_clk clk;
1545
1546 if (value & (1 << 11)) { /* SETARM_IDLE */
1547 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1548 }
1549 if (!(value & (1 << 10))) { /* WKUP_MODE */
1550 /* XXX: disable wakeup from IRQ */
1551 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1552 }
1553
1554 #define SET_CANIDLE(clock, bit) \
1555 if (diff & (1 << bit)) { \
1556 clk = omap_findclk(s, clock); \
1557 omap_clk_canidle(clk, (value >> bit) & 1); \
1558 }
1559 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1560 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1561 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1562 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1563 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1564 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1565 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1566 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1567 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1568 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1569 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1570 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1571 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1572 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1573 }
1574
1575 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1576 uint16_t diff, uint16_t value)
1577 {
1578 omap_clk clk;
1579
1580 #define SET_ONOFF(clock, bit) \
1581 if (diff & (1 << bit)) { \
1582 clk = omap_findclk(s, clock); \
1583 omap_clk_onoff(clk, (value >> bit) & 1); \
1584 }
1585 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1586 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1587 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1588 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1589 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1590 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1591 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1592 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1593 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1594 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1595 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1596 }
1597
1598 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1599 uint16_t diff, uint16_t value)
1600 {
1601 omap_clk clk;
1602
1603 if (diff & (3 << 4)) { /* TCLKOUT */
1604 clk = omap_findclk(s, "tclk_out");
1605 switch ((value >> 4) & 3) {
1606 case 1:
1607 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1608 omap_clk_onoff(clk, 1);
1609 break;
1610 case 2:
1611 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1612 omap_clk_onoff(clk, 1);
1613 break;
1614 default:
1615 omap_clk_onoff(clk, 0);
1616 }
1617 }
1618 if (diff & (3 << 2)) { /* DCLKOUT */
1619 clk = omap_findclk(s, "dclk_out");
1620 switch ((value >> 2) & 3) {
1621 case 0:
1622 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1623 break;
1624 case 1:
1625 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1626 break;
1627 case 2:
1628 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1629 break;
1630 case 3:
1631 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1632 break;
1633 }
1634 }
1635 if (diff & (3 << 0)) { /* ACLKOUT */
1636 clk = omap_findclk(s, "aclk_out");
1637 switch ((value >> 0) & 3) {
1638 case 1:
1639 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1640 omap_clk_onoff(clk, 1);
1641 break;
1642 case 2:
1643 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1644 omap_clk_onoff(clk, 1);
1645 break;
1646 case 3:
1647 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1648 omap_clk_onoff(clk, 1);
1649 break;
1650 default:
1651 omap_clk_onoff(clk, 0);
1652 }
1653 }
1654 }
1655
1656 static void omap_clkm_write(void *opaque, hwaddr addr,
1657 uint64_t value, unsigned size)
1658 {
1659 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1660 uint16_t diff;
1661 omap_clk clk;
1662 static const char *clkschemename[8] = {
1663 "fully synchronous", "fully asynchronous", "synchronous scalable",
1664 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1665 };
1666
1667 if (size != 2) {
1668 omap_badwidth_write16(opaque, addr, value);
1669 return;
1670 }
1671
1672 switch (addr) {
1673 case 0x00: /* ARM_CKCTL */
1674 diff = s->clkm.arm_ckctl ^ value;
1675 s->clkm.arm_ckctl = value & 0x7fff;
1676 omap_clkm_ckctl_update(s, diff, value);
1677 return;
1678
1679 case 0x04: /* ARM_IDLECT1 */
1680 diff = s->clkm.arm_idlect1 ^ value;
1681 s->clkm.arm_idlect1 = value & 0x0fff;
1682 omap_clkm_idlect1_update(s, diff, value);
1683 return;
1684
1685 case 0x08: /* ARM_IDLECT2 */
1686 diff = s->clkm.arm_idlect2 ^ value;
1687 s->clkm.arm_idlect2 = value & 0x07ff;
1688 omap_clkm_idlect2_update(s, diff, value);
1689 return;
1690
1691 case 0x0c: /* ARM_EWUPCT */
1692 s->clkm.arm_ewupct = value & 0x003f;
1693 return;
1694
1695 case 0x10: /* ARM_RSTCT1 */
1696 diff = s->clkm.arm_rstct1 ^ value;
1697 s->clkm.arm_rstct1 = value & 0x0007;
1698 if (value & 9) {
1699 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1700 s->clkm.cold_start = 0xa;
1701 }
1702 if (diff & ~value & 4) { /* DSP_RST */
1703 omap_mpui_reset(s);
1704 omap_tipb_bridge_reset(s->private_tipb);
1705 omap_tipb_bridge_reset(s->public_tipb);
1706 }
1707 if (diff & 2) { /* DSP_EN */
1708 clk = omap_findclk(s, "dsp_ck");
1709 omap_clk_canidle(clk, (~value >> 1) & 1);
1710 }
1711 return;
1712
1713 case 0x14: /* ARM_RSTCT2 */
1714 s->clkm.arm_rstct2 = value & 0x0001;
1715 return;
1716
1717 case 0x18: /* ARM_SYSST */
1718 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1719 s->clkm.clocking_scheme = (value >> 11) & 7;
1720 printf("%s: clocking scheme set to %s\n", __func__,
1721 clkschemename[s->clkm.clocking_scheme]);
1722 }
1723 s->clkm.cold_start &= value & 0x3f;
1724 return;
1725
1726 case 0x1c: /* ARM_CKOUT1 */
1727 diff = s->clkm.arm_ckout1 ^ value;
1728 s->clkm.arm_ckout1 = value & 0x003f;
1729 omap_clkm_ckout1_update(s, diff, value);
1730 return;
1731
1732 case 0x20: /* ARM_CKOUT2 */
1733 default:
1734 OMAP_BAD_REG(addr);
1735 }
1736 }
1737
1738 static const MemoryRegionOps omap_clkm_ops = {
1739 .read = omap_clkm_read,
1740 .write = omap_clkm_write,
1741 .endianness = DEVICE_NATIVE_ENDIAN,
1742 };
1743
1744 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1745 unsigned size)
1746 {
1747 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1748 CPUState *cpu = CPU(s->cpu);
1749
1750 if (size != 2) {
1751 return omap_badwidth_read16(opaque, addr);
1752 }
1753
1754 switch (addr) {
1755 case 0x04: /* DSP_IDLECT1 */
1756 return s->clkm.dsp_idlect1;
1757
1758 case 0x08: /* DSP_IDLECT2 */
1759 return s->clkm.dsp_idlect2;
1760
1761 case 0x14: /* DSP_RSTCT2 */
1762 return s->clkm.dsp_rstct2;
1763
1764 case 0x18: /* DSP_SYSST */
1765 cpu = CPU(s->cpu);
1766 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1767 (cpu->halted << 6); /* Quite useless... */
1768 }
1769
1770 OMAP_BAD_REG(addr);
1771 return 0;
1772 }
1773
1774 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1775 uint16_t diff, uint16_t value)
1776 {
1777 omap_clk clk;
1778
1779 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1780 }
1781
1782 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1783 uint16_t diff, uint16_t value)
1784 {
1785 omap_clk clk;
1786
1787 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1788 }
1789
1790 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1791 uint64_t value, unsigned size)
1792 {
1793 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1794 uint16_t diff;
1795
1796 if (size != 2) {
1797 omap_badwidth_write16(opaque, addr, value);
1798 return;
1799 }
1800
1801 switch (addr) {
1802 case 0x04: /* DSP_IDLECT1 */
1803 diff = s->clkm.dsp_idlect1 ^ value;
1804 s->clkm.dsp_idlect1 = value & 0x01f7;
1805 omap_clkdsp_idlect1_update(s, diff, value);
1806 break;
1807
1808 case 0x08: /* DSP_IDLECT2 */
1809 s->clkm.dsp_idlect2 = value & 0x0037;
1810 diff = s->clkm.dsp_idlect1 ^ value;
1811 omap_clkdsp_idlect2_update(s, diff, value);
1812 break;
1813
1814 case 0x14: /* DSP_RSTCT2 */
1815 s->clkm.dsp_rstct2 = value & 0x0001;
1816 break;
1817
1818 case 0x18: /* DSP_SYSST */
1819 s->clkm.cold_start &= value & 0x3f;
1820 break;
1821
1822 default:
1823 OMAP_BAD_REG(addr);
1824 }
1825 }
1826
1827 static const MemoryRegionOps omap_clkdsp_ops = {
1828 .read = omap_clkdsp_read,
1829 .write = omap_clkdsp_write,
1830 .endianness = DEVICE_NATIVE_ENDIAN,
1831 };
1832
1833 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1834 {
1835 if (s->wdt && s->wdt->reset)
1836 s->clkm.cold_start = 0x6;
1837 s->clkm.clocking_scheme = 0;
1838 omap_clkm_ckctl_update(s, ~0, 0x3000);
1839 s->clkm.arm_ckctl = 0x3000;
1840 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1841 s->clkm.arm_idlect1 = 0x0400;
1842 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1843 s->clkm.arm_idlect2 = 0x0100;
1844 s->clkm.arm_ewupct = 0x003f;
1845 s->clkm.arm_rstct1 = 0x0000;
1846 s->clkm.arm_rstct2 = 0x0000;
1847 s->clkm.arm_ckout1 = 0x0015;
1848 s->clkm.dpll1_mode = 0x2002;
1849 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1850 s->clkm.dsp_idlect1 = 0x0040;
1851 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1852 s->clkm.dsp_idlect2 = 0x0000;
1853 s->clkm.dsp_rstct2 = 0x0000;
1854 }
1855
1856 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1857 hwaddr dsp_base, struct omap_mpu_state_s *s)
1858 {
1859 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1860 "omap-clkm", 0x100);
1861 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1862 "omap-clkdsp", 0x1000);
1863
1864 s->clkm.arm_idlect1 = 0x03ff;
1865 s->clkm.arm_idlect2 = 0x0100;
1866 s->clkm.dsp_idlect1 = 0x0002;
1867 omap_clkm_reset(s);
1868 s->clkm.cold_start = 0x3a;
1869
1870 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1871 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1872 }
1873
1874 /* MPU I/O */
1875 struct omap_mpuio_s {
1876 qemu_irq irq;
1877 qemu_irq kbd_irq;
1878 qemu_irq *in;
1879 qemu_irq handler[16];
1880 qemu_irq wakeup;
1881 MemoryRegion iomem;
1882
1883 uint16_t inputs;
1884 uint16_t outputs;
1885 uint16_t dir;
1886 uint16_t edge;
1887 uint16_t mask;
1888 uint16_t ints;
1889
1890 uint16_t debounce;
1891 uint16_t latch;
1892 uint8_t event;
1893
1894 uint8_t buttons[5];
1895 uint8_t row_latch;
1896 uint8_t cols;
1897 int kbd_mask;
1898 int clk;
1899 };
1900
1901 static void omap_mpuio_set(void *opaque, int line, int level)
1902 {
1903 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1904 uint16_t prev = s->inputs;
1905
1906 if (level)
1907 s->inputs |= 1 << line;
1908 else
1909 s->inputs &= ~(1 << line);
1910
1911 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1912 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1913 s->ints |= 1 << line;
1914 qemu_irq_raise(s->irq);
1915 /* TODO: wakeup */
1916 }
1917 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1918 (s->event >> 1) == line) /* PIN_SELECT */
1919 s->latch = s->inputs;
1920 }
1921 }
1922
1923 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1924 {
1925 int i;
1926 uint8_t *row, rows = 0, cols = ~s->cols;
1927
1928 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1929 if (*row & cols)
1930 rows |= i;
1931
1932 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1933 s->row_latch = ~rows;
1934 }
1935
1936 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1937 unsigned size)
1938 {
1939 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1940 int offset = addr & OMAP_MPUI_REG_MASK;
1941 uint16_t ret;
1942
1943 if (size != 2) {
1944 return omap_badwidth_read16(opaque, addr);
1945 }
1946
1947 switch (offset) {
1948 case 0x00: /* INPUT_LATCH */
1949 return s->inputs;
1950
1951 case 0x04: /* OUTPUT_REG */
1952 return s->outputs;
1953
1954 case 0x08: /* IO_CNTL */
1955 return s->dir;
1956
1957 case 0x10: /* KBR_LATCH */
1958 return s->row_latch;
1959
1960 case 0x14: /* KBC_REG */
1961 return s->cols;
1962
1963 case 0x18: /* GPIO_EVENT_MODE_REG */
1964 return s->event;
1965
1966 case 0x1c: /* GPIO_INT_EDGE_REG */
1967 return s->edge;
1968
1969 case 0x20: /* KBD_INT */
1970 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1971
1972 case 0x24: /* GPIO_INT */
1973 ret = s->ints;
1974 s->ints &= s->mask;
1975 if (ret)
1976 qemu_irq_lower(s->irq);
1977 return ret;
1978
1979 case 0x28: /* KBD_MASKIT */
1980 return s->kbd_mask;
1981
1982 case 0x2c: /* GPIO_MASKIT */
1983 return s->mask;
1984
1985 case 0x30: /* GPIO_DEBOUNCING_REG */
1986 return s->debounce;
1987
1988 case 0x34: /* GPIO_LATCH_REG */
1989 return s->latch;
1990 }
1991
1992 OMAP_BAD_REG(addr);
1993 return 0;
1994 }
1995
1996 static void omap_mpuio_write(void *opaque, hwaddr addr,
1997 uint64_t value, unsigned size)
1998 {
1999 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2000 int offset = addr & OMAP_MPUI_REG_MASK;
2001 uint16_t diff;
2002 int ln;
2003
2004 if (size != 2) {
2005 omap_badwidth_write16(opaque, addr, value);
2006 return;
2007 }
2008
2009 switch (offset) {
2010 case 0x04: /* OUTPUT_REG */
2011 diff = (s->outputs ^ value) & ~s->dir;
2012 s->outputs = value;
2013 while ((ln = ctz32(diff)) != 32) {
2014 if (s->handler[ln])
2015 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2016 diff &= ~(1 << ln);
2017 }
2018 break;
2019
2020 case 0x08: /* IO_CNTL */
2021 diff = s->outputs & (s->dir ^ value);
2022 s->dir = value;
2023
2024 value = s->outputs & ~s->dir;
2025 while ((ln = ctz32(diff)) != 32) {
2026 if (s->handler[ln])
2027 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2028 diff &= ~(1 << ln);
2029 }
2030 break;
2031
2032 case 0x14: /* KBC_REG */
2033 s->cols = value;
2034 omap_mpuio_kbd_update(s);
2035 break;
2036
2037 case 0x18: /* GPIO_EVENT_MODE_REG */
2038 s->event = value & 0x1f;
2039 break;
2040
2041 case 0x1c: /* GPIO_INT_EDGE_REG */
2042 s->edge = value;
2043 break;
2044
2045 case 0x28: /* KBD_MASKIT */
2046 s->kbd_mask = value & 1;
2047 omap_mpuio_kbd_update(s);
2048 break;
2049
2050 case 0x2c: /* GPIO_MASKIT */
2051 s->mask = value;
2052 break;
2053
2054 case 0x30: /* GPIO_DEBOUNCING_REG */
2055 s->debounce = value & 0x1ff;
2056 break;
2057
2058 case 0x00: /* INPUT_LATCH */
2059 case 0x10: /* KBR_LATCH */
2060 case 0x20: /* KBD_INT */
2061 case 0x24: /* GPIO_INT */
2062 case 0x34: /* GPIO_LATCH_REG */
2063 OMAP_RO_REG(addr);
2064 return;
2065
2066 default:
2067 OMAP_BAD_REG(addr);
2068 return;
2069 }
2070 }
2071
2072 static const MemoryRegionOps omap_mpuio_ops = {
2073 .read = omap_mpuio_read,
2074 .write = omap_mpuio_write,
2075 .endianness = DEVICE_NATIVE_ENDIAN,
2076 };
2077
2078 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2079 {
2080 s->inputs = 0;
2081 s->outputs = 0;
2082 s->dir = ~0;
2083 s->event = 0;
2084 s->edge = 0;
2085 s->kbd_mask = 0;
2086 s->mask = 0;
2087 s->debounce = 0;
2088 s->latch = 0;
2089 s->ints = 0;
2090 s->row_latch = 0x1f;
2091 s->clk = 1;
2092 }
2093
2094 static void omap_mpuio_onoff(void *opaque, int line, int on)
2095 {
2096 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2097
2098 s->clk = on;
2099 if (on)
2100 omap_mpuio_kbd_update(s);
2101 }
2102
2103 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2104 hwaddr base,
2105 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2106 omap_clk clk)
2107 {
2108 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2109
2110 s->irq = gpio_int;
2111 s->kbd_irq = kbd_int;
2112 s->wakeup = wakeup;
2113 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2114 omap_mpuio_reset(s);
2115
2116 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2117 "omap-mpuio", 0x800);
2118 memory_region_add_subregion(memory, base, &s->iomem);
2119
2120 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2121
2122 return s;
2123 }
2124
2125 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2126 {
2127 return s->in;
2128 }
2129
2130 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2131 {
2132 if (line >= 16 || line < 0)
2133 hw_error("%s: No GPIO line %i\n", __func__, line);
2134 s->handler[line] = handler;
2135 }
2136
2137 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2138 {
2139 if (row >= 5 || row < 0)
2140 hw_error("%s: No key %i-%i\n", __func__, col, row);
2141
2142 if (down)
2143 s->buttons[row] |= 1 << col;
2144 else
2145 s->buttons[row] &= ~(1 << col);
2146
2147 omap_mpuio_kbd_update(s);
2148 }
2149
2150 /* MicroWire Interface */
2151 struct omap_uwire_s {
2152 MemoryRegion iomem;
2153 qemu_irq txirq;
2154 qemu_irq rxirq;
2155 qemu_irq txdrq;
2156
2157 uint16_t txbuf;
2158 uint16_t rxbuf;
2159 uint16_t control;
2160 uint16_t setup[5];
2161
2162 uWireSlave *chip[4];
2163 };
2164
2165 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2166 {
2167 int chipselect = (s->control >> 10) & 3; /* INDEX */
2168 uWireSlave *slave = s->chip[chipselect];
2169
2170 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2171 if (s->control & (1 << 12)) /* CS_CMD */
2172 if (slave && slave->send)
2173 slave->send(slave->opaque,
2174 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2175 s->control &= ~(1 << 14); /* CSRB */
2176 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2177 * a DRQ. When is the level IRQ supposed to be reset? */
2178 }
2179
2180 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2181 if (s->control & (1 << 12)) /* CS_CMD */
2182 if (slave && slave->receive)
2183 s->rxbuf = slave->receive(slave->opaque);
2184 s->control |= 1 << 15; /* RDRB */
2185 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2186 * a DRQ. When is the level IRQ supposed to be reset? */
2187 }
2188 }
2189
2190 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2191 unsigned size)
2192 {
2193 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2194 int offset = addr & OMAP_MPUI_REG_MASK;
2195
2196 if (size != 2) {
2197 return omap_badwidth_read16(opaque, addr);
2198 }
2199
2200 switch (offset) {
2201 case 0x00: /* RDR */
2202 s->control &= ~(1 << 15); /* RDRB */
2203 return s->rxbuf;
2204
2205 case 0x04: /* CSR */
2206 return s->control;
2207
2208 case 0x08: /* SR1 */
2209 return s->setup[0];
2210 case 0x0c: /* SR2 */
2211 return s->setup[1];
2212 case 0x10: /* SR3 */
2213 return s->setup[2];
2214 case 0x14: /* SR4 */
2215 return s->setup[3];
2216 case 0x18: /* SR5 */
2217 return s->setup[4];
2218 }
2219
2220 OMAP_BAD_REG(addr);
2221 return 0;
2222 }
2223
2224 static void omap_uwire_write(void *opaque, hwaddr addr,
2225 uint64_t value, unsigned size)
2226 {
2227 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2228 int offset = addr & OMAP_MPUI_REG_MASK;
2229
2230 if (size != 2) {
2231 omap_badwidth_write16(opaque, addr, value);
2232 return;
2233 }
2234
2235 switch (offset) {
2236 case 0x00: /* TDR */
2237 s->txbuf = value; /* TD */
2238 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2239 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2240 (s->control & (1 << 12)))) { /* CS_CMD */
2241 s->control |= 1 << 14; /* CSRB */
2242 omap_uwire_transfer_start(s);
2243 }
2244 break;
2245
2246 case 0x04: /* CSR */
2247 s->control = value & 0x1fff;
2248 if (value & (1 << 13)) /* START */
2249 omap_uwire_transfer_start(s);
2250 break;
2251
2252 case 0x08: /* SR1 */
2253 s->setup[0] = value & 0x003f;
2254 break;
2255
2256 case 0x0c: /* SR2 */
2257 s->setup[1] = value & 0x0fc0;
2258 break;
2259
2260 case 0x10: /* SR3 */
2261 s->setup[2] = value & 0x0003;
2262 break;
2263
2264 case 0x14: /* SR4 */
2265 s->setup[3] = value & 0x0001;
2266 break;
2267
2268 case 0x18: /* SR5 */
2269 s->setup[4] = value & 0x000f;
2270 break;
2271
2272 default:
2273 OMAP_BAD_REG(addr);
2274 return;
2275 }
2276 }
2277
2278 static const MemoryRegionOps omap_uwire_ops = {
2279 .read = omap_uwire_read,
2280 .write = omap_uwire_write,
2281 .endianness = DEVICE_NATIVE_ENDIAN,
2282 };
2283
2284 static void omap_uwire_reset(struct omap_uwire_s *s)
2285 {
2286 s->control = 0;
2287 s->setup[0] = 0;
2288 s->setup[1] = 0;
2289 s->setup[2] = 0;
2290 s->setup[3] = 0;
2291 s->setup[4] = 0;
2292 }
2293
2294 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2295 hwaddr base,
2296 qemu_irq txirq, qemu_irq rxirq,
2297 qemu_irq dma,
2298 omap_clk clk)
2299 {
2300 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2301
2302 s->txirq = txirq;
2303 s->rxirq = rxirq;
2304 s->txdrq = dma;
2305 omap_uwire_reset(s);
2306
2307 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2308 memory_region_add_subregion(system_memory, base, &s->iomem);
2309
2310 return s;
2311 }
2312
2313 void omap_uwire_attach(struct omap_uwire_s *s,
2314 uWireSlave *slave, int chipselect)
2315 {
2316 if (chipselect < 0 || chipselect > 3) {
2317 error_report("%s: Bad chipselect %i", __func__, chipselect);
2318 exit(-1);
2319 }
2320
2321 s->chip[chipselect] = slave;
2322 }
2323
2324 /* Pseudonoise Pulse-Width Light Modulator */
2325 struct omap_pwl_s {
2326 MemoryRegion iomem;
2327 uint8_t output;
2328 uint8_t level;
2329 uint8_t enable;
2330 int clk;
2331 };
2332
2333 static void omap_pwl_update(struct omap_pwl_s *s)
2334 {
2335 int output = (s->clk && s->enable) ? s->level : 0;
2336
2337 if (output != s->output) {
2338 s->output = output;
2339 printf("%s: Backlight now at %i/256\n", __func__, output);
2340 }
2341 }
2342
2343 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2344 unsigned size)
2345 {
2346 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2347 int offset = addr & OMAP_MPUI_REG_MASK;
2348
2349 if (size != 1) {
2350 return omap_badwidth_read8(opaque, addr);
2351 }
2352
2353 switch (offset) {
2354 case 0x00: /* PWL_LEVEL */
2355 return s->level;
2356 case 0x04: /* PWL_CTRL */
2357 return s->enable;
2358 }
2359 OMAP_BAD_REG(addr);
2360 return 0;
2361 }
2362
2363 static void omap_pwl_write(void *opaque, hwaddr addr,
2364 uint64_t value, unsigned size)
2365 {
2366 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2367 int offset = addr & OMAP_MPUI_REG_MASK;
2368
2369 if (size != 1) {
2370 omap_badwidth_write8(opaque, addr, value);
2371 return;
2372 }
2373
2374 switch (offset) {
2375 case 0x00: /* PWL_LEVEL */
2376 s->level = value;
2377 omap_pwl_update(s);
2378 break;
2379 case 0x04: /* PWL_CTRL */
2380 s->enable = value & 1;
2381 omap_pwl_update(s);
2382 break;
2383 default:
2384 OMAP_BAD_REG(addr);
2385 return;
2386 }
2387 }
2388
2389 static const MemoryRegionOps omap_pwl_ops = {
2390 .read = omap_pwl_read,
2391 .write = omap_pwl_write,
2392 .endianness = DEVICE_NATIVE_ENDIAN,
2393 };
2394
2395 static void omap_pwl_reset(struct omap_pwl_s *s)
2396 {
2397 s->output = 0;
2398 s->level = 0;
2399 s->enable = 0;
2400 s->clk = 1;
2401 omap_pwl_update(s);
2402 }
2403
2404 static void omap_pwl_clk_update(void *opaque, int line, int on)
2405 {
2406 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2407
2408 s->clk = on;
2409 omap_pwl_update(s);
2410 }
2411
2412 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2413 hwaddr base,
2414 omap_clk clk)
2415 {
2416 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2417
2418 omap_pwl_reset(s);
2419
2420 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2421 "omap-pwl", 0x800);
2422 memory_region_add_subregion(system_memory, base, &s->iomem);
2423
2424 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2425 return s;
2426 }
2427
2428 /* Pulse-Width Tone module */
2429 struct omap_pwt_s {
2430 MemoryRegion iomem;
2431 uint8_t frc;
2432 uint8_t vrc;
2433 uint8_t gcr;
2434 omap_clk clk;
2435 };
2436
2437 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2438 unsigned size)
2439 {
2440 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2441 int offset = addr & OMAP_MPUI_REG_MASK;
2442
2443 if (size != 1) {
2444 return omap_badwidth_read8(opaque, addr);
2445 }
2446
2447 switch (offset) {
2448 case 0x00: /* FRC */
2449 return s->frc;
2450 case 0x04: /* VCR */
2451 return s->vrc;
2452 case 0x08: /* GCR */
2453 return s->gcr;
2454 }
2455 OMAP_BAD_REG(addr);
2456 return 0;
2457 }
2458
2459 static void omap_pwt_write(void *opaque, hwaddr addr,
2460 uint64_t value, unsigned size)
2461 {
2462 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2463 int offset = addr & OMAP_MPUI_REG_MASK;
2464
2465 if (size != 1) {
2466 omap_badwidth_write8(opaque, addr, value);
2467 return;
2468 }
2469
2470 switch (offset) {
2471 case 0x00: /* FRC */
2472 s->frc = value & 0x3f;
2473 break;
2474 case 0x04: /* VRC */
2475 if ((value ^ s->vrc) & 1) {
2476 if (value & 1)
2477 printf("%s: %iHz buzz on\n", __func__, (int)
2478 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2479 ((omap_clk_getrate(s->clk) >> 3) /
2480 /* Pre-multiplexer divider */
2481 ((s->gcr & 2) ? 1 : 154) /
2482 /* Octave multiplexer */
2483 (2 << (value & 3)) *
2484 /* 101/107 divider */
2485 ((value & (1 << 2)) ? 101 : 107) *
2486 /* 49/55 divider */
2487 ((value & (1 << 3)) ? 49 : 55) *
2488 /* 50/63 divider */
2489 ((value & (1 << 4)) ? 50 : 63) *
2490 /* 80/127 divider */
2491 ((value & (1 << 5)) ? 80 : 127) /
2492 (107 * 55 * 63 * 127)));
2493 else
2494 printf("%s: silence!\n", __func__);
2495 }
2496 s->vrc = value & 0x7f;
2497 break;
2498 case 0x08: /* GCR */
2499 s->gcr = value & 3;
2500 break;
2501 default:
2502 OMAP_BAD_REG(addr);
2503 return;
2504 }
2505 }
2506
2507 static const MemoryRegionOps omap_pwt_ops = {
2508 .read =omap_pwt_read,
2509 .write = omap_pwt_write,
2510 .endianness = DEVICE_NATIVE_ENDIAN,
2511 };
2512
2513 static void omap_pwt_reset(struct omap_pwt_s *s)
2514 {
2515 s->frc = 0;
2516 s->vrc = 0;
2517 s->gcr = 0;
2518 }
2519
2520 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2521 hwaddr base,
2522 omap_clk clk)
2523 {
2524 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2525 s->clk = clk;
2526 omap_pwt_reset(s);
2527
2528 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2529 "omap-pwt", 0x800);
2530 memory_region_add_subregion(system_memory, base, &s->iomem);
2531 return s;
2532 }
2533
2534 /* Real-time Clock module */
2535 struct omap_rtc_s {
2536 MemoryRegion iomem;
2537 qemu_irq irq;
2538 qemu_irq alarm;
2539 QEMUTimer *clk;
2540
2541 uint8_t interrupts;
2542 uint8_t status;
2543 int16_t comp_reg;
2544 int running;
2545 int pm_am;
2546 int auto_comp;
2547 int round;
2548 struct tm alarm_tm;
2549 time_t alarm_ti;
2550
2551 struct tm current_tm;
2552 time_t ti;
2553 uint64_t tick;
2554 };
2555
2556 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2557 {
2558 /* s->alarm is level-triggered */
2559 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2560 }
2561
2562 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2563 {
2564 s->alarm_ti = mktimegm(&s->alarm_tm);
2565 if (s->alarm_ti == -1)
2566 printf("%s: conversion failed\n", __func__);
2567 }
2568
2569 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2570 unsigned size)
2571 {
2572 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2573 int offset = addr & OMAP_MPUI_REG_MASK;
2574 uint8_t i;
2575
2576 if (size != 1) {
2577 return omap_badwidth_read8(opaque, addr);
2578 }
2579
2580 switch (offset) {
2581 case 0x00: /* SECONDS_REG */
2582 return to_bcd(s->current_tm.tm_sec);
2583
2584 case 0x04: /* MINUTES_REG */
2585 return to_bcd(s->current_tm.tm_min);
2586
2587 case 0x08: /* HOURS_REG */
2588 if (s->pm_am)
2589 return ((s->current_tm.tm_hour > 11) << 7) |
2590 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2591 else
2592 return to_bcd(s->current_tm.tm_hour);
2593
2594 case 0x0c: /* DAYS_REG */
2595 return to_bcd(s->current_tm.tm_mday);
2596
2597 case 0x10: /* MONTHS_REG */
2598 return to_bcd(s->current_tm.tm_mon + 1);
2599
2600 case 0x14: /* YEARS_REG */
2601 return to_bcd(s->current_tm.tm_year % 100);
2602
2603 case 0x18: /* WEEK_REG */
2604 return s->current_tm.tm_wday;
2605
2606 case 0x20: /* ALARM_SECONDS_REG */
2607 return to_bcd(s->alarm_tm.tm_sec);
2608
2609 case 0x24: /* ALARM_MINUTES_REG */
2610 return to_bcd(s->alarm_tm.tm_min);
2611
2612 case 0x28: /* ALARM_HOURS_REG */
2613 if (s->pm_am)
2614 return ((s->alarm_tm.tm_hour > 11) << 7) |
2615 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2616 else
2617 return to_bcd(s->alarm_tm.tm_hour);
2618
2619 case 0x2c: /* ALARM_DAYS_REG */
2620 return to_bcd(s->alarm_tm.tm_mday);
2621
2622 case 0x30: /* ALARM_MONTHS_REG */
2623 return to_bcd(s->alarm_tm.tm_mon + 1);
2624
2625 case 0x34: /* ALARM_YEARS_REG */
2626 return to_bcd(s->alarm_tm.tm_year % 100);
2627
2628 case 0x40: /* RTC_CTRL_REG */
2629 return (s->pm_am << 3) | (s->auto_comp << 2) |
2630 (s->round << 1) | s->running;
2631
2632 case 0x44: /* RTC_STATUS_REG */
2633 i = s->status;
2634 s->status &= ~0x3d;
2635 return i;
2636
2637 case 0x48: /* RTC_INTERRUPTS_REG */
2638 return s->interrupts;
2639
2640 case 0x4c: /* RTC_COMP_LSB_REG */
2641 return ((uint16_t) s->comp_reg) & 0xff;
2642
2643 case 0x50: /* RTC_COMP_MSB_REG */
2644 return ((uint16_t) s->comp_reg) >> 8;
2645 }
2646
2647 OMAP_BAD_REG(addr);
2648 return 0;
2649 }
2650
2651 static void omap_rtc_write(void *opaque, hwaddr addr,
2652 uint64_t value, unsigned size)
2653 {
2654 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2655 int offset = addr & OMAP_MPUI_REG_MASK;
2656 struct tm new_tm;
2657 time_t ti[2];
2658
2659 if (size != 1) {
2660 omap_badwidth_write8(opaque, addr, value);
2661 return;
2662 }
2663
2664 switch (offset) {
2665 case 0x00: /* SECONDS_REG */
2666 #ifdef ALMDEBUG
2667 printf("RTC SEC_REG <-- %02x\n", value);
2668 #endif
2669 s->ti -= s->current_tm.tm_sec;
2670 s->ti += from_bcd(value);
2671 return;
2672
2673 case 0x04: /* MINUTES_REG */
2674 #ifdef ALMDEBUG
2675 printf("RTC MIN_REG <-- %02x\n", value);
2676 #endif
2677 s->ti -= s->current_tm.tm_min * 60;
2678 s->ti += from_bcd(value) * 60;
2679 return;
2680
2681 case 0x08: /* HOURS_REG */
2682 #ifdef ALMDEBUG
2683 printf("RTC HRS_REG <-- %02x\n", value);
2684 #endif
2685 s->ti -= s->current_tm.tm_hour * 3600;
2686 if (s->pm_am) {
2687 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2688 s->ti += ((value >> 7) & 1) * 43200;
2689 } else
2690 s->ti += from_bcd(value & 0x3f) * 3600;
2691 return;
2692
2693 case 0x0c: /* DAYS_REG */
2694 #ifdef ALMDEBUG
2695 printf("RTC DAY_REG <-- %02x\n", value);
2696 #endif
2697 s->ti -= s->current_tm.tm_mday * 86400;
2698 s->ti += from_bcd(value) * 86400;
2699 return;
2700
2701 case 0x10: /* MONTHS_REG */
2702 #ifdef ALMDEBUG
2703 printf("RTC MTH_REG <-- %02x\n", value);
2704 #endif
2705 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2706 new_tm.tm_mon = from_bcd(value);
2707 ti[0] = mktimegm(&s->current_tm);
2708 ti[1] = mktimegm(&new_tm);
2709
2710 if (ti[0] != -1 && ti[1] != -1) {
2711 s->ti -= ti[0];
2712 s->ti += ti[1];
2713 } else {
2714 /* A less accurate version */
2715 s->ti -= s->current_tm.tm_mon * 2592000;
2716 s->ti += from_bcd(value) * 2592000;
2717 }
2718 return;
2719
2720 case 0x14: /* YEARS_REG */
2721 #ifdef ALMDEBUG
2722 printf("RTC YRS_REG <-- %02x\n", value);
2723 #endif
2724 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2725 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2726 ti[0] = mktimegm(&s->current_tm);
2727 ti[1] = mktimegm(&new_tm);
2728
2729 if (ti[0] != -1 && ti[1] != -1) {
2730 s->ti -= ti[0];
2731 s->ti += ti[1];
2732 } else {
2733 /* A less accurate version */
2734 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2735 s->ti += (time_t)from_bcd(value) * 31536000;
2736 }
2737 return;
2738
2739 case 0x18: /* WEEK_REG */
2740 return; /* Ignored */
2741
2742 case 0x20: /* ALARM_SECONDS_REG */
2743 #ifdef ALMDEBUG
2744 printf("ALM SEC_REG <-- %02x\n", value);
2745 #endif
2746 s->alarm_tm.tm_sec = from_bcd(value);
2747 omap_rtc_alarm_update(s);
2748 return;
2749
2750 case 0x24: /* ALARM_MINUTES_REG */
2751 #ifdef ALMDEBUG
2752 printf("ALM MIN_REG <-- %02x\n", value);
2753 #endif
2754 s->alarm_tm.tm_min = from_bcd(value);
2755 omap_rtc_alarm_update(s);
2756 return;
2757
2758 case 0x28: /* ALARM_HOURS_REG */
2759 #ifdef ALMDEBUG
2760 printf("ALM HRS_REG <-- %02x\n", value);
2761 #endif
2762 if (s->pm_am)
2763 s->alarm_tm.tm_hour =
2764 ((from_bcd(value & 0x3f)) % 12) +
2765 ((value >> 7) & 1) * 12;
2766 else
2767 s->alarm_tm.tm_hour = from_bcd(value);
2768 omap_rtc_alarm_update(s);
2769 return;
2770
2771 case 0x2c: /* ALARM_DAYS_REG */
2772 #ifdef ALMDEBUG
2773 printf("ALM DAY_REG <-- %02x\n", value);
2774 #endif
2775 s->alarm_tm.tm_mday = from_bcd(value);
2776 omap_rtc_alarm_update(s);
2777 return;
2778
2779 case 0x30: /* ALARM_MONTHS_REG */
2780 #ifdef ALMDEBUG
2781 printf("ALM MON_REG <-- %02x\n", value);
2782 #endif
2783 s->alarm_tm.tm_mon = from_bcd(value);
2784 omap_rtc_alarm_update(s);
2785 return;
2786
2787 case 0x34: /* ALARM_YEARS_REG */
2788 #ifdef ALMDEBUG
2789 printf("ALM YRS_REG <-- %02x\n", value);
2790 #endif
2791 s->alarm_tm.tm_year = from_bcd(value);
2792 omap_rtc_alarm_update(s);
2793 return;
2794
2795 case 0x40: /* RTC_CTRL_REG */
2796 #ifdef ALMDEBUG
2797 printf("RTC CONTROL <-- %02x\n", value);
2798 #endif
2799 s->pm_am = (value >> 3) & 1;
2800 s->auto_comp = (value >> 2) & 1;
2801 s->round = (value >> 1) & 1;
2802 s->running = value & 1;
2803 s->status &= 0xfd;
2804 s->status |= s->running << 1;
2805 return;
2806
2807 case 0x44: /* RTC_STATUS_REG */
2808 #ifdef ALMDEBUG
2809 printf("RTC STATUSL <-- %02x\n", value);
2810 #endif
2811 s->status &= ~((value & 0xc0) ^ 0x80);
2812 omap_rtc_interrupts_update(s);
2813 return;
2814
2815 case 0x48: /* RTC_INTERRUPTS_REG */
2816 #ifdef ALMDEBUG
2817 printf("RTC INTRS <-- %02x\n", value);
2818 #endif
2819 s->interrupts = value;
2820 return;
2821
2822 case 0x4c: /* RTC_COMP_LSB_REG */
2823 #ifdef ALMDEBUG
2824 printf("RTC COMPLSB <-- %02x\n", value);
2825 #endif
2826 s->comp_reg &= 0xff00;
2827 s->comp_reg |= 0x00ff & value;
2828 return;
2829
2830 case 0x50: /* RTC_COMP_MSB_REG */
2831 #ifdef ALMDEBUG
2832 printf("RTC COMPMSB <-- %02x\n", value);
2833 #endif
2834 s->comp_reg &= 0x00ff;
2835 s->comp_reg |= 0xff00 & (value << 8);
2836 return;
2837
2838 default:
2839 OMAP_BAD_REG(addr);
2840 return;
2841 }
2842 }
2843
2844 static const MemoryRegionOps omap_rtc_ops = {
2845 .read = omap_rtc_read,
2846 .write = omap_rtc_write,
2847 .endianness = DEVICE_NATIVE_ENDIAN,
2848 };
2849
2850 static void omap_rtc_tick(void *opaque)
2851 {
2852 struct omap_rtc_s *s = opaque;
2853
2854 if (s->round) {
2855 /* Round to nearest full minute. */
2856 if (s->current_tm.tm_sec < 30)
2857 s->ti -= s->current_tm.tm_sec;
2858 else
2859 s->ti += 60 - s->current_tm.tm_sec;
2860
2861 s->round = 0;
2862 }
2863
2864 localtime_r(&s->ti, &s->current_tm);
2865
2866 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2867 s->status |= 0x40;
2868 omap_rtc_interrupts_update(s);
2869 }
2870
2871 if (s->interrupts & 0x04)
2872 switch (s->interrupts & 3) {
2873 case 0:
2874 s->status |= 0x04;
2875 qemu_irq_pulse(s->irq);
2876 break;
2877 case 1:
2878 if (s->current_tm.tm_sec)
2879 break;
2880 s->status |= 0x08;
2881 qemu_irq_pulse(s->irq);
2882 break;
2883 case 2:
2884 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2885 break;
2886 s->status |= 0x10;
2887 qemu_irq_pulse(s->irq);
2888 break;
2889 case 3:
2890 if (s->current_tm.tm_sec ||
2891 s->current_tm.tm_min || s->current_tm.tm_hour)
2892 break;
2893 s->status |= 0x20;
2894 qemu_irq_pulse(s->irq);
2895 break;
2896 }
2897
2898 /* Move on */
2899 if (s->running)
2900 s->ti ++;
2901 s->tick += 1000;
2902
2903 /*
2904 * Every full hour add a rough approximation of the compensation
2905 * register to the 32kHz Timer (which drives the RTC) value.
2906 */
2907 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2908 s->tick += s->comp_reg * 1000 / 32768;
2909
2910 timer_mod(s->clk, s->tick);
2911 }
2912
2913 static void omap_rtc_reset(struct omap_rtc_s *s)
2914 {
2915 struct tm tm;
2916
2917 s->interrupts = 0;
2918 s->comp_reg = 0;
2919 s->running = 0;
2920 s->pm_am = 0;
2921 s->auto_comp = 0;
2922 s->round = 0;
2923 s->tick = qemu_clock_get_ms(rtc_clock);
2924 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2925 s->alarm_tm.tm_mday = 0x01;
2926 s->status = 1 << 7;
2927 qemu_get_timedate(&tm, 0);
2928 s->ti = mktimegm(&tm);
2929
2930 omap_rtc_alarm_update(s);
2931 omap_rtc_tick(s);
2932 }
2933
2934 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2935 hwaddr base,
2936 qemu_irq timerirq, qemu_irq alarmirq,
2937 omap_clk clk)
2938 {
2939 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2940
2941 s->irq = timerirq;
2942 s->alarm = alarmirq;
2943 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2944
2945 omap_rtc_reset(s);
2946
2947 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2948 "omap-rtc", 0x800);
2949 memory_region_add_subregion(system_memory, base, &s->iomem);
2950
2951 return s;
2952 }
2953
2954 /* Multi-channel Buffered Serial Port interfaces */
2955 struct omap_mcbsp_s {
2956 MemoryRegion iomem;
2957 qemu_irq txirq;
2958 qemu_irq rxirq;
2959 qemu_irq txdrq;
2960 qemu_irq rxdrq;
2961
2962 uint16_t spcr[2];
2963 uint16_t rcr[2];
2964 uint16_t xcr[2];
2965 uint16_t srgr[2];
2966 uint16_t mcr[2];
2967 uint16_t pcr;
2968 uint16_t rcer[8];
2969 uint16_t xcer[8];
2970 int tx_rate;
2971 int rx_rate;
2972 int tx_req;
2973 int rx_req;
2974
2975 I2SCodec *codec;
2976 QEMUTimer *source_timer;
2977 QEMUTimer *sink_timer;
2978 };
2979
2980 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2981 {
2982 int irq;
2983
2984 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2985 case 0:
2986 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2987 break;
2988 case 3:
2989 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2990 break;
2991 default:
2992 irq = 0;
2993 break;
2994 }
2995
2996 if (irq)
2997 qemu_irq_pulse(s->rxirq);
2998
2999 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3000 case 0:
3001 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3002 break;
3003 case 3:
3004 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3005 break;
3006 default:
3007 irq = 0;
3008 break;
3009 }
3010
3011 if (irq)
3012 qemu_irq_pulse(s->txirq);
3013 }
3014
3015 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3016 {
3017 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3018 s->spcr[0] |= 1 << 2; /* RFULL */
3019 s->spcr[0] |= 1 << 1; /* RRDY */
3020 qemu_irq_raise(s->rxdrq);
3021 omap_mcbsp_intr_update(s);
3022 }
3023
3024 static void omap_mcbsp_source_tick(void *opaque)
3025 {
3026 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3027 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3028
3029 if (!s->rx_rate)
3030 return;
3031 if (s->rx_req)
3032 printf("%s: Rx FIFO overrun\n", __func__);
3033
3034 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3035
3036 omap_mcbsp_rx_newdata(s);
3037 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3038 NANOSECONDS_PER_SECOND);
3039 }
3040
3041 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3042 {
3043 if (!s->codec || !s->codec->rts)
3044 omap_mcbsp_source_tick(s);
3045 else if (s->codec->in.len) {
3046 s->rx_req = s->codec->in.len;
3047 omap_mcbsp_rx_newdata(s);
3048 }
3049 }
3050
3051 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3052 {
3053 timer_del(s->source_timer);
3054 }
3055
3056 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3057 {
3058 s->spcr[0] &= ~(1 << 1); /* RRDY */
3059 qemu_irq_lower(s->rxdrq);
3060 omap_mcbsp_intr_update(s);
3061 }
3062
3063 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3064 {
3065 s->spcr[1] |= 1 << 1; /* XRDY */
3066 qemu_irq_raise(s->txdrq);
3067 omap_mcbsp_intr_update(s);
3068 }
3069
3070 static void omap_mcbsp_sink_tick(void *opaque)
3071 {
3072 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3073 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3074
3075 if (!s->tx_rate)
3076 return;
3077 if (s->tx_req)
3078 printf("%s: Tx FIFO underrun\n", __func__);
3079
3080 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3081
3082 omap_mcbsp_tx_newdata(s);
3083 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3084 NANOSECONDS_PER_SECOND);
3085 }
3086
3087 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3088 {
3089 if (!s->codec || !s->codec->cts)
3090 omap_mcbsp_sink_tick(s);
3091 else if (s->codec->out.size) {
3092 s->tx_req = s->codec->out.size;
3093 omap_mcbsp_tx_newdata(s);
3094 }
3095 }
3096
3097 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3098 {
3099 s->spcr[1] &= ~(1 << 1); /* XRDY */
3100 qemu_irq_lower(s->txdrq);
3101 omap_mcbsp_intr_update(s);
3102 if (s->codec && s->codec->cts)
3103 s->codec->tx_swallow(s->codec->opaque);
3104 }
3105
3106 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3107 {
3108 s->tx_req = 0;
3109 omap_mcbsp_tx_done(s);
3110 timer_del(s->sink_timer);
3111 }
3112
3113 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3114 {
3115 int prev_rx_rate, prev_tx_rate;
3116 int rx_rate = 0, tx_rate = 0;
3117 int cpu_rate = 1500000; /* XXX */
3118
3119 /* TODO: check CLKSTP bit */
3120 if (s->spcr[1] & (1 << 6)) { /* GRST */
3121 if (s->spcr[0] & (1 << 0)) { /* RRST */
3122 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3123 (s->pcr & (1 << 8))) { /* CLKRM */
3124 if (~s->pcr & (1 << 7)) /* SCLKME */
3125 rx_rate = cpu_rate /
3126 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3127 } else
3128 if (s->codec)
3129 rx_rate = s->codec->rx_rate;
3130 }
3131
3132 if (s->spcr[1] & (1 << 0)) { /* XRST */
3133 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3134 (s->pcr & (1 << 9))) { /* CLKXM */
3135 if (~s->pcr & (1 << 7)) /* SCLKME */
3136 tx_rate = cpu_rate /
3137 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3138 } else
3139 if (s->codec)
3140 tx_rate = s->codec->tx_rate;
3141 }
3142 }
3143 prev_tx_rate = s->tx_rate;
3144 prev_rx_rate = s->rx_rate;
3145 s->tx_rate = tx_rate;
3146 s->rx_rate = rx_rate;
3147
3148 if (s->codec)
3149 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3150
3151 if (!prev_tx_rate && tx_rate)
3152 omap_mcbsp_tx_start(s);
3153 else if (s->tx_rate && !tx_rate)
3154 omap_mcbsp_tx_stop(s);
3155
3156 if (!prev_rx_rate && rx_rate)
3157 omap_mcbsp_rx_start(s);
3158 else if (prev_tx_rate && !tx_rate)
3159 omap_mcbsp_rx_stop(s);
3160 }
3161
3162 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3163 unsigned size)
3164 {
3165 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3166 int offset = addr & OMAP_MPUI_REG_MASK;
3167 uint16_t ret;
3168
3169 if (size != 2) {
3170 return omap_badwidth_read16(opaque, addr);
3171 }
3172
3173 switch (offset) {
3174 case 0x00: /* DRR2 */
3175 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3176 return 0x0000;
3177 /* Fall through. */
3178 case 0x02: /* DRR1 */
3179 if (s->rx_req < 2) {
3180 printf("%s: Rx FIFO underrun\n", __func__);
3181 omap_mcbsp_rx_done(s);
3182 } else {
3183 s->tx_req -= 2;
3184 if (s->codec && s->codec->in.len >= 2) {
3185 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3186 ret |= s->codec->in.fifo[s->codec->in.start ++];
3187 s->codec->in.len -= 2;
3188 } else
3189 ret = 0x0000;
3190 if (!s->tx_req)
3191 omap_mcbsp_rx_done(s);
3192 return ret;
3193 }
3194 return 0x0000;
3195
3196 case 0x04: /* DXR2 */
3197 case 0x06: /* DXR1 */
3198 return 0x0000;
3199
3200 case 0x08: /* SPCR2 */
3201 return s->spcr[1];
3202 case 0x0a: /* SPCR1 */
3203 return s->spcr[0];
3204 case 0x0c: /* RCR2 */
3205 return s->rcr[1];
3206 case 0x0e: /* RCR1 */
3207 return s->rcr[0];
3208 case 0x10: /* XCR2 */
3209 return s->xcr[1];
3210 case 0x12: /* XCR1 */
3211 return s->xcr[0];
3212 case 0x14: /* SRGR2 */
3213 return s->srgr[1];
3214 case 0x16: /* SRGR1 */
3215 return s->srgr[0];
3216 case 0x18: /* MCR2 */
3217 return s->mcr[1];
3218 case 0x1a: /* MCR1 */
3219 return s->mcr[0];
3220 case 0x1c: /* RCERA */
3221 return s->rcer[0];
3222 case 0x1e: /* RCERB */
3223 return s->rcer[1];
3224 case 0x20: /* XCERA */
3225 return s->xcer[0];
3226 case 0x22: /* XCERB */
3227 return s->xcer[1];
3228 case 0x24: /* PCR0 */
3229 return s->pcr;
3230 case 0x26: /* RCERC */
3231 return s->rcer[2];
3232 case 0x28: /* RCERD */
3233 return s->rcer[3];
3234 case 0x2a: /* XCERC */
3235 return s->xcer[2];
3236 case 0x2c: /* XCERD */
3237 return s->xcer[3];
3238 case 0x2e: /* RCERE */
3239 return s->rcer[4];
3240 case 0x30: /* RCERF */
3241 return s->rcer[5];
3242 case 0x32: /* XCERE */
3243 return s->xcer[4];
3244 case 0x34: /* XCERF */
3245 return s->xcer[5];
3246 case 0x36: /* RCERG */
3247 return s->rcer[6];
3248 case 0x38: /* RCERH */
3249 return s->rcer[7];
3250 case 0x3a: /* XCERG */
3251 return s->xcer[6];
3252 case 0x3c: /* XCERH */
3253 return s->xcer[7];
3254 }
3255
3256 OMAP_BAD_REG(addr);
3257 return 0;
3258 }
3259
3260 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3261 uint32_t value)
3262 {
3263 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3264 int offset = addr & OMAP_MPUI_REG_MASK;
3265
3266 switch (offset) {
3267 case 0x00: /* DRR2 */
3268 case 0x02: /* DRR1 */
3269 OMAP_RO_REG(addr);
3270 return;
3271
3272 case 0x04: /* DXR2 */
3273 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3274 return;
3275 /* Fall through. */
3276 case 0x06: /* DXR1 */
3277 if (s->tx_req > 1) {
3278 s->tx_req -= 2;
3279 if (s->codec && s->codec->cts) {
3280 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3281 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3282 }
3283 if (s->tx_req < 2)
3284 omap_mcbsp_tx_done(s);
3285 } else
3286 printf("%s: Tx FIFO overrun\n", __func__);
3287 return;
3288
3289 case 0x08: /* SPCR2 */
3290 s->spcr[1] &= 0x0002;
3291 s->spcr[1] |= 0x03f9 & value;
3292 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3293 if (~value & 1) /* XRST */
3294 s->spcr[1] &= ~6;
3295 omap_mcbsp_req_update(s);
3296 return;
3297 case 0x0a: /* SPCR1 */
3298 s->spcr[0] &= 0x0006;
3299 s->spcr[0] |= 0xf8f9 & value;
3300 if (value & (1 << 15)) /* DLB */
3301 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3302 if (~value & 1) { /* RRST */
3303 s->spcr[0] &= ~6;
3304 s->rx_req = 0;
3305 omap_mcbsp_rx_done(s);
3306 }
3307 omap_mcbsp_req_update(s);
3308 return;
3309
3310 case 0x0c: /* RCR2 */
3311 s->rcr[1] = value & 0xffff;
3312 return;
3313 case 0x0e: /* RCR1 */
3314 s->rcr[0] = value & 0x7fe0;
3315 return;
3316 case 0x10: /* XCR2 */
3317 s->xcr[1] = value & 0xffff;
3318 return;
3319 case 0x12: /* XCR1 */
3320 s->xcr[0] = value & 0x7fe0;
3321 return;
3322 case 0x14: /* SRGR2 */
3323 s->srgr[1] = value & 0xffff;
3324 omap_mcbsp_req_update(s);
3325 return;
3326 case 0x16: /* SRGR1 */
3327 s->srgr[0] = value & 0xffff;
3328 omap_mcbsp_req_update(s);
3329 return;
3330 case 0x18: /* MCR2 */
3331 s->mcr[1] = value & 0x03e3;
3332 if (value & 3) /* XMCM */
3333 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3334 return;
3335 case 0x1a: /* MCR1 */
3336 s->mcr[0] = value & 0x03e1;
3337 if (value & 1) /* RMCM */
3338 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3339 return;
3340 case 0x1c: /* RCERA */
3341 s->rcer[0] = value & 0xffff;
3342 return;
3343 case 0x1e: /* RCERB */
3344 s->rcer[1] = value & 0xffff;
3345 return;
3346 case 0x20: /* XCERA */
3347 s->xcer[0] = value & 0xffff;
3348 return;
3349 case 0x22: /* XCERB */
3350 s->xcer[1] = value & 0xffff;
3351 return;
3352 case 0x24: /* PCR0 */
3353 s->pcr = value & 0x7faf;
3354 return;
3355 case 0x26: /* RCERC */
3356 s->rcer[2] = value & 0xffff;
3357 return;
3358 case 0x28: /* RCERD */
3359 s->rcer[3] = value & 0xffff;
3360 return;
3361 case 0x2a: /* XCERC */
3362 s->xcer[2] = value & 0xffff;
3363 return;
3364 case 0x2c: /* XCERD */
3365 s->xcer[3] = value & 0xffff;
3366 return;
3367 case 0x2e: /* RCERE */
3368 s->rcer[4] = value & 0xffff;
3369 return;
3370 case 0x30: /* RCERF */
3371 s->rcer[5] = value & 0xffff;
3372 return;
3373 case 0x32: /* XCERE */
3374 s->xcer[4] = value & 0xffff;
3375 return;
3376 case 0x34: /* XCERF */
3377 s->xcer[5] = value & 0xffff;
3378 return;
3379 case 0x36: /* RCERG */
3380 s->rcer[6] = value & 0xffff;
3381 return;
3382 case 0x38: /* RCERH */
3383 s->rcer[7] = value & 0xffff;
3384 return;
3385 case 0x3a: /* XCERG */
3386 s->xcer[6] = value & 0xffff;
3387 return;
3388 case 0x3c: /* XCERH */
3389 s->xcer[7] = value & 0xffff;
3390 return;
3391 }
3392
3393 OMAP_BAD_REG(addr);
3394 }
3395
3396 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3397 uint32_t value)
3398 {
3399 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3400 int offset = addr & OMAP_MPUI_REG_MASK;
3401
3402 if (offset == 0x04) { /* DXR */
3403 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3404 return;
3405 if (s->tx_req > 3) {
3406 s->tx_req -= 4;
3407 if (s->codec && s->codec->cts) {
3408 s->codec->out.fifo[s->codec->out.len ++] =
3409 (value >> 24) & 0xff;
3410 s->codec->out.fifo[s->codec->out.len ++] =
3411 (value >> 16) & 0xff;
3412 s->codec->out.fifo[s->codec->out.len ++] =
3413 (value >> 8) & 0xff;
3414 s->codec->out.fifo[s->codec->out.len ++] =
3415 (value >> 0) & 0xff;
3416 }
3417 if (s->tx_req < 4)
3418 omap_mcbsp_tx_done(s);
3419 } else
3420 printf("%s: Tx FIFO overrun\n", __func__);
3421 return;
3422 }
3423
3424 omap_badwidth_write16(opaque, addr, value);
3425 }
3426
3427 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3428 uint64_t value, unsigned size)
3429 {
3430 switch (size) {
3431 case 2:
3432 omap_mcbsp_writeh(opaque, addr, value);
3433 break;
3434 case 4:
3435 omap_mcbsp_writew(opaque, addr, value);
3436 break;
3437 default:
3438 omap_badwidth_write16(opaque, addr, value);
3439 }
3440 }
3441
3442 static const MemoryRegionOps omap_mcbsp_ops = {
3443 .read = omap_mcbsp_read,
3444 .write = omap_mcbsp_write,
3445 .endianness = DEVICE_NATIVE_ENDIAN,
3446 };
3447
3448 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3449 {
3450 memset(&s->spcr, 0, sizeof(s->spcr));
3451 memset(&s->rcr, 0, sizeof(s->rcr));
3452 memset(&s->xcr, 0, sizeof(s->xcr));
3453 s->srgr[0] = 0x0001;
3454 s->srgr[1] = 0x2000;
3455 memset(&s->mcr, 0, sizeof(s->mcr));
3456 memset(&s->pcr, 0, sizeof(s->pcr));
3457 memset(&s->rcer, 0, sizeof(s->rcer));
3458 memset(&s->xcer, 0, sizeof(s->xcer));
3459 s->tx_req = 0;
3460 s->rx_req = 0;
3461 s->tx_rate = 0;
3462 s->rx_rate = 0;
3463 timer_del(s->source_timer);
3464 timer_del(s->sink_timer);
3465 }
3466
3467 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3468 hwaddr base,
3469 qemu_irq txirq, qemu_irq rxirq,
3470 qemu_irq *dma, omap_clk clk)
3471 {
3472 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3473
3474 s->txirq = txirq;
3475 s->rxirq = rxirq;
3476 s->txdrq = dma[0];
3477 s->rxdrq = dma[1];
3478 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3479 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3480 omap_mcbsp_reset(s);
3481
3482 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3483 memory_region_add_subregion(system_memory, base, &s->iomem);
3484
3485 return s;
3486 }
3487
3488 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3489 {
3490 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3491
3492 if (s->rx_rate) {
3493 s->rx_req = s->codec->in.len;
3494 omap_mcbsp_rx_newdata(s);
3495 }
3496 }
3497
3498 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3499 {
3500 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3501
3502 if (s->tx_rate) {
3503 s->tx_req = s->codec->out.size;
3504 omap_mcbsp_tx_newdata(s);
3505 }
3506 }
3507
3508 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3509 {
3510 s->codec = slave;
3511 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3512 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3513 }
3514
3515 /* LED Pulse Generators */
3516 struct omap_lpg_s {
3517 MemoryRegion iomem;
3518 QEMUTimer *tm;
3519
3520 uint8_t control;
3521 uint8_t power;
3522 int64_t on;
3523 int64_t period;
3524 int clk;
3525 int cycle;
3526 };
3527
3528 static void omap_lpg_tick(void *opaque)
3529 {
3530 struct omap_lpg_s *s = opaque;
3531
3532 if (s->cycle)
3533 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3534 else
3535 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3536
3537 s->cycle = !s->cycle;
3538 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3539 }
3540
3541 static void omap_lpg_update(struct omap_lpg_s *s)
3542 {
3543 int64_t on, period = 1, ticks = 1000;
3544 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3545
3546 if (~s->control & (1 << 6)) /* LPGRES */
3547 on = 0;
3548 else if (s->control & (1 << 7)) /* PERM_ON */
3549 on = period;
3550 else {
3551 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3552 256 / 32);
3553 on = (s->clk && s->power) ? muldiv64(ticks,
3554 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3555 }
3556
3557 timer_del(s->tm);
3558 if (on == period && s->on < s->period)
3559 printf("%s: LED is on\n", __func__);
3560 else if (on == 0 && s->on)
3561 printf("%s: LED is off\n", __func__);
3562 else if (on && (on != s->on || period != s->period)) {
3563 s->cycle = 0;
3564 s->on = on;
3565 s->period = period;
3566 omap_lpg_tick(s);
3567 return;
3568 }
3569
3570 s->on = on;
3571 s->period = period;
3572 }
3573
3574 static void omap_lpg_reset(struct omap_lpg_s *s)
3575 {
3576 s->control = 0x00;
3577 s->power = 0x00;
3578 s->clk = 1;
3579 omap_lpg_update(s);
3580 }
3581
3582 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3583 unsigned size)
3584 {
3585 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586 int offset = addr & OMAP_MPUI_REG_MASK;
3587
3588 if (size != 1) {
3589 return omap_badwidth_read8(opaque, addr);
3590 }
3591
3592 switch (offset) {
3593 case 0x00: /* LCR */
3594 return s->control;
3595
3596 case 0x04: /* PMR */
3597 return s->power;
3598 }
3599
3600 OMAP_BAD_REG(addr);
3601 return 0;
3602 }
3603
3604 static void omap_lpg_write(void *opaque, hwaddr addr,
3605 uint64_t value, unsigned size)
3606 {
3607 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3608 int offset = addr & OMAP_MPUI_REG_MASK;
3609
3610 if (size != 1) {
3611 omap_badwidth_write8(opaque, addr, value);
3612 return;
3613 }
3614
3615 switch (offset) {
3616 case 0x00: /* LCR */
3617 if (~value & (1 << 6)) /* LPGRES */
3618 omap_lpg_reset(s);
3619 s->control = value & 0xff;
3620 omap_lpg_update(s);
3621 return;
3622
3623 case 0x04: /* PMR */
3624 s->power = value & 0x01;
3625 omap_lpg_update(s);
3626 return;
3627
3628 default:
3629 OMAP_BAD_REG(addr);
3630 return;
3631 }
3632 }
3633
3634 static const MemoryRegionOps omap_lpg_ops = {
3635 .read = omap_lpg_read,
3636 .write = omap_lpg_write,
3637 .endianness = DEVICE_NATIVE_ENDIAN,
3638 };
3639
3640 static void omap_lpg_clk_update(void *opaque, int line, int on)
3641 {
3642 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3643
3644 s->clk = on;
3645 omap_lpg_update(s);
3646 }
3647
3648 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3649 hwaddr base, omap_clk clk)
3650 {
3651 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3652
3653 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3654
3655 omap_lpg_reset(s);
3656
3657 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3658 memory_region_add_subregion(system_memory, base, &s->iomem);
3659
3660 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3661
3662 return s;
3663 }
3664
3665 /* MPUI Peripheral Bridge configuration */
3666 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3667 unsigned size)
3668 {
3669 if (size != 2) {
3670 return omap_badwidth_read16(opaque, addr);
3671 }
3672
3673 if (addr == OMAP_MPUI_BASE) /* CMR */
3674 return 0xfe4d;
3675
3676 OMAP_BAD_REG(addr);
3677 return 0;
3678 }
3679
3680 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3681 uint64_t value, unsigned size)
3682 {
3683 /* FIXME: infinite loop */
3684 omap_badwidth_write16(opaque, addr, value);
3685 }
3686
3687 static const MemoryRegionOps omap_mpui_io_ops = {
3688 .read = omap_mpui_io_read,
3689 .write = omap_mpui_io_write,
3690 .endianness = DEVICE_NATIVE_ENDIAN,
3691 };
3692
3693 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3694 struct omap_mpu_state_s *mpu)
3695 {
3696 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3697 "omap-mpui-io", 0x7fff);
3698 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3699 &mpu->mpui_io_iomem);
3700 }
3701
3702 /* General chip reset */
3703 static void omap1_mpu_reset(void *opaque)
3704 {
3705 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3706
3707 omap_dma_reset(mpu->dma);
3708 omap_mpu_timer_reset(mpu->timer[0]);
3709 omap_mpu_timer_reset(mpu->timer[1]);
3710 omap_mpu_timer_reset(mpu->timer[2]);
3711 omap_wd_timer_reset(mpu->wdt);
3712 omap_os_timer_reset(mpu->os_timer);
3713 omap_lcdc_reset(mpu->lcd);
3714 omap_ulpd_pm_reset(mpu);
3715 omap_pin_cfg_reset(mpu);
3716 omap_mpui_reset(mpu);
3717 omap_tipb_bridge_reset(mpu->private_tipb);
3718 omap_tipb_bridge_reset(mpu->public_tipb);
3719 omap_dpll_reset(mpu->dpll[0]);
3720 omap_dpll_reset(mpu->dpll[1]);
3721 omap_dpll_reset(mpu->dpll[2]);
3722 omap_uart_reset(mpu->uart[0]);
3723 omap_uart_reset(mpu->uart[1]);
3724 omap_uart_reset(mpu->uart[2]);
3725 omap_mmc_reset(mpu->mmc);
3726 omap_mpuio_reset(mpu->mpuio);
3727 omap_uwire_reset(mpu->microwire);
3728 omap_pwl_reset(mpu->pwl);
3729 omap_pwt_reset(mpu->pwt);
3730 omap_rtc_reset(mpu->rtc);
3731 omap_mcbsp_reset(mpu->mcbsp1);
3732 omap_mcbsp_reset(mpu->mcbsp2);
3733 omap_mcbsp_reset(mpu->mcbsp3);
3734 omap_lpg_reset(mpu->led[0]);
3735 omap_lpg_reset(mpu->led[1]);
3736 omap_clkm_reset(mpu);
3737 cpu_reset(CPU(mpu->cpu));
3738 }
3739
3740 static const struct omap_map_s {
3741 hwaddr phys_dsp;
3742 hwaddr phys_mpu;
3743 uint32_t size;
3744 const char *name;
3745 } omap15xx_dsp_mm[] = {
3746 /* Strobe 0 */
3747 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3748 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3749 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3750 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3751 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3752 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3753 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3754 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3755 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3756 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3757 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3758 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3759 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3760 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3761 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3762 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3763 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3764 /* Strobe 1 */
3765 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3766
3767 { 0 }
3768 };
3769
3770 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3771 const struct omap_map_s *map)
3772 {
3773 MemoryRegion *io;
3774
3775 for (; map->phys_dsp; map ++) {
3776 io = g_new(MemoryRegion, 1);
3777 memory_region_init_alias(io, NULL, map->name,
3778 system_memory, map->phys_mpu, map->size);
3779 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3780 }
3781 }
3782
3783 void omap_mpu_wakeup(void *opaque, int irq, int req)
3784 {
3785 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3786 CPUState *cpu = CPU(mpu->cpu);
3787
3788 if (cpu->halted) {
3789 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3790 }
3791 }
3792
3793 static const struct dma_irq_map omap1_dma_irq_map[] = {
3794 { 0, OMAP_INT_DMA_CH0_6 },
3795 { 0, OMAP_INT_DMA_CH1_7 },
3796 { 0, OMAP_INT_DMA_CH2_8 },
3797 { 0, OMAP_INT_DMA_CH3 },
3798 { 0, OMAP_INT_DMA_CH4 },
3799 { 0, OMAP_INT_DMA_CH5 },
3800 { 1, OMAP_INT_1610_DMA_CH6 },
3801 { 1, OMAP_INT_1610_DMA_CH7 },
3802 { 1, OMAP_INT_1610_DMA_CH8 },
3803 { 1, OMAP_INT_1610_DMA_CH9 },
3804 { 1, OMAP_INT_1610_DMA_CH10 },
3805 { 1, OMAP_INT_1610_DMA_CH11 },
3806 { 1, OMAP_INT_1610_DMA_CH12 },
3807 { 1, OMAP_INT_1610_DMA_CH13 },
3808 { 1, OMAP_INT_1610_DMA_CH14 },
3809 { 1, OMAP_INT_1610_DMA_CH15 }
3810 };
3811
3812 /* DMA ports for OMAP1 */
3813 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3814 hwaddr addr)
3815 {
3816 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3817 }
3818
3819 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3820 hwaddr addr)
3821 {
3822 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3823 addr);
3824 }
3825
3826 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3827 hwaddr addr)
3828 {
3829 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3830 }
3831
3832 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3833 hwaddr addr)
3834 {
3835 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3836 }
3837
3838 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3839 hwaddr addr)
3840 {
3841 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3842 }
3843
3844 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3845 hwaddr addr)
3846 {
3847 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3848 }
3849
3850 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3851 unsigned long sdram_size,
3852 const char *cpu_type)
3853 {
3854 int i;
3855 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3856 qemu_irq dma_irqs[6];
3857 DriveInfo *dinfo;
3858 SysBusDevice *busdev;
3859
3860 /* Core */
3861 s->mpu_model = omap310;
3862 s->cpu = ARM_CPU(cpu_create(cpu_type));
3863 s->sdram_size = sdram_size;
3864 s->sram_size = OMAP15XX_SRAM_SIZE;
3865
3866 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3867
3868 /* Clocks */
3869 omap_clk_init(s);
3870
3871 /* Memory-mapped stuff */
3872 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3873 s->sdram_size);
3874 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3875 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3876 &error_fatal);
3877 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3878
3879 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3880
3881 s->ih[0] = qdev_create(NULL, "omap-intc");
3882 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3883 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3884 qdev_init_nofail(s->ih[0]);
3885 busdev = SYS_BUS_DEVICE(s->ih[0]);
3886 sysbus_connect_irq(busdev, 0,
3887 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3888 sysbus_connect_irq(busdev, 1,
3889 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3890 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3891 s->ih[1] = qdev_create(NULL, "omap-intc");
3892 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3893 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3894 qdev_init_nofail(s->ih[1]);
3895 busdev = SYS_BUS_DEVICE(s->ih[1]);
3896 sysbus_connect_irq(busdev, 0,
3897 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3898 /* The second interrupt controller's FIQ output is not wired up */
3899 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3900
3901 for (i = 0; i < 6; i++) {
3902 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3903 omap1_dma_irq_map[i].intr);
3904 }
3905 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3907 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3908
3909 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3910 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3911 s->port[imif ].addr_valid = omap_validate_imif_addr;
3912 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3913 s->port[local ].addr_valid = omap_validate_local_addr;
3914 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3915
3916 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3917 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3918 OMAP_EMIFF_BASE, s->sdram_size);
3919 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3920 OMAP_IMIF_BASE, s->sram_size);
3921
3922 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3923 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3924 omap_findclk(s, "mputim_ck"));
3925 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3926 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3927 omap_findclk(s, "mputim_ck"));
3928 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3930 omap_findclk(s, "mputim_ck"));
3931
3932 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3934 omap_findclk(s, "armwdt_ck"));
3935
3936 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3937 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3938 omap_findclk(s, "clk32-kHz"));
3939
3940 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3941 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3942 omap_dma_get_lcdch(s->dma),
3943 omap_findclk(s, "lcd_ck"));
3944
3945 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3946 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3947 omap_id_init(system_memory, s);
3948
3949 omap_mpui_init(system_memory, 0xfffec900, s);
3950
3951 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3952 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3953 omap_findclk(s, "tipb_ck"));
3954 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3955 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3956 omap_findclk(s, "tipb_ck"));
3957
3958 omap_tcmi_init(system_memory, 0xfffecc00, s);
3959
3960 s->uart[0] = omap_uart_init(0xfffb0000,
3961 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3962 omap_findclk(s, "uart1_ck"),
3963 omap_findclk(s, "uart1_ck"),
3964 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3965 "uart1",
3966 serial_hd(0));
3967 s->uart[1] = omap_uart_init(0xfffb0800,
3968 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3969 omap_findclk(s, "uart2_ck"),
3970 omap_findclk(s, "uart2_ck"),
3971 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3972 "uart2",
3973 serial_hd(0) ? serial_hd(1) : NULL);
3974 s->uart[2] = omap_uart_init(0xfffb9800,
3975 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3976 omap_findclk(s, "uart3_ck"),
3977 omap_findclk(s, "uart3_ck"),
3978 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3979 "uart3",
3980 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3981
3982 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3983 omap_findclk(s, "dpll1"));
3984 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3985 omap_findclk(s, "dpll2"));
3986 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3987 omap_findclk(s, "dpll3"));
3988
3989 dinfo = drive_get(IF_SD, 0, 0);
3990 if (!dinfo) {
3991 error_report("missing SecureDigital device");
3992 exit(1);
3993 }
3994 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3995 blk_by_legacy_dinfo(dinfo),
3996 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3997 &s->drq[OMAP_DMA_MMC_TX],
3998 omap_findclk(s, "mmc_ck"));
3999
4000 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4001 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4002 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4003 s->wakeup, omap_findclk(s, "clk32-kHz"));
4004
4005 s->gpio = qdev_create(NULL, "omap-gpio");
4006 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4007 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4008 qdev_init_nofail(s->gpio);
4009 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4010 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4011 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4012
4013 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4014 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4015 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4016 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4017
4018 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4019 omap_findclk(s, "armxor_ck"));
4020 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4021 omap_findclk(s, "armxor_ck"));
4022
4023 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4024 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4025 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4026 qdev_init_nofail(s->i2c[0]);
4027 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4028 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4029 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4030 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4031 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4032
4033 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4034 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4035 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4036 omap_findclk(s, "clk32-kHz"));
4037
4038 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4040 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4041 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4042 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4043 qdev_get_gpio_in(s->ih[0],
4044 OMAP_INT_310_McBSP2_TX),
4045 qdev_get_gpio_in(s->ih[0],
4046 OMAP_INT_310_McBSP2_RX),
4047 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4048 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4050 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4051 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4052
4053 s->led[0] = omap_lpg_init(system_memory,
4054 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4055 s->led[1] = omap_lpg_init(system_memory,
4056 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4057
4058 /* Register mappings not currenlty implemented:
4059 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4060 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4061 * USB W2FC fffb4000 - fffb47ff
4062 * Camera Interface fffb6800 - fffb6fff
4063 * USB Host fffba000 - fffba7ff
4064 * FAC fffba800 - fffbafff
4065 * HDQ/1-Wire fffbc000 - fffbc7ff
4066 * TIPB switches fffbc800 - fffbcfff
4067 * Mailbox fffcf000 - fffcf7ff
4068 * Local bus IF fffec100 - fffec1ff
4069 * Local bus MMU fffec200 - fffec2ff
4070 * DSP MMU fffed200 - fffed2ff
4071 */
4072
4073 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4074 omap_setup_mpui_io(system_memory, s);
4075
4076 qemu_register_reset(omap1_mpu_reset, s);
4077
4078 return s;
4079 }