]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/omap1.c
include/qemu/osdep.h: Don't include qapi/error.h
[mirror_qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "hw/boards.h"
23 #include "hw/hw.h"
24 #include "hw/arm/arm.h"
25 #include "hw/arm/omap.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/soc_dma.h"
28 #include "sysemu/block-backend.h"
29 #include "sysemu/blockdev.h"
30 #include "qemu/range.h"
31 #include "hw/sysbus.h"
32
33 /* Should signal the TCMI/GPMC */
34 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
35 {
36 uint8_t ret;
37
38 OMAP_8B_REG(addr);
39 cpu_physical_memory_read(addr, &ret, 1);
40 return ret;
41 }
42
43 void omap_badwidth_write8(void *opaque, hwaddr addr,
44 uint32_t value)
45 {
46 uint8_t val8 = value;
47
48 OMAP_8B_REG(addr);
49 cpu_physical_memory_write(addr, &val8, 1);
50 }
51
52 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
53 {
54 uint16_t ret;
55
56 OMAP_16B_REG(addr);
57 cpu_physical_memory_read(addr, &ret, 2);
58 return ret;
59 }
60
61 void omap_badwidth_write16(void *opaque, hwaddr addr,
62 uint32_t value)
63 {
64 uint16_t val16 = value;
65
66 OMAP_16B_REG(addr);
67 cpu_physical_memory_write(addr, &val16, 2);
68 }
69
70 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
71 {
72 uint32_t ret;
73
74 OMAP_32B_REG(addr);
75 cpu_physical_memory_read(addr, &ret, 4);
76 return ret;
77 }
78
79 void omap_badwidth_write32(void *opaque, hwaddr addr,
80 uint32_t value)
81 {
82 OMAP_32B_REG(addr);
83 cpu_physical_memory_write(addr, &value, 4);
84 }
85
86 /* MPU OS timers */
87 struct omap_mpu_timer_s {
88 MemoryRegion iomem;
89 qemu_irq irq;
90 omap_clk clk;
91 uint32_t val;
92 int64_t time;
93 QEMUTimer *timer;
94 QEMUBH *tick;
95 int64_t rate;
96 int it_ena;
97
98 int enable;
99 int ptv;
100 int ar;
101 int st;
102 uint32_t reset_val;
103 };
104
105 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
106 {
107 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
108
109 if (timer->st && timer->enable && timer->rate)
110 return timer->val - muldiv64(distance >> (timer->ptv + 1),
111 timer->rate, get_ticks_per_sec());
112 else
113 return timer->val;
114 }
115
116 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
117 {
118 timer->val = omap_timer_read(timer);
119 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
120 }
121
122 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
123 {
124 int64_t expires;
125
126 if (timer->enable && timer->st && timer->rate) {
127 timer->val = timer->reset_val; /* Should skip this on clk enable */
128 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
129 get_ticks_per_sec(), timer->rate);
130
131 /* If timer expiry would be sooner than in about 1 ms and
132 * auto-reload isn't set, then fire immediately. This is a hack
133 * to make systems like PalmOS run in acceptable time. PalmOS
134 * sets the interval to a very low value and polls the status bit
135 * in a busy loop when it wants to sleep just a couple of CPU
136 * ticks. */
137 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
138 timer_mod(timer->timer, timer->time + expires);
139 else
140 qemu_bh_schedule(timer->tick);
141 } else
142 timer_del(timer->timer);
143 }
144
145 static void omap_timer_fire(void *opaque)
146 {
147 struct omap_mpu_timer_s *timer = opaque;
148
149 if (!timer->ar) {
150 timer->val = 0;
151 timer->st = 0;
152 }
153
154 if (timer->it_ena)
155 /* Edge-triggered irq */
156 qemu_irq_pulse(timer->irq);
157 }
158
159 static void omap_timer_tick(void *opaque)
160 {
161 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
162
163 omap_timer_sync(timer);
164 omap_timer_fire(timer);
165 omap_timer_update(timer);
166 }
167
168 static void omap_timer_clk_update(void *opaque, int line, int on)
169 {
170 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
171
172 omap_timer_sync(timer);
173 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
174 omap_timer_update(timer);
175 }
176
177 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
178 {
179 omap_clk_adduser(timer->clk,
180 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
181 timer->rate = omap_clk_getrate(timer->clk);
182 }
183
184 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
185 unsigned size)
186 {
187 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
188
189 if (size != 4) {
190 return omap_badwidth_read32(opaque, addr);
191 }
192
193 switch (addr) {
194 case 0x00: /* CNTL_TIMER */
195 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
196
197 case 0x04: /* LOAD_TIM */
198 break;
199
200 case 0x08: /* READ_TIM */
201 return omap_timer_read(s);
202 }
203
204 OMAP_BAD_REG(addr);
205 return 0;
206 }
207
208 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
209 uint64_t value, unsigned size)
210 {
211 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
212
213 if (size != 4) {
214 omap_badwidth_write32(opaque, addr, value);
215 return;
216 }
217
218 switch (addr) {
219 case 0x00: /* CNTL_TIMER */
220 omap_timer_sync(s);
221 s->enable = (value >> 5) & 1;
222 s->ptv = (value >> 2) & 7;
223 s->ar = (value >> 1) & 1;
224 s->st = value & 1;
225 omap_timer_update(s);
226 return;
227
228 case 0x04: /* LOAD_TIM */
229 s->reset_val = value;
230 return;
231
232 case 0x08: /* READ_TIM */
233 OMAP_RO_REG(addr);
234 break;
235
236 default:
237 OMAP_BAD_REG(addr);
238 }
239 }
240
241 static const MemoryRegionOps omap_mpu_timer_ops = {
242 .read = omap_mpu_timer_read,
243 .write = omap_mpu_timer_write,
244 .endianness = DEVICE_LITTLE_ENDIAN,
245 };
246
247 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
248 {
249 timer_del(s->timer);
250 s->enable = 0;
251 s->reset_val = 31337;
252 s->val = 0;
253 s->ptv = 0;
254 s->ar = 0;
255 s->st = 0;
256 s->it_ena = 1;
257 }
258
259 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
260 hwaddr base,
261 qemu_irq irq, omap_clk clk)
262 {
263 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
264
265 s->irq = irq;
266 s->clk = clk;
267 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
268 s->tick = qemu_bh_new(omap_timer_fire, s);
269 omap_mpu_timer_reset(s);
270 omap_timer_clk_setup(s);
271
272 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
273 "omap-mpu-timer", 0x100);
274
275 memory_region_add_subregion(system_memory, base, &s->iomem);
276
277 return s;
278 }
279
280 /* Watchdog timer */
281 struct omap_watchdog_timer_s {
282 struct omap_mpu_timer_s timer;
283 MemoryRegion iomem;
284 uint8_t last_wr;
285 int mode;
286 int free;
287 int reset;
288 };
289
290 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
291 unsigned size)
292 {
293 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
294
295 if (size != 2) {
296 return omap_badwidth_read16(opaque, addr);
297 }
298
299 switch (addr) {
300 case 0x00: /* CNTL_TIMER */
301 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
302 (s->timer.st << 7) | (s->free << 1);
303
304 case 0x04: /* READ_TIMER */
305 return omap_timer_read(&s->timer);
306
307 case 0x08: /* TIMER_MODE */
308 return s->mode << 15;
309 }
310
311 OMAP_BAD_REG(addr);
312 return 0;
313 }
314
315 static void omap_wd_timer_write(void *opaque, hwaddr addr,
316 uint64_t value, unsigned size)
317 {
318 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
319
320 if (size != 2) {
321 omap_badwidth_write16(opaque, addr, value);
322 return;
323 }
324
325 switch (addr) {
326 case 0x00: /* CNTL_TIMER */
327 omap_timer_sync(&s->timer);
328 s->timer.ptv = (value >> 9) & 7;
329 s->timer.ar = (value >> 8) & 1;
330 s->timer.st = (value >> 7) & 1;
331 s->free = (value >> 1) & 1;
332 omap_timer_update(&s->timer);
333 break;
334
335 case 0x04: /* LOAD_TIMER */
336 s->timer.reset_val = value & 0xffff;
337 break;
338
339 case 0x08: /* TIMER_MODE */
340 if (!s->mode && ((value >> 15) & 1))
341 omap_clk_get(s->timer.clk);
342 s->mode |= (value >> 15) & 1;
343 if (s->last_wr == 0xf5) {
344 if ((value & 0xff) == 0xa0) {
345 if (s->mode) {
346 s->mode = 0;
347 omap_clk_put(s->timer.clk);
348 }
349 } else {
350 /* XXX: on T|E hardware somehow this has no effect,
351 * on Zire 71 it works as specified. */
352 s->reset = 1;
353 qemu_system_reset_request();
354 }
355 }
356 s->last_wr = value & 0xff;
357 break;
358
359 default:
360 OMAP_BAD_REG(addr);
361 }
362 }
363
364 static const MemoryRegionOps omap_wd_timer_ops = {
365 .read = omap_wd_timer_read,
366 .write = omap_wd_timer_write,
367 .endianness = DEVICE_NATIVE_ENDIAN,
368 };
369
370 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
371 {
372 timer_del(s->timer.timer);
373 if (!s->mode)
374 omap_clk_get(s->timer.clk);
375 s->mode = 1;
376 s->free = 1;
377 s->reset = 0;
378 s->timer.enable = 1;
379 s->timer.it_ena = 1;
380 s->timer.reset_val = 0xffff;
381 s->timer.val = 0;
382 s->timer.st = 0;
383 s->timer.ptv = 0;
384 s->timer.ar = 0;
385 omap_timer_update(&s->timer);
386 }
387
388 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
389 hwaddr base,
390 qemu_irq irq, omap_clk clk)
391 {
392 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
393
394 s->timer.irq = irq;
395 s->timer.clk = clk;
396 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
397 omap_wd_timer_reset(s);
398 omap_timer_clk_setup(&s->timer);
399
400 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
401 "omap-wd-timer", 0x100);
402 memory_region_add_subregion(memory, base, &s->iomem);
403
404 return s;
405 }
406
407 /* 32-kHz timer */
408 struct omap_32khz_timer_s {
409 struct omap_mpu_timer_s timer;
410 MemoryRegion iomem;
411 };
412
413 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
414 unsigned size)
415 {
416 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
417 int offset = addr & OMAP_MPUI_REG_MASK;
418
419 if (size != 4) {
420 return omap_badwidth_read32(opaque, addr);
421 }
422
423 switch (offset) {
424 case 0x00: /* TVR */
425 return s->timer.reset_val;
426
427 case 0x04: /* TCR */
428 return omap_timer_read(&s->timer);
429
430 case 0x08: /* CR */
431 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
432
433 default:
434 break;
435 }
436 OMAP_BAD_REG(addr);
437 return 0;
438 }
439
440 static void omap_os_timer_write(void *opaque, hwaddr addr,
441 uint64_t value, unsigned size)
442 {
443 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
444 int offset = addr & OMAP_MPUI_REG_MASK;
445
446 if (size != 4) {
447 omap_badwidth_write32(opaque, addr, value);
448 return;
449 }
450
451 switch (offset) {
452 case 0x00: /* TVR */
453 s->timer.reset_val = value & 0x00ffffff;
454 break;
455
456 case 0x04: /* TCR */
457 OMAP_RO_REG(addr);
458 break;
459
460 case 0x08: /* CR */
461 s->timer.ar = (value >> 3) & 1;
462 s->timer.it_ena = (value >> 2) & 1;
463 if (s->timer.st != (value & 1) || (value & 2)) {
464 omap_timer_sync(&s->timer);
465 s->timer.enable = value & 1;
466 s->timer.st = value & 1;
467 omap_timer_update(&s->timer);
468 }
469 break;
470
471 default:
472 OMAP_BAD_REG(addr);
473 }
474 }
475
476 static const MemoryRegionOps omap_os_timer_ops = {
477 .read = omap_os_timer_read,
478 .write = omap_os_timer_write,
479 .endianness = DEVICE_NATIVE_ENDIAN,
480 };
481
482 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
483 {
484 timer_del(s->timer.timer);
485 s->timer.enable = 0;
486 s->timer.it_ena = 0;
487 s->timer.reset_val = 0x00ffffff;
488 s->timer.val = 0;
489 s->timer.st = 0;
490 s->timer.ptv = 0;
491 s->timer.ar = 1;
492 }
493
494 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
495 hwaddr base,
496 qemu_irq irq, omap_clk clk)
497 {
498 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
499
500 s->timer.irq = irq;
501 s->timer.clk = clk;
502 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
503 omap_os_timer_reset(s);
504 omap_timer_clk_setup(&s->timer);
505
506 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
507 "omap-os-timer", 0x800);
508 memory_region_add_subregion(memory, base, &s->iomem);
509
510 return s;
511 }
512
513 /* Ultra Low-Power Device Module */
514 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
515 unsigned size)
516 {
517 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
518 uint16_t ret;
519
520 if (size != 2) {
521 return omap_badwidth_read16(opaque, addr);
522 }
523
524 switch (addr) {
525 case 0x14: /* IT_STATUS */
526 ret = s->ulpd_pm_regs[addr >> 2];
527 s->ulpd_pm_regs[addr >> 2] = 0;
528 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
529 return ret;
530
531 case 0x18: /* Reserved */
532 case 0x1c: /* Reserved */
533 case 0x20: /* Reserved */
534 case 0x28: /* Reserved */
535 case 0x2c: /* Reserved */
536 OMAP_BAD_REG(addr);
537 /* fall through */
538 case 0x00: /* COUNTER_32_LSB */
539 case 0x04: /* COUNTER_32_MSB */
540 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
541 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
542 case 0x10: /* GAUGING_CTRL */
543 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
544 case 0x30: /* CLOCK_CTRL */
545 case 0x34: /* SOFT_REQ */
546 case 0x38: /* COUNTER_32_FIQ */
547 case 0x3c: /* DPLL_CTRL */
548 case 0x40: /* STATUS_REQ */
549 /* XXX: check clk::usecount state for every clock */
550 case 0x48: /* LOCL_TIME */
551 case 0x4c: /* APLL_CTRL */
552 case 0x50: /* POWER_CTRL */
553 return s->ulpd_pm_regs[addr >> 2];
554 }
555
556 OMAP_BAD_REG(addr);
557 return 0;
558 }
559
560 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
561 uint16_t diff, uint16_t value)
562 {
563 if (diff & (1 << 4)) /* USB_MCLK_EN */
564 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
565 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
566 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
567 }
568
569 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
570 uint16_t diff, uint16_t value)
571 {
572 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
573 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
574 if (diff & (1 << 1)) /* SOFT_COM_REQ */
575 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
576 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
577 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
578 if (diff & (1 << 3)) /* SOFT_USB_REQ */
579 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
580 }
581
582 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
583 uint64_t value, unsigned size)
584 {
585 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
586 int64_t now, ticks;
587 int div, mult;
588 static const int bypass_div[4] = { 1, 2, 4, 4 };
589 uint16_t diff;
590
591 if (size != 2) {
592 omap_badwidth_write16(opaque, addr, value);
593 return;
594 }
595
596 switch (addr) {
597 case 0x00: /* COUNTER_32_LSB */
598 case 0x04: /* COUNTER_32_MSB */
599 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
600 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
601 case 0x14: /* IT_STATUS */
602 case 0x40: /* STATUS_REQ */
603 OMAP_RO_REG(addr);
604 break;
605
606 case 0x10: /* GAUGING_CTRL */
607 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
608 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
609 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
610
611 if (value & 1)
612 s->ulpd_gauge_start = now;
613 else {
614 now -= s->ulpd_gauge_start;
615
616 /* 32-kHz ticks */
617 ticks = muldiv64(now, 32768, get_ticks_per_sec());
618 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
619 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
620 if (ticks >> 32) /* OVERFLOW_32K */
621 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
622
623 /* High frequency ticks */
624 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
625 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
626 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
627 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
628 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
629
630 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
631 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
632 }
633 }
634 s->ulpd_pm_regs[addr >> 2] = value;
635 break;
636
637 case 0x18: /* Reserved */
638 case 0x1c: /* Reserved */
639 case 0x20: /* Reserved */
640 case 0x28: /* Reserved */
641 case 0x2c: /* Reserved */
642 OMAP_BAD_REG(addr);
643 /* fall through */
644 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
645 case 0x38: /* COUNTER_32_FIQ */
646 case 0x48: /* LOCL_TIME */
647 case 0x50: /* POWER_CTRL */
648 s->ulpd_pm_regs[addr >> 2] = value;
649 break;
650
651 case 0x30: /* CLOCK_CTRL */
652 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
654 omap_ulpd_clk_update(s, diff, value);
655 break;
656
657 case 0x34: /* SOFT_REQ */
658 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
659 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
660 omap_ulpd_req_update(s, diff, value);
661 break;
662
663 case 0x3c: /* DPLL_CTRL */
664 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
665 * omitted altogether, probably a typo. */
666 /* This register has identical semantics with DPLL(1:3) control
667 * registers, see omap_dpll_write() */
668 diff = s->ulpd_pm_regs[addr >> 2] & value;
669 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
670 if (diff & (0x3ff << 2)) {
671 if (value & (1 << 4)) { /* PLL_ENABLE */
672 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
673 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
674 } else {
675 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
676 mult = 1;
677 }
678 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
679 }
680
681 /* Enter the desired mode. */
682 s->ulpd_pm_regs[addr >> 2] =
683 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
684 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
685
686 /* Act as if the lock is restored. */
687 s->ulpd_pm_regs[addr >> 2] |= 2;
688 break;
689
690 case 0x4c: /* APLL_CTRL */
691 diff = s->ulpd_pm_regs[addr >> 2] & value;
692 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
693 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
694 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
695 (value & (1 << 0)) ? "apll" : "dpll4"));
696 break;
697
698 default:
699 OMAP_BAD_REG(addr);
700 }
701 }
702
703 static const MemoryRegionOps omap_ulpd_pm_ops = {
704 .read = omap_ulpd_pm_read,
705 .write = omap_ulpd_pm_write,
706 .endianness = DEVICE_NATIVE_ENDIAN,
707 };
708
709 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
710 {
711 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
712 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
713 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
714 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
715 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
716 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
717 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
718 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
719 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
720 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
721 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
722 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
723 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
724 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
725 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
726 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
727 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
728 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
729 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
730 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
731 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
732 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
733 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
734 }
735
736 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
737 hwaddr base,
738 struct omap_mpu_state_s *mpu)
739 {
740 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
741 "omap-ulpd-pm", 0x800);
742 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
743 omap_ulpd_pm_reset(mpu);
744 }
745
746 /* OMAP Pin Configuration */
747 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
748 unsigned size)
749 {
750 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
751
752 if (size != 4) {
753 return omap_badwidth_read32(opaque, addr);
754 }
755
756 switch (addr) {
757 case 0x00: /* FUNC_MUX_CTRL_0 */
758 case 0x04: /* FUNC_MUX_CTRL_1 */
759 case 0x08: /* FUNC_MUX_CTRL_2 */
760 return s->func_mux_ctrl[addr >> 2];
761
762 case 0x0c: /* COMP_MODE_CTRL_0 */
763 return s->comp_mode_ctrl[0];
764
765 case 0x10: /* FUNC_MUX_CTRL_3 */
766 case 0x14: /* FUNC_MUX_CTRL_4 */
767 case 0x18: /* FUNC_MUX_CTRL_5 */
768 case 0x1c: /* FUNC_MUX_CTRL_6 */
769 case 0x20: /* FUNC_MUX_CTRL_7 */
770 case 0x24: /* FUNC_MUX_CTRL_8 */
771 case 0x28: /* FUNC_MUX_CTRL_9 */
772 case 0x2c: /* FUNC_MUX_CTRL_A */
773 case 0x30: /* FUNC_MUX_CTRL_B */
774 case 0x34: /* FUNC_MUX_CTRL_C */
775 case 0x38: /* FUNC_MUX_CTRL_D */
776 return s->func_mux_ctrl[(addr >> 2) - 1];
777
778 case 0x40: /* PULL_DWN_CTRL_0 */
779 case 0x44: /* PULL_DWN_CTRL_1 */
780 case 0x48: /* PULL_DWN_CTRL_2 */
781 case 0x4c: /* PULL_DWN_CTRL_3 */
782 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
783
784 case 0x50: /* GATE_INH_CTRL_0 */
785 return s->gate_inh_ctrl[0];
786
787 case 0x60: /* VOLTAGE_CTRL_0 */
788 return s->voltage_ctrl[0];
789
790 case 0x70: /* TEST_DBG_CTRL_0 */
791 return s->test_dbg_ctrl[0];
792
793 case 0x80: /* MOD_CONF_CTRL_0 */
794 return s->mod_conf_ctrl[0];
795 }
796
797 OMAP_BAD_REG(addr);
798 return 0;
799 }
800
801 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
802 uint32_t diff, uint32_t value)
803 {
804 if (s->compat1509) {
805 if (diff & (1 << 9)) /* BLUETOOTH */
806 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
807 (~value >> 9) & 1);
808 if (diff & (1 << 7)) /* USB.CLKO */
809 omap_clk_onoff(omap_findclk(s, "usb.clko"),
810 (value >> 7) & 1);
811 }
812 }
813
814 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
815 uint32_t diff, uint32_t value)
816 {
817 if (s->compat1509) {
818 if (diff & (1U << 31)) {
819 /* MCBSP3_CLK_HIZ_DI */
820 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
821 }
822 if (diff & (1 << 1)) {
823 /* CLK32K */
824 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
825 }
826 }
827 }
828
829 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
830 uint32_t diff, uint32_t value)
831 {
832 if (diff & (1U << 31)) {
833 /* CONF_MOD_UART3_CLK_MODE_R */
834 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
835 omap_findclk(s, ((value >> 31) & 1) ?
836 "ck_48m" : "armper_ck"));
837 }
838 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
839 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
840 omap_findclk(s, ((value >> 30) & 1) ?
841 "ck_48m" : "armper_ck"));
842 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
843 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
844 omap_findclk(s, ((value >> 29) & 1) ?
845 "ck_48m" : "armper_ck"));
846 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
847 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
848 omap_findclk(s, ((value >> 23) & 1) ?
849 "ck_48m" : "armper_ck"));
850 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
851 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
852 omap_findclk(s, ((value >> 12) & 1) ?
853 "ck_48m" : "armper_ck"));
854 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
855 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
856 }
857
858 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
859 uint64_t value, unsigned size)
860 {
861 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
862 uint32_t diff;
863
864 if (size != 4) {
865 omap_badwidth_write32(opaque, addr, value);
866 return;
867 }
868
869 switch (addr) {
870 case 0x00: /* FUNC_MUX_CTRL_0 */
871 diff = s->func_mux_ctrl[addr >> 2] ^ value;
872 s->func_mux_ctrl[addr >> 2] = value;
873 omap_pin_funcmux0_update(s, diff, value);
874 return;
875
876 case 0x04: /* FUNC_MUX_CTRL_1 */
877 diff = s->func_mux_ctrl[addr >> 2] ^ value;
878 s->func_mux_ctrl[addr >> 2] = value;
879 omap_pin_funcmux1_update(s, diff, value);
880 return;
881
882 case 0x08: /* FUNC_MUX_CTRL_2 */
883 s->func_mux_ctrl[addr >> 2] = value;
884 return;
885
886 case 0x0c: /* COMP_MODE_CTRL_0 */
887 s->comp_mode_ctrl[0] = value;
888 s->compat1509 = (value != 0x0000eaef);
889 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
890 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
891 return;
892
893 case 0x10: /* FUNC_MUX_CTRL_3 */
894 case 0x14: /* FUNC_MUX_CTRL_4 */
895 case 0x18: /* FUNC_MUX_CTRL_5 */
896 case 0x1c: /* FUNC_MUX_CTRL_6 */
897 case 0x20: /* FUNC_MUX_CTRL_7 */
898 case 0x24: /* FUNC_MUX_CTRL_8 */
899 case 0x28: /* FUNC_MUX_CTRL_9 */
900 case 0x2c: /* FUNC_MUX_CTRL_A */
901 case 0x30: /* FUNC_MUX_CTRL_B */
902 case 0x34: /* FUNC_MUX_CTRL_C */
903 case 0x38: /* FUNC_MUX_CTRL_D */
904 s->func_mux_ctrl[(addr >> 2) - 1] = value;
905 return;
906
907 case 0x40: /* PULL_DWN_CTRL_0 */
908 case 0x44: /* PULL_DWN_CTRL_1 */
909 case 0x48: /* PULL_DWN_CTRL_2 */
910 case 0x4c: /* PULL_DWN_CTRL_3 */
911 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
912 return;
913
914 case 0x50: /* GATE_INH_CTRL_0 */
915 s->gate_inh_ctrl[0] = value;
916 return;
917
918 case 0x60: /* VOLTAGE_CTRL_0 */
919 s->voltage_ctrl[0] = value;
920 return;
921
922 case 0x70: /* TEST_DBG_CTRL_0 */
923 s->test_dbg_ctrl[0] = value;
924 return;
925
926 case 0x80: /* MOD_CONF_CTRL_0 */
927 diff = s->mod_conf_ctrl[0] ^ value;
928 s->mod_conf_ctrl[0] = value;
929 omap_pin_modconf1_update(s, diff, value);
930 return;
931
932 default:
933 OMAP_BAD_REG(addr);
934 }
935 }
936
937 static const MemoryRegionOps omap_pin_cfg_ops = {
938 .read = omap_pin_cfg_read,
939 .write = omap_pin_cfg_write,
940 .endianness = DEVICE_NATIVE_ENDIAN,
941 };
942
943 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
944 {
945 /* Start in Compatibility Mode. */
946 mpu->compat1509 = 1;
947 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
948 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
949 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
950 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
951 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
952 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
953 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
954 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
955 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
956 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
957 }
958
959 static void omap_pin_cfg_init(MemoryRegion *system_memory,
960 hwaddr base,
961 struct omap_mpu_state_s *mpu)
962 {
963 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
964 "omap-pin-cfg", 0x800);
965 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
966 omap_pin_cfg_reset(mpu);
967 }
968
969 /* Device Identification, Die Identification */
970 static uint64_t omap_id_read(void *opaque, hwaddr addr,
971 unsigned size)
972 {
973 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
974
975 if (size != 4) {
976 return omap_badwidth_read32(opaque, addr);
977 }
978
979 switch (addr) {
980 case 0xfffe1800: /* DIE_ID_LSB */
981 return 0xc9581f0e;
982 case 0xfffe1804: /* DIE_ID_MSB */
983 return 0xa8858bfa;
984
985 case 0xfffe2000: /* PRODUCT_ID_LSB */
986 return 0x00aaaafc;
987 case 0xfffe2004: /* PRODUCT_ID_MSB */
988 return 0xcafeb574;
989
990 case 0xfffed400: /* JTAG_ID_LSB */
991 switch (s->mpu_model) {
992 case omap310:
993 return 0x03310315;
994 case omap1510:
995 return 0x03310115;
996 default:
997 hw_error("%s: bad mpu model\n", __FUNCTION__);
998 }
999 break;
1000
1001 case 0xfffed404: /* JTAG_ID_MSB */
1002 switch (s->mpu_model) {
1003 case omap310:
1004 return 0xfb57402f;
1005 case omap1510:
1006 return 0xfb47002f;
1007 default:
1008 hw_error("%s: bad mpu model\n", __FUNCTION__);
1009 }
1010 break;
1011 }
1012
1013 OMAP_BAD_REG(addr);
1014 return 0;
1015 }
1016
1017 static void omap_id_write(void *opaque, hwaddr addr,
1018 uint64_t value, unsigned size)
1019 {
1020 if (size != 4) {
1021 omap_badwidth_write32(opaque, addr, value);
1022 return;
1023 }
1024
1025 OMAP_BAD_REG(addr);
1026 }
1027
1028 static const MemoryRegionOps omap_id_ops = {
1029 .read = omap_id_read,
1030 .write = omap_id_write,
1031 .endianness = DEVICE_NATIVE_ENDIAN,
1032 };
1033
1034 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1035 {
1036 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1037 "omap-id", 0x100000000ULL);
1038 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1039 0xfffe1800, 0x800);
1040 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1041 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1042 0xfffed400, 0x100);
1043 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1044 if (!cpu_is_omap15xx(mpu)) {
1045 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1046 &mpu->id_iomem, 0xfffe2000, 0x800);
1047 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1048 }
1049 }
1050
1051 /* MPUI Control (Dummy) */
1052 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1053 unsigned size)
1054 {
1055 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1056
1057 if (size != 4) {
1058 return omap_badwidth_read32(opaque, addr);
1059 }
1060
1061 switch (addr) {
1062 case 0x00: /* CTRL */
1063 return s->mpui_ctrl;
1064 case 0x04: /* DEBUG_ADDR */
1065 return 0x01ffffff;
1066 case 0x08: /* DEBUG_DATA */
1067 return 0xffffffff;
1068 case 0x0c: /* DEBUG_FLAG */
1069 return 0x00000800;
1070 case 0x10: /* STATUS */
1071 return 0x00000000;
1072
1073 /* Not in OMAP310 */
1074 case 0x14: /* DSP_STATUS */
1075 case 0x18: /* DSP_BOOT_CONFIG */
1076 return 0x00000000;
1077 case 0x1c: /* DSP_MPUI_CONFIG */
1078 return 0x0000ffff;
1079 }
1080
1081 OMAP_BAD_REG(addr);
1082 return 0;
1083 }
1084
1085 static void omap_mpui_write(void *opaque, hwaddr addr,
1086 uint64_t value, unsigned size)
1087 {
1088 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1089
1090 if (size != 4) {
1091 omap_badwidth_write32(opaque, addr, value);
1092 return;
1093 }
1094
1095 switch (addr) {
1096 case 0x00: /* CTRL */
1097 s->mpui_ctrl = value & 0x007fffff;
1098 break;
1099
1100 case 0x04: /* DEBUG_ADDR */
1101 case 0x08: /* DEBUG_DATA */
1102 case 0x0c: /* DEBUG_FLAG */
1103 case 0x10: /* STATUS */
1104 /* Not in OMAP310 */
1105 case 0x14: /* DSP_STATUS */
1106 OMAP_RO_REG(addr);
1107 break;
1108 case 0x18: /* DSP_BOOT_CONFIG */
1109 case 0x1c: /* DSP_MPUI_CONFIG */
1110 break;
1111
1112 default:
1113 OMAP_BAD_REG(addr);
1114 }
1115 }
1116
1117 static const MemoryRegionOps omap_mpui_ops = {
1118 .read = omap_mpui_read,
1119 .write = omap_mpui_write,
1120 .endianness = DEVICE_NATIVE_ENDIAN,
1121 };
1122
1123 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1124 {
1125 s->mpui_ctrl = 0x0003ff1b;
1126 }
1127
1128 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1129 struct omap_mpu_state_s *mpu)
1130 {
1131 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1132 "omap-mpui", 0x100);
1133 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1134
1135 omap_mpui_reset(mpu);
1136 }
1137
1138 /* TIPB Bridges */
1139 struct omap_tipb_bridge_s {
1140 qemu_irq abort;
1141 MemoryRegion iomem;
1142
1143 int width_intr;
1144 uint16_t control;
1145 uint16_t alloc;
1146 uint16_t buffer;
1147 uint16_t enh_control;
1148 };
1149
1150 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1151 unsigned size)
1152 {
1153 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1154
1155 if (size < 2) {
1156 return omap_badwidth_read16(opaque, addr);
1157 }
1158
1159 switch (addr) {
1160 case 0x00: /* TIPB_CNTL */
1161 return s->control;
1162 case 0x04: /* TIPB_BUS_ALLOC */
1163 return s->alloc;
1164 case 0x08: /* MPU_TIPB_CNTL */
1165 return s->buffer;
1166 case 0x0c: /* ENHANCED_TIPB_CNTL */
1167 return s->enh_control;
1168 case 0x10: /* ADDRESS_DBG */
1169 case 0x14: /* DATA_DEBUG_LOW */
1170 case 0x18: /* DATA_DEBUG_HIGH */
1171 return 0xffff;
1172 case 0x1c: /* DEBUG_CNTR_SIG */
1173 return 0x00f8;
1174 }
1175
1176 OMAP_BAD_REG(addr);
1177 return 0;
1178 }
1179
1180 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1181 uint64_t value, unsigned size)
1182 {
1183 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1184
1185 if (size < 2) {
1186 omap_badwidth_write16(opaque, addr, value);
1187 return;
1188 }
1189
1190 switch (addr) {
1191 case 0x00: /* TIPB_CNTL */
1192 s->control = value & 0xffff;
1193 break;
1194
1195 case 0x04: /* TIPB_BUS_ALLOC */
1196 s->alloc = value & 0x003f;
1197 break;
1198
1199 case 0x08: /* MPU_TIPB_CNTL */
1200 s->buffer = value & 0x0003;
1201 break;
1202
1203 case 0x0c: /* ENHANCED_TIPB_CNTL */
1204 s->width_intr = !(value & 2);
1205 s->enh_control = value & 0x000f;
1206 break;
1207
1208 case 0x10: /* ADDRESS_DBG */
1209 case 0x14: /* DATA_DEBUG_LOW */
1210 case 0x18: /* DATA_DEBUG_HIGH */
1211 case 0x1c: /* DEBUG_CNTR_SIG */
1212 OMAP_RO_REG(addr);
1213 break;
1214
1215 default:
1216 OMAP_BAD_REG(addr);
1217 }
1218 }
1219
1220 static const MemoryRegionOps omap_tipb_bridge_ops = {
1221 .read = omap_tipb_bridge_read,
1222 .write = omap_tipb_bridge_write,
1223 .endianness = DEVICE_NATIVE_ENDIAN,
1224 };
1225
1226 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1227 {
1228 s->control = 0xffff;
1229 s->alloc = 0x0009;
1230 s->buffer = 0x0000;
1231 s->enh_control = 0x000f;
1232 }
1233
1234 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1235 MemoryRegion *memory, hwaddr base,
1236 qemu_irq abort_irq, omap_clk clk)
1237 {
1238 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1239
1240 s->abort = abort_irq;
1241 omap_tipb_bridge_reset(s);
1242
1243 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1244 "omap-tipb-bridge", 0x100);
1245 memory_region_add_subregion(memory, base, &s->iomem);
1246
1247 return s;
1248 }
1249
1250 /* Dummy Traffic Controller's Memory Interface */
1251 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1252 unsigned size)
1253 {
1254 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1255 uint32_t ret;
1256
1257 if (size != 4) {
1258 return omap_badwidth_read32(opaque, addr);
1259 }
1260
1261 switch (addr) {
1262 case 0x00: /* IMIF_PRIO */
1263 case 0x04: /* EMIFS_PRIO */
1264 case 0x08: /* EMIFF_PRIO */
1265 case 0x0c: /* EMIFS_CONFIG */
1266 case 0x10: /* EMIFS_CS0_CONFIG */
1267 case 0x14: /* EMIFS_CS1_CONFIG */
1268 case 0x18: /* EMIFS_CS2_CONFIG */
1269 case 0x1c: /* EMIFS_CS3_CONFIG */
1270 case 0x24: /* EMIFF_MRS */
1271 case 0x28: /* TIMEOUT1 */
1272 case 0x2c: /* TIMEOUT2 */
1273 case 0x30: /* TIMEOUT3 */
1274 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1275 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1276 return s->tcmi_regs[addr >> 2];
1277
1278 case 0x20: /* EMIFF_SDRAM_CONFIG */
1279 ret = s->tcmi_regs[addr >> 2];
1280 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1281 /* XXX: We can try using the VGA_DIRTY flag for this */
1282 return ret;
1283 }
1284
1285 OMAP_BAD_REG(addr);
1286 return 0;
1287 }
1288
1289 static void omap_tcmi_write(void *opaque, hwaddr addr,
1290 uint64_t value, unsigned size)
1291 {
1292 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1293
1294 if (size != 4) {
1295 omap_badwidth_write32(opaque, addr, value);
1296 return;
1297 }
1298
1299 switch (addr) {
1300 case 0x00: /* IMIF_PRIO */
1301 case 0x04: /* EMIFS_PRIO */
1302 case 0x08: /* EMIFF_PRIO */
1303 case 0x10: /* EMIFS_CS0_CONFIG */
1304 case 0x14: /* EMIFS_CS1_CONFIG */
1305 case 0x18: /* EMIFS_CS2_CONFIG */
1306 case 0x1c: /* EMIFS_CS3_CONFIG */
1307 case 0x20: /* EMIFF_SDRAM_CONFIG */
1308 case 0x24: /* EMIFF_MRS */
1309 case 0x28: /* TIMEOUT1 */
1310 case 0x2c: /* TIMEOUT2 */
1311 case 0x30: /* TIMEOUT3 */
1312 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1313 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1314 s->tcmi_regs[addr >> 2] = value;
1315 break;
1316 case 0x0c: /* EMIFS_CONFIG */
1317 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1318 break;
1319
1320 default:
1321 OMAP_BAD_REG(addr);
1322 }
1323 }
1324
1325 static const MemoryRegionOps omap_tcmi_ops = {
1326 .read = omap_tcmi_read,
1327 .write = omap_tcmi_write,
1328 .endianness = DEVICE_NATIVE_ENDIAN,
1329 };
1330
1331 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1332 {
1333 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1334 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1335 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1336 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1337 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1338 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1339 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1340 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1341 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1342 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1343 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1344 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1345 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1347 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1348 }
1349
1350 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1351 struct omap_mpu_state_s *mpu)
1352 {
1353 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1354 "omap-tcmi", 0x100);
1355 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1356 omap_tcmi_reset(mpu);
1357 }
1358
1359 /* Digital phase-locked loops control */
1360 struct dpll_ctl_s {
1361 MemoryRegion iomem;
1362 uint16_t mode;
1363 omap_clk dpll;
1364 };
1365
1366 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1367 unsigned size)
1368 {
1369 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1370
1371 if (size != 2) {
1372 return omap_badwidth_read16(opaque, addr);
1373 }
1374
1375 if (addr == 0x00) /* CTL_REG */
1376 return s->mode;
1377
1378 OMAP_BAD_REG(addr);
1379 return 0;
1380 }
1381
1382 static void omap_dpll_write(void *opaque, hwaddr addr,
1383 uint64_t value, unsigned size)
1384 {
1385 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1386 uint16_t diff;
1387 static const int bypass_div[4] = { 1, 2, 4, 4 };
1388 int div, mult;
1389
1390 if (size != 2) {
1391 omap_badwidth_write16(opaque, addr, value);
1392 return;
1393 }
1394
1395 if (addr == 0x00) { /* CTL_REG */
1396 /* See omap_ulpd_pm_write() too */
1397 diff = s->mode & value;
1398 s->mode = value & 0x2fff;
1399 if (diff & (0x3ff << 2)) {
1400 if (value & (1 << 4)) { /* PLL_ENABLE */
1401 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1402 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1403 } else {
1404 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1405 mult = 1;
1406 }
1407 omap_clk_setrate(s->dpll, div, mult);
1408 }
1409
1410 /* Enter the desired mode. */
1411 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1412
1413 /* Act as if the lock is restored. */
1414 s->mode |= 2;
1415 } else {
1416 OMAP_BAD_REG(addr);
1417 }
1418 }
1419
1420 static const MemoryRegionOps omap_dpll_ops = {
1421 .read = omap_dpll_read,
1422 .write = omap_dpll_write,
1423 .endianness = DEVICE_NATIVE_ENDIAN,
1424 };
1425
1426 static void omap_dpll_reset(struct dpll_ctl_s *s)
1427 {
1428 s->mode = 0x2002;
1429 omap_clk_setrate(s->dpll, 1, 1);
1430 }
1431
1432 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1433 hwaddr base, omap_clk clk)
1434 {
1435 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1436 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1437
1438 s->dpll = clk;
1439 omap_dpll_reset(s);
1440
1441 memory_region_add_subregion(memory, base, &s->iomem);
1442 return s;
1443 }
1444
1445 /* MPU Clock/Reset/Power Mode Control */
1446 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1447 unsigned size)
1448 {
1449 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1450
1451 if (size != 2) {
1452 return omap_badwidth_read16(opaque, addr);
1453 }
1454
1455 switch (addr) {
1456 case 0x00: /* ARM_CKCTL */
1457 return s->clkm.arm_ckctl;
1458
1459 case 0x04: /* ARM_IDLECT1 */
1460 return s->clkm.arm_idlect1;
1461
1462 case 0x08: /* ARM_IDLECT2 */
1463 return s->clkm.arm_idlect2;
1464
1465 case 0x0c: /* ARM_EWUPCT */
1466 return s->clkm.arm_ewupct;
1467
1468 case 0x10: /* ARM_RSTCT1 */
1469 return s->clkm.arm_rstct1;
1470
1471 case 0x14: /* ARM_RSTCT2 */
1472 return s->clkm.arm_rstct2;
1473
1474 case 0x18: /* ARM_SYSST */
1475 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1476
1477 case 0x1c: /* ARM_CKOUT1 */
1478 return s->clkm.arm_ckout1;
1479
1480 case 0x20: /* ARM_CKOUT2 */
1481 break;
1482 }
1483
1484 OMAP_BAD_REG(addr);
1485 return 0;
1486 }
1487
1488 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1489 uint16_t diff, uint16_t value)
1490 {
1491 omap_clk clk;
1492
1493 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1494 if (value & (1 << 14))
1495 /* Reserved */;
1496 else {
1497 clk = omap_findclk(s, "arminth_ck");
1498 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1499 }
1500 }
1501 if (diff & (1 << 12)) { /* ARM_TIMXO */
1502 clk = omap_findclk(s, "armtim_ck");
1503 if (value & (1 << 12))
1504 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1505 else
1506 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1507 }
1508 /* XXX: en_dspck */
1509 if (diff & (3 << 10)) { /* DSPMMUDIV */
1510 clk = omap_findclk(s, "dspmmu_ck");
1511 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1512 }
1513 if (diff & (3 << 8)) { /* TCDIV */
1514 clk = omap_findclk(s, "tc_ck");
1515 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1516 }
1517 if (diff & (3 << 6)) { /* DSPDIV */
1518 clk = omap_findclk(s, "dsp_ck");
1519 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1520 }
1521 if (diff & (3 << 4)) { /* ARMDIV */
1522 clk = omap_findclk(s, "arm_ck");
1523 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1524 }
1525 if (diff & (3 << 2)) { /* LCDDIV */
1526 clk = omap_findclk(s, "lcd_ck");
1527 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1528 }
1529 if (diff & (3 << 0)) { /* PERDIV */
1530 clk = omap_findclk(s, "armper_ck");
1531 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1532 }
1533 }
1534
1535 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1536 uint16_t diff, uint16_t value)
1537 {
1538 omap_clk clk;
1539
1540 if (value & (1 << 11)) { /* SETARM_IDLE */
1541 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1542 }
1543 if (!(value & (1 << 10))) /* WKUP_MODE */
1544 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1545
1546 #define SET_CANIDLE(clock, bit) \
1547 if (diff & (1 << bit)) { \
1548 clk = omap_findclk(s, clock); \
1549 omap_clk_canidle(clk, (value >> bit) & 1); \
1550 }
1551 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1552 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1553 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1554 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1555 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1556 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1557 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1558 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1559 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1560 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1561 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1562 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1563 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1564 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1565 }
1566
1567 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1568 uint16_t diff, uint16_t value)
1569 {
1570 omap_clk clk;
1571
1572 #define SET_ONOFF(clock, bit) \
1573 if (diff & (1 << bit)) { \
1574 clk = omap_findclk(s, clock); \
1575 omap_clk_onoff(clk, (value >> bit) & 1); \
1576 }
1577 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1578 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1579 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1580 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1581 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1582 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1583 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1584 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1585 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1586 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1587 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1588 }
1589
1590 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1591 uint16_t diff, uint16_t value)
1592 {
1593 omap_clk clk;
1594
1595 if (diff & (3 << 4)) { /* TCLKOUT */
1596 clk = omap_findclk(s, "tclk_out");
1597 switch ((value >> 4) & 3) {
1598 case 1:
1599 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1600 omap_clk_onoff(clk, 1);
1601 break;
1602 case 2:
1603 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1604 omap_clk_onoff(clk, 1);
1605 break;
1606 default:
1607 omap_clk_onoff(clk, 0);
1608 }
1609 }
1610 if (diff & (3 << 2)) { /* DCLKOUT */
1611 clk = omap_findclk(s, "dclk_out");
1612 switch ((value >> 2) & 3) {
1613 case 0:
1614 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1615 break;
1616 case 1:
1617 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1618 break;
1619 case 2:
1620 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1621 break;
1622 case 3:
1623 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1624 break;
1625 }
1626 }
1627 if (diff & (3 << 0)) { /* ACLKOUT */
1628 clk = omap_findclk(s, "aclk_out");
1629 switch ((value >> 0) & 3) {
1630 case 1:
1631 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1632 omap_clk_onoff(clk, 1);
1633 break;
1634 case 2:
1635 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1636 omap_clk_onoff(clk, 1);
1637 break;
1638 case 3:
1639 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1640 omap_clk_onoff(clk, 1);
1641 break;
1642 default:
1643 omap_clk_onoff(clk, 0);
1644 }
1645 }
1646 }
1647
1648 static void omap_clkm_write(void *opaque, hwaddr addr,
1649 uint64_t value, unsigned size)
1650 {
1651 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1652 uint16_t diff;
1653 omap_clk clk;
1654 static const char *clkschemename[8] = {
1655 "fully synchronous", "fully asynchronous", "synchronous scalable",
1656 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1657 };
1658
1659 if (size != 2) {
1660 omap_badwidth_write16(opaque, addr, value);
1661 return;
1662 }
1663
1664 switch (addr) {
1665 case 0x00: /* ARM_CKCTL */
1666 diff = s->clkm.arm_ckctl ^ value;
1667 s->clkm.arm_ckctl = value & 0x7fff;
1668 omap_clkm_ckctl_update(s, diff, value);
1669 return;
1670
1671 case 0x04: /* ARM_IDLECT1 */
1672 diff = s->clkm.arm_idlect1 ^ value;
1673 s->clkm.arm_idlect1 = value & 0x0fff;
1674 omap_clkm_idlect1_update(s, diff, value);
1675 return;
1676
1677 case 0x08: /* ARM_IDLECT2 */
1678 diff = s->clkm.arm_idlect2 ^ value;
1679 s->clkm.arm_idlect2 = value & 0x07ff;
1680 omap_clkm_idlect2_update(s, diff, value);
1681 return;
1682
1683 case 0x0c: /* ARM_EWUPCT */
1684 s->clkm.arm_ewupct = value & 0x003f;
1685 return;
1686
1687 case 0x10: /* ARM_RSTCT1 */
1688 diff = s->clkm.arm_rstct1 ^ value;
1689 s->clkm.arm_rstct1 = value & 0x0007;
1690 if (value & 9) {
1691 qemu_system_reset_request();
1692 s->clkm.cold_start = 0xa;
1693 }
1694 if (diff & ~value & 4) { /* DSP_RST */
1695 omap_mpui_reset(s);
1696 omap_tipb_bridge_reset(s->private_tipb);
1697 omap_tipb_bridge_reset(s->public_tipb);
1698 }
1699 if (diff & 2) { /* DSP_EN */
1700 clk = omap_findclk(s, "dsp_ck");
1701 omap_clk_canidle(clk, (~value >> 1) & 1);
1702 }
1703 return;
1704
1705 case 0x14: /* ARM_RSTCT2 */
1706 s->clkm.arm_rstct2 = value & 0x0001;
1707 return;
1708
1709 case 0x18: /* ARM_SYSST */
1710 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1711 s->clkm.clocking_scheme = (value >> 11) & 7;
1712 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1713 clkschemename[s->clkm.clocking_scheme]);
1714 }
1715 s->clkm.cold_start &= value & 0x3f;
1716 return;
1717
1718 case 0x1c: /* ARM_CKOUT1 */
1719 diff = s->clkm.arm_ckout1 ^ value;
1720 s->clkm.arm_ckout1 = value & 0x003f;
1721 omap_clkm_ckout1_update(s, diff, value);
1722 return;
1723
1724 case 0x20: /* ARM_CKOUT2 */
1725 default:
1726 OMAP_BAD_REG(addr);
1727 }
1728 }
1729
1730 static const MemoryRegionOps omap_clkm_ops = {
1731 .read = omap_clkm_read,
1732 .write = omap_clkm_write,
1733 .endianness = DEVICE_NATIVE_ENDIAN,
1734 };
1735
1736 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1737 unsigned size)
1738 {
1739 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1740 CPUState *cpu = CPU(s->cpu);
1741
1742 if (size != 2) {
1743 return omap_badwidth_read16(opaque, addr);
1744 }
1745
1746 switch (addr) {
1747 case 0x04: /* DSP_IDLECT1 */
1748 return s->clkm.dsp_idlect1;
1749
1750 case 0x08: /* DSP_IDLECT2 */
1751 return s->clkm.dsp_idlect2;
1752
1753 case 0x14: /* DSP_RSTCT2 */
1754 return s->clkm.dsp_rstct2;
1755
1756 case 0x18: /* DSP_SYSST */
1757 cpu = CPU(s->cpu);
1758 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1759 (cpu->halted << 6); /* Quite useless... */
1760 }
1761
1762 OMAP_BAD_REG(addr);
1763 return 0;
1764 }
1765
1766 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1767 uint16_t diff, uint16_t value)
1768 {
1769 omap_clk clk;
1770
1771 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1772 }
1773
1774 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1775 uint16_t diff, uint16_t value)
1776 {
1777 omap_clk clk;
1778
1779 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1780 }
1781
1782 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1783 uint64_t value, unsigned size)
1784 {
1785 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1786 uint16_t diff;
1787
1788 if (size != 2) {
1789 omap_badwidth_write16(opaque, addr, value);
1790 return;
1791 }
1792
1793 switch (addr) {
1794 case 0x04: /* DSP_IDLECT1 */
1795 diff = s->clkm.dsp_idlect1 ^ value;
1796 s->clkm.dsp_idlect1 = value & 0x01f7;
1797 omap_clkdsp_idlect1_update(s, diff, value);
1798 break;
1799
1800 case 0x08: /* DSP_IDLECT2 */
1801 s->clkm.dsp_idlect2 = value & 0x0037;
1802 diff = s->clkm.dsp_idlect1 ^ value;
1803 omap_clkdsp_idlect2_update(s, diff, value);
1804 break;
1805
1806 case 0x14: /* DSP_RSTCT2 */
1807 s->clkm.dsp_rstct2 = value & 0x0001;
1808 break;
1809
1810 case 0x18: /* DSP_SYSST */
1811 s->clkm.cold_start &= value & 0x3f;
1812 break;
1813
1814 default:
1815 OMAP_BAD_REG(addr);
1816 }
1817 }
1818
1819 static const MemoryRegionOps omap_clkdsp_ops = {
1820 .read = omap_clkdsp_read,
1821 .write = omap_clkdsp_write,
1822 .endianness = DEVICE_NATIVE_ENDIAN,
1823 };
1824
1825 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1826 {
1827 if (s->wdt && s->wdt->reset)
1828 s->clkm.cold_start = 0x6;
1829 s->clkm.clocking_scheme = 0;
1830 omap_clkm_ckctl_update(s, ~0, 0x3000);
1831 s->clkm.arm_ckctl = 0x3000;
1832 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1833 s->clkm.arm_idlect1 = 0x0400;
1834 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1835 s->clkm.arm_idlect2 = 0x0100;
1836 s->clkm.arm_ewupct = 0x003f;
1837 s->clkm.arm_rstct1 = 0x0000;
1838 s->clkm.arm_rstct2 = 0x0000;
1839 s->clkm.arm_ckout1 = 0x0015;
1840 s->clkm.dpll1_mode = 0x2002;
1841 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1842 s->clkm.dsp_idlect1 = 0x0040;
1843 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1844 s->clkm.dsp_idlect2 = 0x0000;
1845 s->clkm.dsp_rstct2 = 0x0000;
1846 }
1847
1848 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1849 hwaddr dsp_base, struct omap_mpu_state_s *s)
1850 {
1851 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1852 "omap-clkm", 0x100);
1853 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1854 "omap-clkdsp", 0x1000);
1855
1856 s->clkm.arm_idlect1 = 0x03ff;
1857 s->clkm.arm_idlect2 = 0x0100;
1858 s->clkm.dsp_idlect1 = 0x0002;
1859 omap_clkm_reset(s);
1860 s->clkm.cold_start = 0x3a;
1861
1862 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1863 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1864 }
1865
1866 /* MPU I/O */
1867 struct omap_mpuio_s {
1868 qemu_irq irq;
1869 qemu_irq kbd_irq;
1870 qemu_irq *in;
1871 qemu_irq handler[16];
1872 qemu_irq wakeup;
1873 MemoryRegion iomem;
1874
1875 uint16_t inputs;
1876 uint16_t outputs;
1877 uint16_t dir;
1878 uint16_t edge;
1879 uint16_t mask;
1880 uint16_t ints;
1881
1882 uint16_t debounce;
1883 uint16_t latch;
1884 uint8_t event;
1885
1886 uint8_t buttons[5];
1887 uint8_t row_latch;
1888 uint8_t cols;
1889 int kbd_mask;
1890 int clk;
1891 };
1892
1893 static void omap_mpuio_set(void *opaque, int line, int level)
1894 {
1895 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1896 uint16_t prev = s->inputs;
1897
1898 if (level)
1899 s->inputs |= 1 << line;
1900 else
1901 s->inputs &= ~(1 << line);
1902
1903 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1904 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1905 s->ints |= 1 << line;
1906 qemu_irq_raise(s->irq);
1907 /* TODO: wakeup */
1908 }
1909 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1910 (s->event >> 1) == line) /* PIN_SELECT */
1911 s->latch = s->inputs;
1912 }
1913 }
1914
1915 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1916 {
1917 int i;
1918 uint8_t *row, rows = 0, cols = ~s->cols;
1919
1920 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1921 if (*row & cols)
1922 rows |= i;
1923
1924 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1925 s->row_latch = ~rows;
1926 }
1927
1928 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1929 unsigned size)
1930 {
1931 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1932 int offset = addr & OMAP_MPUI_REG_MASK;
1933 uint16_t ret;
1934
1935 if (size != 2) {
1936 return omap_badwidth_read16(opaque, addr);
1937 }
1938
1939 switch (offset) {
1940 case 0x00: /* INPUT_LATCH */
1941 return s->inputs;
1942
1943 case 0x04: /* OUTPUT_REG */
1944 return s->outputs;
1945
1946 case 0x08: /* IO_CNTL */
1947 return s->dir;
1948
1949 case 0x10: /* KBR_LATCH */
1950 return s->row_latch;
1951
1952 case 0x14: /* KBC_REG */
1953 return s->cols;
1954
1955 case 0x18: /* GPIO_EVENT_MODE_REG */
1956 return s->event;
1957
1958 case 0x1c: /* GPIO_INT_EDGE_REG */
1959 return s->edge;
1960
1961 case 0x20: /* KBD_INT */
1962 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1963
1964 case 0x24: /* GPIO_INT */
1965 ret = s->ints;
1966 s->ints &= s->mask;
1967 if (ret)
1968 qemu_irq_lower(s->irq);
1969 return ret;
1970
1971 case 0x28: /* KBD_MASKIT */
1972 return s->kbd_mask;
1973
1974 case 0x2c: /* GPIO_MASKIT */
1975 return s->mask;
1976
1977 case 0x30: /* GPIO_DEBOUNCING_REG */
1978 return s->debounce;
1979
1980 case 0x34: /* GPIO_LATCH_REG */
1981 return s->latch;
1982 }
1983
1984 OMAP_BAD_REG(addr);
1985 return 0;
1986 }
1987
1988 static void omap_mpuio_write(void *opaque, hwaddr addr,
1989 uint64_t value, unsigned size)
1990 {
1991 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1992 int offset = addr & OMAP_MPUI_REG_MASK;
1993 uint16_t diff;
1994 int ln;
1995
1996 if (size != 2) {
1997 omap_badwidth_write16(opaque, addr, value);
1998 return;
1999 }
2000
2001 switch (offset) {
2002 case 0x04: /* OUTPUT_REG */
2003 diff = (s->outputs ^ value) & ~s->dir;
2004 s->outputs = value;
2005 while ((ln = ctz32(diff)) != 32) {
2006 if (s->handler[ln])
2007 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2008 diff &= ~(1 << ln);
2009 }
2010 break;
2011
2012 case 0x08: /* IO_CNTL */
2013 diff = s->outputs & (s->dir ^ value);
2014 s->dir = value;
2015
2016 value = s->outputs & ~s->dir;
2017 while ((ln = ctz32(diff)) != 32) {
2018 if (s->handler[ln])
2019 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2020 diff &= ~(1 << ln);
2021 }
2022 break;
2023
2024 case 0x14: /* KBC_REG */
2025 s->cols = value;
2026 omap_mpuio_kbd_update(s);
2027 break;
2028
2029 case 0x18: /* GPIO_EVENT_MODE_REG */
2030 s->event = value & 0x1f;
2031 break;
2032
2033 case 0x1c: /* GPIO_INT_EDGE_REG */
2034 s->edge = value;
2035 break;
2036
2037 case 0x28: /* KBD_MASKIT */
2038 s->kbd_mask = value & 1;
2039 omap_mpuio_kbd_update(s);
2040 break;
2041
2042 case 0x2c: /* GPIO_MASKIT */
2043 s->mask = value;
2044 break;
2045
2046 case 0x30: /* GPIO_DEBOUNCING_REG */
2047 s->debounce = value & 0x1ff;
2048 break;
2049
2050 case 0x00: /* INPUT_LATCH */
2051 case 0x10: /* KBR_LATCH */
2052 case 0x20: /* KBD_INT */
2053 case 0x24: /* GPIO_INT */
2054 case 0x34: /* GPIO_LATCH_REG */
2055 OMAP_RO_REG(addr);
2056 return;
2057
2058 default:
2059 OMAP_BAD_REG(addr);
2060 return;
2061 }
2062 }
2063
2064 static const MemoryRegionOps omap_mpuio_ops = {
2065 .read = omap_mpuio_read,
2066 .write = omap_mpuio_write,
2067 .endianness = DEVICE_NATIVE_ENDIAN,
2068 };
2069
2070 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2071 {
2072 s->inputs = 0;
2073 s->outputs = 0;
2074 s->dir = ~0;
2075 s->event = 0;
2076 s->edge = 0;
2077 s->kbd_mask = 0;
2078 s->mask = 0;
2079 s->debounce = 0;
2080 s->latch = 0;
2081 s->ints = 0;
2082 s->row_latch = 0x1f;
2083 s->clk = 1;
2084 }
2085
2086 static void omap_mpuio_onoff(void *opaque, int line, int on)
2087 {
2088 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2089
2090 s->clk = on;
2091 if (on)
2092 omap_mpuio_kbd_update(s);
2093 }
2094
2095 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2096 hwaddr base,
2097 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2098 omap_clk clk)
2099 {
2100 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2101
2102 s->irq = gpio_int;
2103 s->kbd_irq = kbd_int;
2104 s->wakeup = wakeup;
2105 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2106 omap_mpuio_reset(s);
2107
2108 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2109 "omap-mpuio", 0x800);
2110 memory_region_add_subregion(memory, base, &s->iomem);
2111
2112 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2113
2114 return s;
2115 }
2116
2117 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2118 {
2119 return s->in;
2120 }
2121
2122 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2123 {
2124 if (line >= 16 || line < 0)
2125 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2126 s->handler[line] = handler;
2127 }
2128
2129 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2130 {
2131 if (row >= 5 || row < 0)
2132 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2133
2134 if (down)
2135 s->buttons[row] |= 1 << col;
2136 else
2137 s->buttons[row] &= ~(1 << col);
2138
2139 omap_mpuio_kbd_update(s);
2140 }
2141
2142 /* MicroWire Interface */
2143 struct omap_uwire_s {
2144 MemoryRegion iomem;
2145 qemu_irq txirq;
2146 qemu_irq rxirq;
2147 qemu_irq txdrq;
2148
2149 uint16_t txbuf;
2150 uint16_t rxbuf;
2151 uint16_t control;
2152 uint16_t setup[5];
2153
2154 uWireSlave *chip[4];
2155 };
2156
2157 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2158 {
2159 int chipselect = (s->control >> 10) & 3; /* INDEX */
2160 uWireSlave *slave = s->chip[chipselect];
2161
2162 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2163 if (s->control & (1 << 12)) /* CS_CMD */
2164 if (slave && slave->send)
2165 slave->send(slave->opaque,
2166 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2167 s->control &= ~(1 << 14); /* CSRB */
2168 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2169 * a DRQ. When is the level IRQ supposed to be reset? */
2170 }
2171
2172 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2173 if (s->control & (1 << 12)) /* CS_CMD */
2174 if (slave && slave->receive)
2175 s->rxbuf = slave->receive(slave->opaque);
2176 s->control |= 1 << 15; /* RDRB */
2177 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2178 * a DRQ. When is the level IRQ supposed to be reset? */
2179 }
2180 }
2181
2182 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2183 unsigned size)
2184 {
2185 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2186 int offset = addr & OMAP_MPUI_REG_MASK;
2187
2188 if (size != 2) {
2189 return omap_badwidth_read16(opaque, addr);
2190 }
2191
2192 switch (offset) {
2193 case 0x00: /* RDR */
2194 s->control &= ~(1 << 15); /* RDRB */
2195 return s->rxbuf;
2196
2197 case 0x04: /* CSR */
2198 return s->control;
2199
2200 case 0x08: /* SR1 */
2201 return s->setup[0];
2202 case 0x0c: /* SR2 */
2203 return s->setup[1];
2204 case 0x10: /* SR3 */
2205 return s->setup[2];
2206 case 0x14: /* SR4 */
2207 return s->setup[3];
2208 case 0x18: /* SR5 */
2209 return s->setup[4];
2210 }
2211
2212 OMAP_BAD_REG(addr);
2213 return 0;
2214 }
2215
2216 static void omap_uwire_write(void *opaque, hwaddr addr,
2217 uint64_t value, unsigned size)
2218 {
2219 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2220 int offset = addr & OMAP_MPUI_REG_MASK;
2221
2222 if (size != 2) {
2223 omap_badwidth_write16(opaque, addr, value);
2224 return;
2225 }
2226
2227 switch (offset) {
2228 case 0x00: /* TDR */
2229 s->txbuf = value; /* TD */
2230 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2231 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2232 (s->control & (1 << 12)))) { /* CS_CMD */
2233 s->control |= 1 << 14; /* CSRB */
2234 omap_uwire_transfer_start(s);
2235 }
2236 break;
2237
2238 case 0x04: /* CSR */
2239 s->control = value & 0x1fff;
2240 if (value & (1 << 13)) /* START */
2241 omap_uwire_transfer_start(s);
2242 break;
2243
2244 case 0x08: /* SR1 */
2245 s->setup[0] = value & 0x003f;
2246 break;
2247
2248 case 0x0c: /* SR2 */
2249 s->setup[1] = value & 0x0fc0;
2250 break;
2251
2252 case 0x10: /* SR3 */
2253 s->setup[2] = value & 0x0003;
2254 break;
2255
2256 case 0x14: /* SR4 */
2257 s->setup[3] = value & 0x0001;
2258 break;
2259
2260 case 0x18: /* SR5 */
2261 s->setup[4] = value & 0x000f;
2262 break;
2263
2264 default:
2265 OMAP_BAD_REG(addr);
2266 return;
2267 }
2268 }
2269
2270 static const MemoryRegionOps omap_uwire_ops = {
2271 .read = omap_uwire_read,
2272 .write = omap_uwire_write,
2273 .endianness = DEVICE_NATIVE_ENDIAN,
2274 };
2275
2276 static void omap_uwire_reset(struct omap_uwire_s *s)
2277 {
2278 s->control = 0;
2279 s->setup[0] = 0;
2280 s->setup[1] = 0;
2281 s->setup[2] = 0;
2282 s->setup[3] = 0;
2283 s->setup[4] = 0;
2284 }
2285
2286 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2287 hwaddr base,
2288 qemu_irq txirq, qemu_irq rxirq,
2289 qemu_irq dma,
2290 omap_clk clk)
2291 {
2292 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2293
2294 s->txirq = txirq;
2295 s->rxirq = rxirq;
2296 s->txdrq = dma;
2297 omap_uwire_reset(s);
2298
2299 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2300 memory_region_add_subregion(system_memory, base, &s->iomem);
2301
2302 return s;
2303 }
2304
2305 void omap_uwire_attach(struct omap_uwire_s *s,
2306 uWireSlave *slave, int chipselect)
2307 {
2308 if (chipselect < 0 || chipselect > 3) {
2309 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2310 exit(-1);
2311 }
2312
2313 s->chip[chipselect] = slave;
2314 }
2315
2316 /* Pseudonoise Pulse-Width Light Modulator */
2317 struct omap_pwl_s {
2318 MemoryRegion iomem;
2319 uint8_t output;
2320 uint8_t level;
2321 uint8_t enable;
2322 int clk;
2323 };
2324
2325 static void omap_pwl_update(struct omap_pwl_s *s)
2326 {
2327 int output = (s->clk && s->enable) ? s->level : 0;
2328
2329 if (output != s->output) {
2330 s->output = output;
2331 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2332 }
2333 }
2334
2335 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2336 unsigned size)
2337 {
2338 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2339 int offset = addr & OMAP_MPUI_REG_MASK;
2340
2341 if (size != 1) {
2342 return omap_badwidth_read8(opaque, addr);
2343 }
2344
2345 switch (offset) {
2346 case 0x00: /* PWL_LEVEL */
2347 return s->level;
2348 case 0x04: /* PWL_CTRL */
2349 return s->enable;
2350 }
2351 OMAP_BAD_REG(addr);
2352 return 0;
2353 }
2354
2355 static void omap_pwl_write(void *opaque, hwaddr addr,
2356 uint64_t value, unsigned size)
2357 {
2358 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2359 int offset = addr & OMAP_MPUI_REG_MASK;
2360
2361 if (size != 1) {
2362 omap_badwidth_write8(opaque, addr, value);
2363 return;
2364 }
2365
2366 switch (offset) {
2367 case 0x00: /* PWL_LEVEL */
2368 s->level = value;
2369 omap_pwl_update(s);
2370 break;
2371 case 0x04: /* PWL_CTRL */
2372 s->enable = value & 1;
2373 omap_pwl_update(s);
2374 break;
2375 default:
2376 OMAP_BAD_REG(addr);
2377 return;
2378 }
2379 }
2380
2381 static const MemoryRegionOps omap_pwl_ops = {
2382 .read = omap_pwl_read,
2383 .write = omap_pwl_write,
2384 .endianness = DEVICE_NATIVE_ENDIAN,
2385 };
2386
2387 static void omap_pwl_reset(struct omap_pwl_s *s)
2388 {
2389 s->output = 0;
2390 s->level = 0;
2391 s->enable = 0;
2392 s->clk = 1;
2393 omap_pwl_update(s);
2394 }
2395
2396 static void omap_pwl_clk_update(void *opaque, int line, int on)
2397 {
2398 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2399
2400 s->clk = on;
2401 omap_pwl_update(s);
2402 }
2403
2404 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2405 hwaddr base,
2406 omap_clk clk)
2407 {
2408 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2409
2410 omap_pwl_reset(s);
2411
2412 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2413 "omap-pwl", 0x800);
2414 memory_region_add_subregion(system_memory, base, &s->iomem);
2415
2416 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2417 return s;
2418 }
2419
2420 /* Pulse-Width Tone module */
2421 struct omap_pwt_s {
2422 MemoryRegion iomem;
2423 uint8_t frc;
2424 uint8_t vrc;
2425 uint8_t gcr;
2426 omap_clk clk;
2427 };
2428
2429 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2430 unsigned size)
2431 {
2432 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2433 int offset = addr & OMAP_MPUI_REG_MASK;
2434
2435 if (size != 1) {
2436 return omap_badwidth_read8(opaque, addr);
2437 }
2438
2439 switch (offset) {
2440 case 0x00: /* FRC */
2441 return s->frc;
2442 case 0x04: /* VCR */
2443 return s->vrc;
2444 case 0x08: /* GCR */
2445 return s->gcr;
2446 }
2447 OMAP_BAD_REG(addr);
2448 return 0;
2449 }
2450
2451 static void omap_pwt_write(void *opaque, hwaddr addr,
2452 uint64_t value, unsigned size)
2453 {
2454 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2455 int offset = addr & OMAP_MPUI_REG_MASK;
2456
2457 if (size != 1) {
2458 omap_badwidth_write8(opaque, addr, value);
2459 return;
2460 }
2461
2462 switch (offset) {
2463 case 0x00: /* FRC */
2464 s->frc = value & 0x3f;
2465 break;
2466 case 0x04: /* VRC */
2467 if ((value ^ s->vrc) & 1) {
2468 if (value & 1)
2469 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2470 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2471 ((omap_clk_getrate(s->clk) >> 3) /
2472 /* Pre-multiplexer divider */
2473 ((s->gcr & 2) ? 1 : 154) /
2474 /* Octave multiplexer */
2475 (2 << (value & 3)) *
2476 /* 101/107 divider */
2477 ((value & (1 << 2)) ? 101 : 107) *
2478 /* 49/55 divider */
2479 ((value & (1 << 3)) ? 49 : 55) *
2480 /* 50/63 divider */
2481 ((value & (1 << 4)) ? 50 : 63) *
2482 /* 80/127 divider */
2483 ((value & (1 << 5)) ? 80 : 127) /
2484 (107 * 55 * 63 * 127)));
2485 else
2486 printf("%s: silence!\n", __FUNCTION__);
2487 }
2488 s->vrc = value & 0x7f;
2489 break;
2490 case 0x08: /* GCR */
2491 s->gcr = value & 3;
2492 break;
2493 default:
2494 OMAP_BAD_REG(addr);
2495 return;
2496 }
2497 }
2498
2499 static const MemoryRegionOps omap_pwt_ops = {
2500 .read =omap_pwt_read,
2501 .write = omap_pwt_write,
2502 .endianness = DEVICE_NATIVE_ENDIAN,
2503 };
2504
2505 static void omap_pwt_reset(struct omap_pwt_s *s)
2506 {
2507 s->frc = 0;
2508 s->vrc = 0;
2509 s->gcr = 0;
2510 }
2511
2512 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2513 hwaddr base,
2514 omap_clk clk)
2515 {
2516 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2517 s->clk = clk;
2518 omap_pwt_reset(s);
2519
2520 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2521 "omap-pwt", 0x800);
2522 memory_region_add_subregion(system_memory, base, &s->iomem);
2523 return s;
2524 }
2525
2526 /* Real-time Clock module */
2527 struct omap_rtc_s {
2528 MemoryRegion iomem;
2529 qemu_irq irq;
2530 qemu_irq alarm;
2531 QEMUTimer *clk;
2532
2533 uint8_t interrupts;
2534 uint8_t status;
2535 int16_t comp_reg;
2536 int running;
2537 int pm_am;
2538 int auto_comp;
2539 int round;
2540 struct tm alarm_tm;
2541 time_t alarm_ti;
2542
2543 struct tm current_tm;
2544 time_t ti;
2545 uint64_t tick;
2546 };
2547
2548 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2549 {
2550 /* s->alarm is level-triggered */
2551 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2552 }
2553
2554 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2555 {
2556 s->alarm_ti = mktimegm(&s->alarm_tm);
2557 if (s->alarm_ti == -1)
2558 printf("%s: conversion failed\n", __FUNCTION__);
2559 }
2560
2561 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2562 unsigned size)
2563 {
2564 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2565 int offset = addr & OMAP_MPUI_REG_MASK;
2566 uint8_t i;
2567
2568 if (size != 1) {
2569 return omap_badwidth_read8(opaque, addr);
2570 }
2571
2572 switch (offset) {
2573 case 0x00: /* SECONDS_REG */
2574 return to_bcd(s->current_tm.tm_sec);
2575
2576 case 0x04: /* MINUTES_REG */
2577 return to_bcd(s->current_tm.tm_min);
2578
2579 case 0x08: /* HOURS_REG */
2580 if (s->pm_am)
2581 return ((s->current_tm.tm_hour > 11) << 7) |
2582 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2583 else
2584 return to_bcd(s->current_tm.tm_hour);
2585
2586 case 0x0c: /* DAYS_REG */
2587 return to_bcd(s->current_tm.tm_mday);
2588
2589 case 0x10: /* MONTHS_REG */
2590 return to_bcd(s->current_tm.tm_mon + 1);
2591
2592 case 0x14: /* YEARS_REG */
2593 return to_bcd(s->current_tm.tm_year % 100);
2594
2595 case 0x18: /* WEEK_REG */
2596 return s->current_tm.tm_wday;
2597
2598 case 0x20: /* ALARM_SECONDS_REG */
2599 return to_bcd(s->alarm_tm.tm_sec);
2600
2601 case 0x24: /* ALARM_MINUTES_REG */
2602 return to_bcd(s->alarm_tm.tm_min);
2603
2604 case 0x28: /* ALARM_HOURS_REG */
2605 if (s->pm_am)
2606 return ((s->alarm_tm.tm_hour > 11) << 7) |
2607 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2608 else
2609 return to_bcd(s->alarm_tm.tm_hour);
2610
2611 case 0x2c: /* ALARM_DAYS_REG */
2612 return to_bcd(s->alarm_tm.tm_mday);
2613
2614 case 0x30: /* ALARM_MONTHS_REG */
2615 return to_bcd(s->alarm_tm.tm_mon + 1);
2616
2617 case 0x34: /* ALARM_YEARS_REG */
2618 return to_bcd(s->alarm_tm.tm_year % 100);
2619
2620 case 0x40: /* RTC_CTRL_REG */
2621 return (s->pm_am << 3) | (s->auto_comp << 2) |
2622 (s->round << 1) | s->running;
2623
2624 case 0x44: /* RTC_STATUS_REG */
2625 i = s->status;
2626 s->status &= ~0x3d;
2627 return i;
2628
2629 case 0x48: /* RTC_INTERRUPTS_REG */
2630 return s->interrupts;
2631
2632 case 0x4c: /* RTC_COMP_LSB_REG */
2633 return ((uint16_t) s->comp_reg) & 0xff;
2634
2635 case 0x50: /* RTC_COMP_MSB_REG */
2636 return ((uint16_t) s->comp_reg) >> 8;
2637 }
2638
2639 OMAP_BAD_REG(addr);
2640 return 0;
2641 }
2642
2643 static void omap_rtc_write(void *opaque, hwaddr addr,
2644 uint64_t value, unsigned size)
2645 {
2646 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2647 int offset = addr & OMAP_MPUI_REG_MASK;
2648 struct tm new_tm;
2649 time_t ti[2];
2650
2651 if (size != 1) {
2652 omap_badwidth_write8(opaque, addr, value);
2653 return;
2654 }
2655
2656 switch (offset) {
2657 case 0x00: /* SECONDS_REG */
2658 #ifdef ALMDEBUG
2659 printf("RTC SEC_REG <-- %02x\n", value);
2660 #endif
2661 s->ti -= s->current_tm.tm_sec;
2662 s->ti += from_bcd(value);
2663 return;
2664
2665 case 0x04: /* MINUTES_REG */
2666 #ifdef ALMDEBUG
2667 printf("RTC MIN_REG <-- %02x\n", value);
2668 #endif
2669 s->ti -= s->current_tm.tm_min * 60;
2670 s->ti += from_bcd(value) * 60;
2671 return;
2672
2673 case 0x08: /* HOURS_REG */
2674 #ifdef ALMDEBUG
2675 printf("RTC HRS_REG <-- %02x\n", value);
2676 #endif
2677 s->ti -= s->current_tm.tm_hour * 3600;
2678 if (s->pm_am) {
2679 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2680 s->ti += ((value >> 7) & 1) * 43200;
2681 } else
2682 s->ti += from_bcd(value & 0x3f) * 3600;
2683 return;
2684
2685 case 0x0c: /* DAYS_REG */
2686 #ifdef ALMDEBUG
2687 printf("RTC DAY_REG <-- %02x\n", value);
2688 #endif
2689 s->ti -= s->current_tm.tm_mday * 86400;
2690 s->ti += from_bcd(value) * 86400;
2691 return;
2692
2693 case 0x10: /* MONTHS_REG */
2694 #ifdef ALMDEBUG
2695 printf("RTC MTH_REG <-- %02x\n", value);
2696 #endif
2697 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2698 new_tm.tm_mon = from_bcd(value);
2699 ti[0] = mktimegm(&s->current_tm);
2700 ti[1] = mktimegm(&new_tm);
2701
2702 if (ti[0] != -1 && ti[1] != -1) {
2703 s->ti -= ti[0];
2704 s->ti += ti[1];
2705 } else {
2706 /* A less accurate version */
2707 s->ti -= s->current_tm.tm_mon * 2592000;
2708 s->ti += from_bcd(value) * 2592000;
2709 }
2710 return;
2711
2712 case 0x14: /* YEARS_REG */
2713 #ifdef ALMDEBUG
2714 printf("RTC YRS_REG <-- %02x\n", value);
2715 #endif
2716 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2717 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2718 ti[0] = mktimegm(&s->current_tm);
2719 ti[1] = mktimegm(&new_tm);
2720
2721 if (ti[0] != -1 && ti[1] != -1) {
2722 s->ti -= ti[0];
2723 s->ti += ti[1];
2724 } else {
2725 /* A less accurate version */
2726 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2727 s->ti += (time_t)from_bcd(value) * 31536000;
2728 }
2729 return;
2730
2731 case 0x18: /* WEEK_REG */
2732 return; /* Ignored */
2733
2734 case 0x20: /* ALARM_SECONDS_REG */
2735 #ifdef ALMDEBUG
2736 printf("ALM SEC_REG <-- %02x\n", value);
2737 #endif
2738 s->alarm_tm.tm_sec = from_bcd(value);
2739 omap_rtc_alarm_update(s);
2740 return;
2741
2742 case 0x24: /* ALARM_MINUTES_REG */
2743 #ifdef ALMDEBUG
2744 printf("ALM MIN_REG <-- %02x\n", value);
2745 #endif
2746 s->alarm_tm.tm_min = from_bcd(value);
2747 omap_rtc_alarm_update(s);
2748 return;
2749
2750 case 0x28: /* ALARM_HOURS_REG */
2751 #ifdef ALMDEBUG
2752 printf("ALM HRS_REG <-- %02x\n", value);
2753 #endif
2754 if (s->pm_am)
2755 s->alarm_tm.tm_hour =
2756 ((from_bcd(value & 0x3f)) % 12) +
2757 ((value >> 7) & 1) * 12;
2758 else
2759 s->alarm_tm.tm_hour = from_bcd(value);
2760 omap_rtc_alarm_update(s);
2761 return;
2762
2763 case 0x2c: /* ALARM_DAYS_REG */
2764 #ifdef ALMDEBUG
2765 printf("ALM DAY_REG <-- %02x\n", value);
2766 #endif
2767 s->alarm_tm.tm_mday = from_bcd(value);
2768 omap_rtc_alarm_update(s);
2769 return;
2770
2771 case 0x30: /* ALARM_MONTHS_REG */
2772 #ifdef ALMDEBUG
2773 printf("ALM MON_REG <-- %02x\n", value);
2774 #endif
2775 s->alarm_tm.tm_mon = from_bcd(value);
2776 omap_rtc_alarm_update(s);
2777 return;
2778
2779 case 0x34: /* ALARM_YEARS_REG */
2780 #ifdef ALMDEBUG
2781 printf("ALM YRS_REG <-- %02x\n", value);
2782 #endif
2783 s->alarm_tm.tm_year = from_bcd(value);
2784 omap_rtc_alarm_update(s);
2785 return;
2786
2787 case 0x40: /* RTC_CTRL_REG */
2788 #ifdef ALMDEBUG
2789 printf("RTC CONTROL <-- %02x\n", value);
2790 #endif
2791 s->pm_am = (value >> 3) & 1;
2792 s->auto_comp = (value >> 2) & 1;
2793 s->round = (value >> 1) & 1;
2794 s->running = value & 1;
2795 s->status &= 0xfd;
2796 s->status |= s->running << 1;
2797 return;
2798
2799 case 0x44: /* RTC_STATUS_REG */
2800 #ifdef ALMDEBUG
2801 printf("RTC STATUSL <-- %02x\n", value);
2802 #endif
2803 s->status &= ~((value & 0xc0) ^ 0x80);
2804 omap_rtc_interrupts_update(s);
2805 return;
2806
2807 case 0x48: /* RTC_INTERRUPTS_REG */
2808 #ifdef ALMDEBUG
2809 printf("RTC INTRS <-- %02x\n", value);
2810 #endif
2811 s->interrupts = value;
2812 return;
2813
2814 case 0x4c: /* RTC_COMP_LSB_REG */
2815 #ifdef ALMDEBUG
2816 printf("RTC COMPLSB <-- %02x\n", value);
2817 #endif
2818 s->comp_reg &= 0xff00;
2819 s->comp_reg |= 0x00ff & value;
2820 return;
2821
2822 case 0x50: /* RTC_COMP_MSB_REG */
2823 #ifdef ALMDEBUG
2824 printf("RTC COMPMSB <-- %02x\n", value);
2825 #endif
2826 s->comp_reg &= 0x00ff;
2827 s->comp_reg |= 0xff00 & (value << 8);
2828 return;
2829
2830 default:
2831 OMAP_BAD_REG(addr);
2832 return;
2833 }
2834 }
2835
2836 static const MemoryRegionOps omap_rtc_ops = {
2837 .read = omap_rtc_read,
2838 .write = omap_rtc_write,
2839 .endianness = DEVICE_NATIVE_ENDIAN,
2840 };
2841
2842 static void omap_rtc_tick(void *opaque)
2843 {
2844 struct omap_rtc_s *s = opaque;
2845
2846 if (s->round) {
2847 /* Round to nearest full minute. */
2848 if (s->current_tm.tm_sec < 30)
2849 s->ti -= s->current_tm.tm_sec;
2850 else
2851 s->ti += 60 - s->current_tm.tm_sec;
2852
2853 s->round = 0;
2854 }
2855
2856 localtime_r(&s->ti, &s->current_tm);
2857
2858 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2859 s->status |= 0x40;
2860 omap_rtc_interrupts_update(s);
2861 }
2862
2863 if (s->interrupts & 0x04)
2864 switch (s->interrupts & 3) {
2865 case 0:
2866 s->status |= 0x04;
2867 qemu_irq_pulse(s->irq);
2868 break;
2869 case 1:
2870 if (s->current_tm.tm_sec)
2871 break;
2872 s->status |= 0x08;
2873 qemu_irq_pulse(s->irq);
2874 break;
2875 case 2:
2876 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2877 break;
2878 s->status |= 0x10;
2879 qemu_irq_pulse(s->irq);
2880 break;
2881 case 3:
2882 if (s->current_tm.tm_sec ||
2883 s->current_tm.tm_min || s->current_tm.tm_hour)
2884 break;
2885 s->status |= 0x20;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 }
2889
2890 /* Move on */
2891 if (s->running)
2892 s->ti ++;
2893 s->tick += 1000;
2894
2895 /*
2896 * Every full hour add a rough approximation of the compensation
2897 * register to the 32kHz Timer (which drives the RTC) value.
2898 */
2899 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2900 s->tick += s->comp_reg * 1000 / 32768;
2901
2902 timer_mod(s->clk, s->tick);
2903 }
2904
2905 static void omap_rtc_reset(struct omap_rtc_s *s)
2906 {
2907 struct tm tm;
2908
2909 s->interrupts = 0;
2910 s->comp_reg = 0;
2911 s->running = 0;
2912 s->pm_am = 0;
2913 s->auto_comp = 0;
2914 s->round = 0;
2915 s->tick = qemu_clock_get_ms(rtc_clock);
2916 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2917 s->alarm_tm.tm_mday = 0x01;
2918 s->status = 1 << 7;
2919 qemu_get_timedate(&tm, 0);
2920 s->ti = mktimegm(&tm);
2921
2922 omap_rtc_alarm_update(s);
2923 omap_rtc_tick(s);
2924 }
2925
2926 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2927 hwaddr base,
2928 qemu_irq timerirq, qemu_irq alarmirq,
2929 omap_clk clk)
2930 {
2931 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2932
2933 s->irq = timerirq;
2934 s->alarm = alarmirq;
2935 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2936
2937 omap_rtc_reset(s);
2938
2939 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2940 "omap-rtc", 0x800);
2941 memory_region_add_subregion(system_memory, base, &s->iomem);
2942
2943 return s;
2944 }
2945
2946 /* Multi-channel Buffered Serial Port interfaces */
2947 struct omap_mcbsp_s {
2948 MemoryRegion iomem;
2949 qemu_irq txirq;
2950 qemu_irq rxirq;
2951 qemu_irq txdrq;
2952 qemu_irq rxdrq;
2953
2954 uint16_t spcr[2];
2955 uint16_t rcr[2];
2956 uint16_t xcr[2];
2957 uint16_t srgr[2];
2958 uint16_t mcr[2];
2959 uint16_t pcr;
2960 uint16_t rcer[8];
2961 uint16_t xcer[8];
2962 int tx_rate;
2963 int rx_rate;
2964 int tx_req;
2965 int rx_req;
2966
2967 I2SCodec *codec;
2968 QEMUTimer *source_timer;
2969 QEMUTimer *sink_timer;
2970 };
2971
2972 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2973 {
2974 int irq;
2975
2976 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2977 case 0:
2978 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2979 break;
2980 case 3:
2981 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2982 break;
2983 default:
2984 irq = 0;
2985 break;
2986 }
2987
2988 if (irq)
2989 qemu_irq_pulse(s->rxirq);
2990
2991 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2992 case 0:
2993 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2994 break;
2995 case 3:
2996 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2997 break;
2998 default:
2999 irq = 0;
3000 break;
3001 }
3002
3003 if (irq)
3004 qemu_irq_pulse(s->txirq);
3005 }
3006
3007 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3008 {
3009 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3010 s->spcr[0] |= 1 << 2; /* RFULL */
3011 s->spcr[0] |= 1 << 1; /* RRDY */
3012 qemu_irq_raise(s->rxdrq);
3013 omap_mcbsp_intr_update(s);
3014 }
3015
3016 static void omap_mcbsp_source_tick(void *opaque)
3017 {
3018 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3019 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3020
3021 if (!s->rx_rate)
3022 return;
3023 if (s->rx_req)
3024 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3025
3026 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3027
3028 omap_mcbsp_rx_newdata(s);
3029 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3030 get_ticks_per_sec());
3031 }
3032
3033 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3034 {
3035 if (!s->codec || !s->codec->rts)
3036 omap_mcbsp_source_tick(s);
3037 else if (s->codec->in.len) {
3038 s->rx_req = s->codec->in.len;
3039 omap_mcbsp_rx_newdata(s);
3040 }
3041 }
3042
3043 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3044 {
3045 timer_del(s->source_timer);
3046 }
3047
3048 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3049 {
3050 s->spcr[0] &= ~(1 << 1); /* RRDY */
3051 qemu_irq_lower(s->rxdrq);
3052 omap_mcbsp_intr_update(s);
3053 }
3054
3055 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3056 {
3057 s->spcr[1] |= 1 << 1; /* XRDY */
3058 qemu_irq_raise(s->txdrq);
3059 omap_mcbsp_intr_update(s);
3060 }
3061
3062 static void omap_mcbsp_sink_tick(void *opaque)
3063 {
3064 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3065 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3066
3067 if (!s->tx_rate)
3068 return;
3069 if (s->tx_req)
3070 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3071
3072 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3073
3074 omap_mcbsp_tx_newdata(s);
3075 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3076 get_ticks_per_sec());
3077 }
3078
3079 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3080 {
3081 if (!s->codec || !s->codec->cts)
3082 omap_mcbsp_sink_tick(s);
3083 else if (s->codec->out.size) {
3084 s->tx_req = s->codec->out.size;
3085 omap_mcbsp_tx_newdata(s);
3086 }
3087 }
3088
3089 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3090 {
3091 s->spcr[1] &= ~(1 << 1); /* XRDY */
3092 qemu_irq_lower(s->txdrq);
3093 omap_mcbsp_intr_update(s);
3094 if (s->codec && s->codec->cts)
3095 s->codec->tx_swallow(s->codec->opaque);
3096 }
3097
3098 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3099 {
3100 s->tx_req = 0;
3101 omap_mcbsp_tx_done(s);
3102 timer_del(s->sink_timer);
3103 }
3104
3105 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3106 {
3107 int prev_rx_rate, prev_tx_rate;
3108 int rx_rate = 0, tx_rate = 0;
3109 int cpu_rate = 1500000; /* XXX */
3110
3111 /* TODO: check CLKSTP bit */
3112 if (s->spcr[1] & (1 << 6)) { /* GRST */
3113 if (s->spcr[0] & (1 << 0)) { /* RRST */
3114 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3115 (s->pcr & (1 << 8))) { /* CLKRM */
3116 if (~s->pcr & (1 << 7)) /* SCLKME */
3117 rx_rate = cpu_rate /
3118 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3119 } else
3120 if (s->codec)
3121 rx_rate = s->codec->rx_rate;
3122 }
3123
3124 if (s->spcr[1] & (1 << 0)) { /* XRST */
3125 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3126 (s->pcr & (1 << 9))) { /* CLKXM */
3127 if (~s->pcr & (1 << 7)) /* SCLKME */
3128 tx_rate = cpu_rate /
3129 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3130 } else
3131 if (s->codec)
3132 tx_rate = s->codec->tx_rate;
3133 }
3134 }
3135 prev_tx_rate = s->tx_rate;
3136 prev_rx_rate = s->rx_rate;
3137 s->tx_rate = tx_rate;
3138 s->rx_rate = rx_rate;
3139
3140 if (s->codec)
3141 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3142
3143 if (!prev_tx_rate && tx_rate)
3144 omap_mcbsp_tx_start(s);
3145 else if (s->tx_rate && !tx_rate)
3146 omap_mcbsp_tx_stop(s);
3147
3148 if (!prev_rx_rate && rx_rate)
3149 omap_mcbsp_rx_start(s);
3150 else if (prev_tx_rate && !tx_rate)
3151 omap_mcbsp_rx_stop(s);
3152 }
3153
3154 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3155 unsigned size)
3156 {
3157 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3158 int offset = addr & OMAP_MPUI_REG_MASK;
3159 uint16_t ret;
3160
3161 if (size != 2) {
3162 return omap_badwidth_read16(opaque, addr);
3163 }
3164
3165 switch (offset) {
3166 case 0x00: /* DRR2 */
3167 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3168 return 0x0000;
3169 /* Fall through. */
3170 case 0x02: /* DRR1 */
3171 if (s->rx_req < 2) {
3172 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3173 omap_mcbsp_rx_done(s);
3174 } else {
3175 s->tx_req -= 2;
3176 if (s->codec && s->codec->in.len >= 2) {
3177 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3178 ret |= s->codec->in.fifo[s->codec->in.start ++];
3179 s->codec->in.len -= 2;
3180 } else
3181 ret = 0x0000;
3182 if (!s->tx_req)
3183 omap_mcbsp_rx_done(s);
3184 return ret;
3185 }
3186 return 0x0000;
3187
3188 case 0x04: /* DXR2 */
3189 case 0x06: /* DXR1 */
3190 return 0x0000;
3191
3192 case 0x08: /* SPCR2 */
3193 return s->spcr[1];
3194 case 0x0a: /* SPCR1 */
3195 return s->spcr[0];
3196 case 0x0c: /* RCR2 */
3197 return s->rcr[1];
3198 case 0x0e: /* RCR1 */
3199 return s->rcr[0];
3200 case 0x10: /* XCR2 */
3201 return s->xcr[1];
3202 case 0x12: /* XCR1 */
3203 return s->xcr[0];
3204 case 0x14: /* SRGR2 */
3205 return s->srgr[1];
3206 case 0x16: /* SRGR1 */
3207 return s->srgr[0];
3208 case 0x18: /* MCR2 */
3209 return s->mcr[1];
3210 case 0x1a: /* MCR1 */
3211 return s->mcr[0];
3212 case 0x1c: /* RCERA */
3213 return s->rcer[0];
3214 case 0x1e: /* RCERB */
3215 return s->rcer[1];
3216 case 0x20: /* XCERA */
3217 return s->xcer[0];
3218 case 0x22: /* XCERB */
3219 return s->xcer[1];
3220 case 0x24: /* PCR0 */
3221 return s->pcr;
3222 case 0x26: /* RCERC */
3223 return s->rcer[2];
3224 case 0x28: /* RCERD */
3225 return s->rcer[3];
3226 case 0x2a: /* XCERC */
3227 return s->xcer[2];
3228 case 0x2c: /* XCERD */
3229 return s->xcer[3];
3230 case 0x2e: /* RCERE */
3231 return s->rcer[4];
3232 case 0x30: /* RCERF */
3233 return s->rcer[5];
3234 case 0x32: /* XCERE */
3235 return s->xcer[4];
3236 case 0x34: /* XCERF */
3237 return s->xcer[5];
3238 case 0x36: /* RCERG */
3239 return s->rcer[6];
3240 case 0x38: /* RCERH */
3241 return s->rcer[7];
3242 case 0x3a: /* XCERG */
3243 return s->xcer[6];
3244 case 0x3c: /* XCERH */
3245 return s->xcer[7];
3246 }
3247
3248 OMAP_BAD_REG(addr);
3249 return 0;
3250 }
3251
3252 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3253 uint32_t value)
3254 {
3255 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3256 int offset = addr & OMAP_MPUI_REG_MASK;
3257
3258 switch (offset) {
3259 case 0x00: /* DRR2 */
3260 case 0x02: /* DRR1 */
3261 OMAP_RO_REG(addr);
3262 return;
3263
3264 case 0x04: /* DXR2 */
3265 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3266 return;
3267 /* Fall through. */
3268 case 0x06: /* DXR1 */
3269 if (s->tx_req > 1) {
3270 s->tx_req -= 2;
3271 if (s->codec && s->codec->cts) {
3272 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3273 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3274 }
3275 if (s->tx_req < 2)
3276 omap_mcbsp_tx_done(s);
3277 } else
3278 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3279 return;
3280
3281 case 0x08: /* SPCR2 */
3282 s->spcr[1] &= 0x0002;
3283 s->spcr[1] |= 0x03f9 & value;
3284 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3285 if (~value & 1) /* XRST */
3286 s->spcr[1] &= ~6;
3287 omap_mcbsp_req_update(s);
3288 return;
3289 case 0x0a: /* SPCR1 */
3290 s->spcr[0] &= 0x0006;
3291 s->spcr[0] |= 0xf8f9 & value;
3292 if (value & (1 << 15)) /* DLB */
3293 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3294 if (~value & 1) { /* RRST */
3295 s->spcr[0] &= ~6;
3296 s->rx_req = 0;
3297 omap_mcbsp_rx_done(s);
3298 }
3299 omap_mcbsp_req_update(s);
3300 return;
3301
3302 case 0x0c: /* RCR2 */
3303 s->rcr[1] = value & 0xffff;
3304 return;
3305 case 0x0e: /* RCR1 */
3306 s->rcr[0] = value & 0x7fe0;
3307 return;
3308 case 0x10: /* XCR2 */
3309 s->xcr[1] = value & 0xffff;
3310 return;
3311 case 0x12: /* XCR1 */
3312 s->xcr[0] = value & 0x7fe0;
3313 return;
3314 case 0x14: /* SRGR2 */
3315 s->srgr[1] = value & 0xffff;
3316 omap_mcbsp_req_update(s);
3317 return;
3318 case 0x16: /* SRGR1 */
3319 s->srgr[0] = value & 0xffff;
3320 omap_mcbsp_req_update(s);
3321 return;
3322 case 0x18: /* MCR2 */
3323 s->mcr[1] = value & 0x03e3;
3324 if (value & 3) /* XMCM */
3325 printf("%s: Tx channel selection mode enable attempt\n",
3326 __FUNCTION__);
3327 return;
3328 case 0x1a: /* MCR1 */
3329 s->mcr[0] = value & 0x03e1;
3330 if (value & 1) /* RMCM */
3331 printf("%s: Rx channel selection mode enable attempt\n",
3332 __FUNCTION__);
3333 return;
3334 case 0x1c: /* RCERA */
3335 s->rcer[0] = value & 0xffff;
3336 return;
3337 case 0x1e: /* RCERB */
3338 s->rcer[1] = value & 0xffff;
3339 return;
3340 case 0x20: /* XCERA */
3341 s->xcer[0] = value & 0xffff;
3342 return;
3343 case 0x22: /* XCERB */
3344 s->xcer[1] = value & 0xffff;
3345 return;
3346 case 0x24: /* PCR0 */
3347 s->pcr = value & 0x7faf;
3348 return;
3349 case 0x26: /* RCERC */
3350 s->rcer[2] = value & 0xffff;
3351 return;
3352 case 0x28: /* RCERD */
3353 s->rcer[3] = value & 0xffff;
3354 return;
3355 case 0x2a: /* XCERC */
3356 s->xcer[2] = value & 0xffff;
3357 return;
3358 case 0x2c: /* XCERD */
3359 s->xcer[3] = value & 0xffff;
3360 return;
3361 case 0x2e: /* RCERE */
3362 s->rcer[4] = value & 0xffff;
3363 return;
3364 case 0x30: /* RCERF */
3365 s->rcer[5] = value & 0xffff;
3366 return;
3367 case 0x32: /* XCERE */
3368 s->xcer[4] = value & 0xffff;
3369 return;
3370 case 0x34: /* XCERF */
3371 s->xcer[5] = value & 0xffff;
3372 return;
3373 case 0x36: /* RCERG */
3374 s->rcer[6] = value & 0xffff;
3375 return;
3376 case 0x38: /* RCERH */
3377 s->rcer[7] = value & 0xffff;
3378 return;
3379 case 0x3a: /* XCERG */
3380 s->xcer[6] = value & 0xffff;
3381 return;
3382 case 0x3c: /* XCERH */
3383 s->xcer[7] = value & 0xffff;
3384 return;
3385 }
3386
3387 OMAP_BAD_REG(addr);
3388 }
3389
3390 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3391 uint32_t value)
3392 {
3393 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3394 int offset = addr & OMAP_MPUI_REG_MASK;
3395
3396 if (offset == 0x04) { /* DXR */
3397 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3398 return;
3399 if (s->tx_req > 3) {
3400 s->tx_req -= 4;
3401 if (s->codec && s->codec->cts) {
3402 s->codec->out.fifo[s->codec->out.len ++] =
3403 (value >> 24) & 0xff;
3404 s->codec->out.fifo[s->codec->out.len ++] =
3405 (value >> 16) & 0xff;
3406 s->codec->out.fifo[s->codec->out.len ++] =
3407 (value >> 8) & 0xff;
3408 s->codec->out.fifo[s->codec->out.len ++] =
3409 (value >> 0) & 0xff;
3410 }
3411 if (s->tx_req < 4)
3412 omap_mcbsp_tx_done(s);
3413 } else
3414 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3415 return;
3416 }
3417
3418 omap_badwidth_write16(opaque, addr, value);
3419 }
3420
3421 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3422 uint64_t value, unsigned size)
3423 {
3424 switch (size) {
3425 case 2:
3426 omap_mcbsp_writeh(opaque, addr, value);
3427 break;
3428 case 4:
3429 omap_mcbsp_writew(opaque, addr, value);
3430 break;
3431 default:
3432 omap_badwidth_write16(opaque, addr, value);
3433 }
3434 }
3435
3436 static const MemoryRegionOps omap_mcbsp_ops = {
3437 .read = omap_mcbsp_read,
3438 .write = omap_mcbsp_write,
3439 .endianness = DEVICE_NATIVE_ENDIAN,
3440 };
3441
3442 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3443 {
3444 memset(&s->spcr, 0, sizeof(s->spcr));
3445 memset(&s->rcr, 0, sizeof(s->rcr));
3446 memset(&s->xcr, 0, sizeof(s->xcr));
3447 s->srgr[0] = 0x0001;
3448 s->srgr[1] = 0x2000;
3449 memset(&s->mcr, 0, sizeof(s->mcr));
3450 memset(&s->pcr, 0, sizeof(s->pcr));
3451 memset(&s->rcer, 0, sizeof(s->rcer));
3452 memset(&s->xcer, 0, sizeof(s->xcer));
3453 s->tx_req = 0;
3454 s->rx_req = 0;
3455 s->tx_rate = 0;
3456 s->rx_rate = 0;
3457 timer_del(s->source_timer);
3458 timer_del(s->sink_timer);
3459 }
3460
3461 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3462 hwaddr base,
3463 qemu_irq txirq, qemu_irq rxirq,
3464 qemu_irq *dma, omap_clk clk)
3465 {
3466 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3467
3468 s->txirq = txirq;
3469 s->rxirq = rxirq;
3470 s->txdrq = dma[0];
3471 s->rxdrq = dma[1];
3472 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3473 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3474 omap_mcbsp_reset(s);
3475
3476 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3477 memory_region_add_subregion(system_memory, base, &s->iomem);
3478
3479 return s;
3480 }
3481
3482 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3483 {
3484 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3485
3486 if (s->rx_rate) {
3487 s->rx_req = s->codec->in.len;
3488 omap_mcbsp_rx_newdata(s);
3489 }
3490 }
3491
3492 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3493 {
3494 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3495
3496 if (s->tx_rate) {
3497 s->tx_req = s->codec->out.size;
3498 omap_mcbsp_tx_newdata(s);
3499 }
3500 }
3501
3502 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3503 {
3504 s->codec = slave;
3505 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3506 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3507 }
3508
3509 /* LED Pulse Generators */
3510 struct omap_lpg_s {
3511 MemoryRegion iomem;
3512 QEMUTimer *tm;
3513
3514 uint8_t control;
3515 uint8_t power;
3516 int64_t on;
3517 int64_t period;
3518 int clk;
3519 int cycle;
3520 };
3521
3522 static void omap_lpg_tick(void *opaque)
3523 {
3524 struct omap_lpg_s *s = opaque;
3525
3526 if (s->cycle)
3527 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3528 else
3529 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3530
3531 s->cycle = !s->cycle;
3532 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3533 }
3534
3535 static void omap_lpg_update(struct omap_lpg_s *s)
3536 {
3537 int64_t on, period = 1, ticks = 1000;
3538 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3539
3540 if (~s->control & (1 << 6)) /* LPGRES */
3541 on = 0;
3542 else if (s->control & (1 << 7)) /* PERM_ON */
3543 on = period;
3544 else {
3545 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3546 256 / 32);
3547 on = (s->clk && s->power) ? muldiv64(ticks,
3548 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3549 }
3550
3551 timer_del(s->tm);
3552 if (on == period && s->on < s->period)
3553 printf("%s: LED is on\n", __FUNCTION__);
3554 else if (on == 0 && s->on)
3555 printf("%s: LED is off\n", __FUNCTION__);
3556 else if (on && (on != s->on || period != s->period)) {
3557 s->cycle = 0;
3558 s->on = on;
3559 s->period = period;
3560 omap_lpg_tick(s);
3561 return;
3562 }
3563
3564 s->on = on;
3565 s->period = period;
3566 }
3567
3568 static void omap_lpg_reset(struct omap_lpg_s *s)
3569 {
3570 s->control = 0x00;
3571 s->power = 0x00;
3572 s->clk = 1;
3573 omap_lpg_update(s);
3574 }
3575
3576 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3577 unsigned size)
3578 {
3579 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3580 int offset = addr & OMAP_MPUI_REG_MASK;
3581
3582 if (size != 1) {
3583 return omap_badwidth_read8(opaque, addr);
3584 }
3585
3586 switch (offset) {
3587 case 0x00: /* LCR */
3588 return s->control;
3589
3590 case 0x04: /* PMR */
3591 return s->power;
3592 }
3593
3594 OMAP_BAD_REG(addr);
3595 return 0;
3596 }
3597
3598 static void omap_lpg_write(void *opaque, hwaddr addr,
3599 uint64_t value, unsigned size)
3600 {
3601 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3602 int offset = addr & OMAP_MPUI_REG_MASK;
3603
3604 if (size != 1) {
3605 omap_badwidth_write8(opaque, addr, value);
3606 return;
3607 }
3608
3609 switch (offset) {
3610 case 0x00: /* LCR */
3611 if (~value & (1 << 6)) /* LPGRES */
3612 omap_lpg_reset(s);
3613 s->control = value & 0xff;
3614 omap_lpg_update(s);
3615 return;
3616
3617 case 0x04: /* PMR */
3618 s->power = value & 0x01;
3619 omap_lpg_update(s);
3620 return;
3621
3622 default:
3623 OMAP_BAD_REG(addr);
3624 return;
3625 }
3626 }
3627
3628 static const MemoryRegionOps omap_lpg_ops = {
3629 .read = omap_lpg_read,
3630 .write = omap_lpg_write,
3631 .endianness = DEVICE_NATIVE_ENDIAN,
3632 };
3633
3634 static void omap_lpg_clk_update(void *opaque, int line, int on)
3635 {
3636 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3637
3638 s->clk = on;
3639 omap_lpg_update(s);
3640 }
3641
3642 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3643 hwaddr base, omap_clk clk)
3644 {
3645 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3646
3647 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3648
3649 omap_lpg_reset(s);
3650
3651 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3652 memory_region_add_subregion(system_memory, base, &s->iomem);
3653
3654 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3655
3656 return s;
3657 }
3658
3659 /* MPUI Peripheral Bridge configuration */
3660 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3661 unsigned size)
3662 {
3663 if (size != 2) {
3664 return omap_badwidth_read16(opaque, addr);
3665 }
3666
3667 if (addr == OMAP_MPUI_BASE) /* CMR */
3668 return 0xfe4d;
3669
3670 OMAP_BAD_REG(addr);
3671 return 0;
3672 }
3673
3674 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3675 uint64_t value, unsigned size)
3676 {
3677 /* FIXME: infinite loop */
3678 omap_badwidth_write16(opaque, addr, value);
3679 }
3680
3681 static const MemoryRegionOps omap_mpui_io_ops = {
3682 .read = omap_mpui_io_read,
3683 .write = omap_mpui_io_write,
3684 .endianness = DEVICE_NATIVE_ENDIAN,
3685 };
3686
3687 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3688 struct omap_mpu_state_s *mpu)
3689 {
3690 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3691 "omap-mpui-io", 0x7fff);
3692 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3693 &mpu->mpui_io_iomem);
3694 }
3695
3696 /* General chip reset */
3697 static void omap1_mpu_reset(void *opaque)
3698 {
3699 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3700
3701 omap_dma_reset(mpu->dma);
3702 omap_mpu_timer_reset(mpu->timer[0]);
3703 omap_mpu_timer_reset(mpu->timer[1]);
3704 omap_mpu_timer_reset(mpu->timer[2]);
3705 omap_wd_timer_reset(mpu->wdt);
3706 omap_os_timer_reset(mpu->os_timer);
3707 omap_lcdc_reset(mpu->lcd);
3708 omap_ulpd_pm_reset(mpu);
3709 omap_pin_cfg_reset(mpu);
3710 omap_mpui_reset(mpu);
3711 omap_tipb_bridge_reset(mpu->private_tipb);
3712 omap_tipb_bridge_reset(mpu->public_tipb);
3713 omap_dpll_reset(mpu->dpll[0]);
3714 omap_dpll_reset(mpu->dpll[1]);
3715 omap_dpll_reset(mpu->dpll[2]);
3716 omap_uart_reset(mpu->uart[0]);
3717 omap_uart_reset(mpu->uart[1]);
3718 omap_uart_reset(mpu->uart[2]);
3719 omap_mmc_reset(mpu->mmc);
3720 omap_mpuio_reset(mpu->mpuio);
3721 omap_uwire_reset(mpu->microwire);
3722 omap_pwl_reset(mpu->pwl);
3723 omap_pwt_reset(mpu->pwt);
3724 omap_rtc_reset(mpu->rtc);
3725 omap_mcbsp_reset(mpu->mcbsp1);
3726 omap_mcbsp_reset(mpu->mcbsp2);
3727 omap_mcbsp_reset(mpu->mcbsp3);
3728 omap_lpg_reset(mpu->led[0]);
3729 omap_lpg_reset(mpu->led[1]);
3730 omap_clkm_reset(mpu);
3731 cpu_reset(CPU(mpu->cpu));
3732 }
3733
3734 static const struct omap_map_s {
3735 hwaddr phys_dsp;
3736 hwaddr phys_mpu;
3737 uint32_t size;
3738 const char *name;
3739 } omap15xx_dsp_mm[] = {
3740 /* Strobe 0 */
3741 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3742 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3743 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3744 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3745 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3746 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3747 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3748 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3749 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3750 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3751 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3752 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3753 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3754 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3755 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3756 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3757 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3758 /* Strobe 1 */
3759 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3760
3761 { 0 }
3762 };
3763
3764 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3765 const struct omap_map_s *map)
3766 {
3767 MemoryRegion *io;
3768
3769 for (; map->phys_dsp; map ++) {
3770 io = g_new(MemoryRegion, 1);
3771 memory_region_init_alias(io, NULL, map->name,
3772 system_memory, map->phys_mpu, map->size);
3773 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3774 }
3775 }
3776
3777 void omap_mpu_wakeup(void *opaque, int irq, int req)
3778 {
3779 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3780 CPUState *cpu = CPU(mpu->cpu);
3781
3782 if (cpu->halted) {
3783 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3784 }
3785 }
3786
3787 static const struct dma_irq_map omap1_dma_irq_map[] = {
3788 { 0, OMAP_INT_DMA_CH0_6 },
3789 { 0, OMAP_INT_DMA_CH1_7 },
3790 { 0, OMAP_INT_DMA_CH2_8 },
3791 { 0, OMAP_INT_DMA_CH3 },
3792 { 0, OMAP_INT_DMA_CH4 },
3793 { 0, OMAP_INT_DMA_CH5 },
3794 { 1, OMAP_INT_1610_DMA_CH6 },
3795 { 1, OMAP_INT_1610_DMA_CH7 },
3796 { 1, OMAP_INT_1610_DMA_CH8 },
3797 { 1, OMAP_INT_1610_DMA_CH9 },
3798 { 1, OMAP_INT_1610_DMA_CH10 },
3799 { 1, OMAP_INT_1610_DMA_CH11 },
3800 { 1, OMAP_INT_1610_DMA_CH12 },
3801 { 1, OMAP_INT_1610_DMA_CH13 },
3802 { 1, OMAP_INT_1610_DMA_CH14 },
3803 { 1, OMAP_INT_1610_DMA_CH15 }
3804 };
3805
3806 /* DMA ports for OMAP1 */
3807 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3808 hwaddr addr)
3809 {
3810 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3811 }
3812
3813 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3814 hwaddr addr)
3815 {
3816 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3817 addr);
3818 }
3819
3820 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3821 hwaddr addr)
3822 {
3823 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3824 }
3825
3826 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3827 hwaddr addr)
3828 {
3829 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3830 }
3831
3832 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3833 hwaddr addr)
3834 {
3835 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3836 }
3837
3838 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3839 hwaddr addr)
3840 {
3841 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3842 }
3843
3844 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3845 unsigned long sdram_size,
3846 const char *core)
3847 {
3848 int i;
3849 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3850 qemu_irq dma_irqs[6];
3851 DriveInfo *dinfo;
3852 SysBusDevice *busdev;
3853
3854 if (!core)
3855 core = "ti925t";
3856
3857 /* Core */
3858 s->mpu_model = omap310;
3859 s->cpu = cpu_arm_init(core);
3860 if (s->cpu == NULL) {
3861 fprintf(stderr, "Unable to find CPU definition\n");
3862 exit(1);
3863 }
3864 s->sdram_size = sdram_size;
3865 s->sram_size = OMAP15XX_SRAM_SIZE;
3866
3867 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3868
3869 /* Clocks */
3870 omap_clk_init(s);
3871
3872 /* Memory-mapped stuff */
3873 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3874 s->sdram_size);
3875 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3876 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3877 &error_fatal);
3878 vmstate_register_ram_global(&s->imif_ram);
3879 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3880
3881 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3882
3883 s->ih[0] = qdev_create(NULL, "omap-intc");
3884 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3885 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3886 qdev_init_nofail(s->ih[0]);
3887 busdev = SYS_BUS_DEVICE(s->ih[0]);
3888 sysbus_connect_irq(busdev, 0,
3889 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3890 sysbus_connect_irq(busdev, 1,
3891 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3892 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3893 s->ih[1] = qdev_create(NULL, "omap-intc");
3894 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3895 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3896 qdev_init_nofail(s->ih[1]);
3897 busdev = SYS_BUS_DEVICE(s->ih[1]);
3898 sysbus_connect_irq(busdev, 0,
3899 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3900 /* The second interrupt controller's FIQ output is not wired up */
3901 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3902
3903 for (i = 0; i < 6; i++) {
3904 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3905 omap1_dma_irq_map[i].intr);
3906 }
3907 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3908 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3909 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3910
3911 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3912 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3913 s->port[imif ].addr_valid = omap_validate_imif_addr;
3914 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3915 s->port[local ].addr_valid = omap_validate_local_addr;
3916 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3917
3918 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3919 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3920 OMAP_EMIFF_BASE, s->sdram_size);
3921 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3922 OMAP_IMIF_BASE, s->sram_size);
3923
3924 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3925 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3926 omap_findclk(s, "mputim_ck"));
3927 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3928 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3929 omap_findclk(s, "mputim_ck"));
3930 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3931 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3932 omap_findclk(s, "mputim_ck"));
3933
3934 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3935 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3936 omap_findclk(s, "armwdt_ck"));
3937
3938 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3939 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3940 omap_findclk(s, "clk32-kHz"));
3941
3942 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3943 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3944 omap_dma_get_lcdch(s->dma),
3945 omap_findclk(s, "lcd_ck"));
3946
3947 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3948 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3949 omap_id_init(system_memory, s);
3950
3951 omap_mpui_init(system_memory, 0xfffec900, s);
3952
3953 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3954 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3955 omap_findclk(s, "tipb_ck"));
3956 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3957 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3958 omap_findclk(s, "tipb_ck"));
3959
3960 omap_tcmi_init(system_memory, 0xfffecc00, s);
3961
3962 s->uart[0] = omap_uart_init(0xfffb0000,
3963 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3964 omap_findclk(s, "uart1_ck"),
3965 omap_findclk(s, "uart1_ck"),
3966 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3967 "uart1",
3968 serial_hds[0]);
3969 s->uart[1] = omap_uart_init(0xfffb0800,
3970 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3971 omap_findclk(s, "uart2_ck"),
3972 omap_findclk(s, "uart2_ck"),
3973 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3974 "uart2",
3975 serial_hds[0] ? serial_hds[1] : NULL);
3976 s->uart[2] = omap_uart_init(0xfffb9800,
3977 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3978 omap_findclk(s, "uart3_ck"),
3979 omap_findclk(s, "uart3_ck"),
3980 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3981 "uart3",
3982 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3983
3984 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3985 omap_findclk(s, "dpll1"));
3986 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3987 omap_findclk(s, "dpll2"));
3988 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3989 omap_findclk(s, "dpll3"));
3990
3991 dinfo = drive_get(IF_SD, 0, 0);
3992 if (!dinfo) {
3993 fprintf(stderr, "qemu: missing SecureDigital device\n");
3994 exit(1);
3995 }
3996 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3997 blk_by_legacy_dinfo(dinfo),
3998 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3999 &s->drq[OMAP_DMA_MMC_TX],
4000 omap_findclk(s, "mmc_ck"));
4001
4002 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4003 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4004 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4005 s->wakeup, omap_findclk(s, "clk32-kHz"));
4006
4007 s->gpio = qdev_create(NULL, "omap-gpio");
4008 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4009 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4010 qdev_init_nofail(s->gpio);
4011 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4012 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4013 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4014
4015 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4016 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4017 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4018 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4019
4020 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4021 omap_findclk(s, "armxor_ck"));
4022 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4023 omap_findclk(s, "armxor_ck"));
4024
4025 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4026 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4027 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4028 qdev_init_nofail(s->i2c[0]);
4029 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4030 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4031 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4032 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4033 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4034
4035 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4036 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4037 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4038 omap_findclk(s, "clk32-kHz"));
4039
4040 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4041 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4043 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4044 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4045 qdev_get_gpio_in(s->ih[0],
4046 OMAP_INT_310_McBSP2_TX),
4047 qdev_get_gpio_in(s->ih[0],
4048 OMAP_INT_310_McBSP2_RX),
4049 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4050 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4051 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4052 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4053 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4054
4055 s->led[0] = omap_lpg_init(system_memory,
4056 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4057 s->led[1] = omap_lpg_init(system_memory,
4058 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4059
4060 /* Register mappings not currenlty implemented:
4061 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4062 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4063 * USB W2FC fffb4000 - fffb47ff
4064 * Camera Interface fffb6800 - fffb6fff
4065 * USB Host fffba000 - fffba7ff
4066 * FAC fffba800 - fffbafff
4067 * HDQ/1-Wire fffbc000 - fffbc7ff
4068 * TIPB switches fffbc800 - fffbcfff
4069 * Mailbox fffcf000 - fffcf7ff
4070 * Local bus IF fffec100 - fffec1ff
4071 * Local bus MMU fffec200 - fffec2ff
4072 * DSP MMU fffed200 - fffed2ff
4073 */
4074
4075 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4076 omap_setup_mpui_io(system_memory, s);
4077
4078 qemu_register_reset(omap1_mpu_reset, s);
4079
4080 return s;
4081 }