]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/omap1.c
Merge remote-tracking branch 'remotes/cody/tags/block-pull-request' into staging
[mirror_qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
35 #include "qemu/bcd.h"
36
37 /* Should signal the TCMI/GPMC */
38 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
39 {
40 uint8_t ret;
41
42 OMAP_8B_REG(addr);
43 cpu_physical_memory_read(addr, &ret, 1);
44 return ret;
45 }
46
47 void omap_badwidth_write8(void *opaque, hwaddr addr,
48 uint32_t value)
49 {
50 uint8_t val8 = value;
51
52 OMAP_8B_REG(addr);
53 cpu_physical_memory_write(addr, &val8, 1);
54 }
55
56 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
57 {
58 uint16_t ret;
59
60 OMAP_16B_REG(addr);
61 cpu_physical_memory_read(addr, &ret, 2);
62 return ret;
63 }
64
65 void omap_badwidth_write16(void *opaque, hwaddr addr,
66 uint32_t value)
67 {
68 uint16_t val16 = value;
69
70 OMAP_16B_REG(addr);
71 cpu_physical_memory_write(addr, &val16, 2);
72 }
73
74 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
75 {
76 uint32_t ret;
77
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_read(addr, &ret, 4);
80 return ret;
81 }
82
83 void omap_badwidth_write32(void *opaque, hwaddr addr,
84 uint32_t value)
85 {
86 OMAP_32B_REG(addr);
87 cpu_physical_memory_write(addr, &value, 4);
88 }
89
90 /* MPU OS timers */
91 struct omap_mpu_timer_s {
92 MemoryRegion iomem;
93 qemu_irq irq;
94 omap_clk clk;
95 uint32_t val;
96 int64_t time;
97 QEMUTimer *timer;
98 QEMUBH *tick;
99 int64_t rate;
100 int it_ena;
101
102 int enable;
103 int ptv;
104 int ar;
105 int st;
106 uint32_t reset_val;
107 };
108
109 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
110 {
111 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
112
113 if (timer->st && timer->enable && timer->rate)
114 return timer->val - muldiv64(distance >> (timer->ptv + 1),
115 timer->rate, NANOSECONDS_PER_SECOND);
116 else
117 return timer->val;
118 }
119
120 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
121 {
122 timer->val = omap_timer_read(timer);
123 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
124 }
125
126 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
127 {
128 int64_t expires;
129
130 if (timer->enable && timer->st && timer->rate) {
131 timer->val = timer->reset_val; /* Should skip this on clk enable */
132 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
133 NANOSECONDS_PER_SECOND, timer->rate);
134
135 /* If timer expiry would be sooner than in about 1 ms and
136 * auto-reload isn't set, then fire immediately. This is a hack
137 * to make systems like PalmOS run in acceptable time. PalmOS
138 * sets the interval to a very low value and polls the status bit
139 * in a busy loop when it wants to sleep just a couple of CPU
140 * ticks. */
141 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
142 timer_mod(timer->timer, timer->time + expires);
143 } else {
144 qemu_bh_schedule(timer->tick);
145 }
146 } else
147 timer_del(timer->timer);
148 }
149
150 static void omap_timer_fire(void *opaque)
151 {
152 struct omap_mpu_timer_s *timer = opaque;
153
154 if (!timer->ar) {
155 timer->val = 0;
156 timer->st = 0;
157 }
158
159 if (timer->it_ena)
160 /* Edge-triggered irq */
161 qemu_irq_pulse(timer->irq);
162 }
163
164 static void omap_timer_tick(void *opaque)
165 {
166 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167
168 omap_timer_sync(timer);
169 omap_timer_fire(timer);
170 omap_timer_update(timer);
171 }
172
173 static void omap_timer_clk_update(void *opaque, int line, int on)
174 {
175 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
176
177 omap_timer_sync(timer);
178 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
179 omap_timer_update(timer);
180 }
181
182 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
183 {
184 omap_clk_adduser(timer->clk,
185 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
186 timer->rate = omap_clk_getrate(timer->clk);
187 }
188
189 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
190 unsigned size)
191 {
192 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
193
194 if (size != 4) {
195 return omap_badwidth_read32(opaque, addr);
196 }
197
198 switch (addr) {
199 case 0x00: /* CNTL_TIMER */
200 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
201
202 case 0x04: /* LOAD_TIM */
203 break;
204
205 case 0x08: /* READ_TIM */
206 return omap_timer_read(s);
207 }
208
209 OMAP_BAD_REG(addr);
210 return 0;
211 }
212
213 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
214 uint64_t value, unsigned size)
215 {
216 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
217
218 if (size != 4) {
219 omap_badwidth_write32(opaque, addr, value);
220 return;
221 }
222
223 switch (addr) {
224 case 0x00: /* CNTL_TIMER */
225 omap_timer_sync(s);
226 s->enable = (value >> 5) & 1;
227 s->ptv = (value >> 2) & 7;
228 s->ar = (value >> 1) & 1;
229 s->st = value & 1;
230 omap_timer_update(s);
231 return;
232
233 case 0x04: /* LOAD_TIM */
234 s->reset_val = value;
235 return;
236
237 case 0x08: /* READ_TIM */
238 OMAP_RO_REG(addr);
239 break;
240
241 default:
242 OMAP_BAD_REG(addr);
243 }
244 }
245
246 static const MemoryRegionOps omap_mpu_timer_ops = {
247 .read = omap_mpu_timer_read,
248 .write = omap_mpu_timer_write,
249 .endianness = DEVICE_LITTLE_ENDIAN,
250 };
251
252 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
253 {
254 timer_del(s->timer);
255 s->enable = 0;
256 s->reset_val = 31337;
257 s->val = 0;
258 s->ptv = 0;
259 s->ar = 0;
260 s->st = 0;
261 s->it_ena = 1;
262 }
263
264 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
265 hwaddr base,
266 qemu_irq irq, omap_clk clk)
267 {
268 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
269
270 s->irq = irq;
271 s->clk = clk;
272 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
273 s->tick = qemu_bh_new(omap_timer_fire, s);
274 omap_mpu_timer_reset(s);
275 omap_timer_clk_setup(s);
276
277 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
278 "omap-mpu-timer", 0x100);
279
280 memory_region_add_subregion(system_memory, base, &s->iomem);
281
282 return s;
283 }
284
285 /* Watchdog timer */
286 struct omap_watchdog_timer_s {
287 struct omap_mpu_timer_s timer;
288 MemoryRegion iomem;
289 uint8_t last_wr;
290 int mode;
291 int free;
292 int reset;
293 };
294
295 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
296 unsigned size)
297 {
298 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
299
300 if (size != 2) {
301 return omap_badwidth_read16(opaque, addr);
302 }
303
304 switch (addr) {
305 case 0x00: /* CNTL_TIMER */
306 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
307 (s->timer.st << 7) | (s->free << 1);
308
309 case 0x04: /* READ_TIMER */
310 return omap_timer_read(&s->timer);
311
312 case 0x08: /* TIMER_MODE */
313 return s->mode << 15;
314 }
315
316 OMAP_BAD_REG(addr);
317 return 0;
318 }
319
320 static void omap_wd_timer_write(void *opaque, hwaddr addr,
321 uint64_t value, unsigned size)
322 {
323 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
324
325 if (size != 2) {
326 omap_badwidth_write16(opaque, addr, value);
327 return;
328 }
329
330 switch (addr) {
331 case 0x00: /* CNTL_TIMER */
332 omap_timer_sync(&s->timer);
333 s->timer.ptv = (value >> 9) & 7;
334 s->timer.ar = (value >> 8) & 1;
335 s->timer.st = (value >> 7) & 1;
336 s->free = (value >> 1) & 1;
337 omap_timer_update(&s->timer);
338 break;
339
340 case 0x04: /* LOAD_TIMER */
341 s->timer.reset_val = value & 0xffff;
342 break;
343
344 case 0x08: /* TIMER_MODE */
345 if (!s->mode && ((value >> 15) & 1))
346 omap_clk_get(s->timer.clk);
347 s->mode |= (value >> 15) & 1;
348 if (s->last_wr == 0xf5) {
349 if ((value & 0xff) == 0xa0) {
350 if (s->mode) {
351 s->mode = 0;
352 omap_clk_put(s->timer.clk);
353 }
354 } else {
355 /* XXX: on T|E hardware somehow this has no effect,
356 * on Zire 71 it works as specified. */
357 s->reset = 1;
358 qemu_system_reset_request();
359 }
360 }
361 s->last_wr = value & 0xff;
362 break;
363
364 default:
365 OMAP_BAD_REG(addr);
366 }
367 }
368
369 static const MemoryRegionOps omap_wd_timer_ops = {
370 .read = omap_wd_timer_read,
371 .write = omap_wd_timer_write,
372 .endianness = DEVICE_NATIVE_ENDIAN,
373 };
374
375 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
376 {
377 timer_del(s->timer.timer);
378 if (!s->mode)
379 omap_clk_get(s->timer.clk);
380 s->mode = 1;
381 s->free = 1;
382 s->reset = 0;
383 s->timer.enable = 1;
384 s->timer.it_ena = 1;
385 s->timer.reset_val = 0xffff;
386 s->timer.val = 0;
387 s->timer.st = 0;
388 s->timer.ptv = 0;
389 s->timer.ar = 0;
390 omap_timer_update(&s->timer);
391 }
392
393 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
394 hwaddr base,
395 qemu_irq irq, omap_clk clk)
396 {
397 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
398
399 s->timer.irq = irq;
400 s->timer.clk = clk;
401 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
402 omap_wd_timer_reset(s);
403 omap_timer_clk_setup(&s->timer);
404
405 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
406 "omap-wd-timer", 0x100);
407 memory_region_add_subregion(memory, base, &s->iomem);
408
409 return s;
410 }
411
412 /* 32-kHz timer */
413 struct omap_32khz_timer_s {
414 struct omap_mpu_timer_s timer;
415 MemoryRegion iomem;
416 };
417
418 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
419 unsigned size)
420 {
421 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
422 int offset = addr & OMAP_MPUI_REG_MASK;
423
424 if (size != 4) {
425 return omap_badwidth_read32(opaque, addr);
426 }
427
428 switch (offset) {
429 case 0x00: /* TVR */
430 return s->timer.reset_val;
431
432 case 0x04: /* TCR */
433 return omap_timer_read(&s->timer);
434
435 case 0x08: /* CR */
436 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
437
438 default:
439 break;
440 }
441 OMAP_BAD_REG(addr);
442 return 0;
443 }
444
445 static void omap_os_timer_write(void *opaque, hwaddr addr,
446 uint64_t value, unsigned size)
447 {
448 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
449 int offset = addr & OMAP_MPUI_REG_MASK;
450
451 if (size != 4) {
452 omap_badwidth_write32(opaque, addr, value);
453 return;
454 }
455
456 switch (offset) {
457 case 0x00: /* TVR */
458 s->timer.reset_val = value & 0x00ffffff;
459 break;
460
461 case 0x04: /* TCR */
462 OMAP_RO_REG(addr);
463 break;
464
465 case 0x08: /* CR */
466 s->timer.ar = (value >> 3) & 1;
467 s->timer.it_ena = (value >> 2) & 1;
468 if (s->timer.st != (value & 1) || (value & 2)) {
469 omap_timer_sync(&s->timer);
470 s->timer.enable = value & 1;
471 s->timer.st = value & 1;
472 omap_timer_update(&s->timer);
473 }
474 break;
475
476 default:
477 OMAP_BAD_REG(addr);
478 }
479 }
480
481 static const MemoryRegionOps omap_os_timer_ops = {
482 .read = omap_os_timer_read,
483 .write = omap_os_timer_write,
484 .endianness = DEVICE_NATIVE_ENDIAN,
485 };
486
487 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
488 {
489 timer_del(s->timer.timer);
490 s->timer.enable = 0;
491 s->timer.it_ena = 0;
492 s->timer.reset_val = 0x00ffffff;
493 s->timer.val = 0;
494 s->timer.st = 0;
495 s->timer.ptv = 0;
496 s->timer.ar = 1;
497 }
498
499 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
500 hwaddr base,
501 qemu_irq irq, omap_clk clk)
502 {
503 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
504
505 s->timer.irq = irq;
506 s->timer.clk = clk;
507 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
508 omap_os_timer_reset(s);
509 omap_timer_clk_setup(&s->timer);
510
511 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
512 "omap-os-timer", 0x800);
513 memory_region_add_subregion(memory, base, &s->iomem);
514
515 return s;
516 }
517
518 /* Ultra Low-Power Device Module */
519 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
520 unsigned size)
521 {
522 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
523 uint16_t ret;
524
525 if (size != 2) {
526 return omap_badwidth_read16(opaque, addr);
527 }
528
529 switch (addr) {
530 case 0x14: /* IT_STATUS */
531 ret = s->ulpd_pm_regs[addr >> 2];
532 s->ulpd_pm_regs[addr >> 2] = 0;
533 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
534 return ret;
535
536 case 0x18: /* Reserved */
537 case 0x1c: /* Reserved */
538 case 0x20: /* Reserved */
539 case 0x28: /* Reserved */
540 case 0x2c: /* Reserved */
541 OMAP_BAD_REG(addr);
542 /* fall through */
543 case 0x00: /* COUNTER_32_LSB */
544 case 0x04: /* COUNTER_32_MSB */
545 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
546 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
547 case 0x10: /* GAUGING_CTRL */
548 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
549 case 0x30: /* CLOCK_CTRL */
550 case 0x34: /* SOFT_REQ */
551 case 0x38: /* COUNTER_32_FIQ */
552 case 0x3c: /* DPLL_CTRL */
553 case 0x40: /* STATUS_REQ */
554 /* XXX: check clk::usecount state for every clock */
555 case 0x48: /* LOCL_TIME */
556 case 0x4c: /* APLL_CTRL */
557 case 0x50: /* POWER_CTRL */
558 return s->ulpd_pm_regs[addr >> 2];
559 }
560
561 OMAP_BAD_REG(addr);
562 return 0;
563 }
564
565 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
566 uint16_t diff, uint16_t value)
567 {
568 if (diff & (1 << 4)) /* USB_MCLK_EN */
569 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
570 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
571 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
572 }
573
574 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
575 uint16_t diff, uint16_t value)
576 {
577 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
578 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
579 if (diff & (1 << 1)) /* SOFT_COM_REQ */
580 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
581 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
582 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
583 if (diff & (1 << 3)) /* SOFT_USB_REQ */
584 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
585 }
586
587 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
588 uint64_t value, unsigned size)
589 {
590 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
591 int64_t now, ticks;
592 int div, mult;
593 static const int bypass_div[4] = { 1, 2, 4, 4 };
594 uint16_t diff;
595
596 if (size != 2) {
597 omap_badwidth_write16(opaque, addr, value);
598 return;
599 }
600
601 switch (addr) {
602 case 0x00: /* COUNTER_32_LSB */
603 case 0x04: /* COUNTER_32_MSB */
604 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
605 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
606 case 0x14: /* IT_STATUS */
607 case 0x40: /* STATUS_REQ */
608 OMAP_RO_REG(addr);
609 break;
610
611 case 0x10: /* GAUGING_CTRL */
612 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
613 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
614 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
615
616 if (value & 1)
617 s->ulpd_gauge_start = now;
618 else {
619 now -= s->ulpd_gauge_start;
620
621 /* 32-kHz ticks */
622 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
623 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
624 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
625 if (ticks >> 32) /* OVERFLOW_32K */
626 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
627
628 /* High frequency ticks */
629 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
630 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
631 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
632 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
633 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
634
635 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
636 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
637 }
638 }
639 s->ulpd_pm_regs[addr >> 2] = value;
640 break;
641
642 case 0x18: /* Reserved */
643 case 0x1c: /* Reserved */
644 case 0x20: /* Reserved */
645 case 0x28: /* Reserved */
646 case 0x2c: /* Reserved */
647 OMAP_BAD_REG(addr);
648 /* fall through */
649 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
650 case 0x38: /* COUNTER_32_FIQ */
651 case 0x48: /* LOCL_TIME */
652 case 0x50: /* POWER_CTRL */
653 s->ulpd_pm_regs[addr >> 2] = value;
654 break;
655
656 case 0x30: /* CLOCK_CTRL */
657 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
659 omap_ulpd_clk_update(s, diff, value);
660 break;
661
662 case 0x34: /* SOFT_REQ */
663 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
665 omap_ulpd_req_update(s, diff, value);
666 break;
667
668 case 0x3c: /* DPLL_CTRL */
669 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
670 * omitted altogether, probably a typo. */
671 /* This register has identical semantics with DPLL(1:3) control
672 * registers, see omap_dpll_write() */
673 diff = s->ulpd_pm_regs[addr >> 2] & value;
674 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
675 if (diff & (0x3ff << 2)) {
676 if (value & (1 << 4)) { /* PLL_ENABLE */
677 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
678 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
679 } else {
680 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
681 mult = 1;
682 }
683 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
684 }
685
686 /* Enter the desired mode. */
687 s->ulpd_pm_regs[addr >> 2] =
688 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
689 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
690
691 /* Act as if the lock is restored. */
692 s->ulpd_pm_regs[addr >> 2] |= 2;
693 break;
694
695 case 0x4c: /* APLL_CTRL */
696 diff = s->ulpd_pm_regs[addr >> 2] & value;
697 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
698 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
699 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
700 (value & (1 << 0)) ? "apll" : "dpll4"));
701 break;
702
703 default:
704 OMAP_BAD_REG(addr);
705 }
706 }
707
708 static const MemoryRegionOps omap_ulpd_pm_ops = {
709 .read = omap_ulpd_pm_read,
710 .write = omap_ulpd_pm_write,
711 .endianness = DEVICE_NATIVE_ENDIAN,
712 };
713
714 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
715 {
716 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
717 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
718 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
719 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
721 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
722 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
723 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
724 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
725 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
726 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
727 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
728 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
729 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
730 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
732 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
733 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
734 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
735 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
736 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
737 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
738 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
739 }
740
741 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
742 hwaddr base,
743 struct omap_mpu_state_s *mpu)
744 {
745 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
746 "omap-ulpd-pm", 0x800);
747 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
748 omap_ulpd_pm_reset(mpu);
749 }
750
751 /* OMAP Pin Configuration */
752 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
753 unsigned size)
754 {
755 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
756
757 if (size != 4) {
758 return omap_badwidth_read32(opaque, addr);
759 }
760
761 switch (addr) {
762 case 0x00: /* FUNC_MUX_CTRL_0 */
763 case 0x04: /* FUNC_MUX_CTRL_1 */
764 case 0x08: /* FUNC_MUX_CTRL_2 */
765 return s->func_mux_ctrl[addr >> 2];
766
767 case 0x0c: /* COMP_MODE_CTRL_0 */
768 return s->comp_mode_ctrl[0];
769
770 case 0x10: /* FUNC_MUX_CTRL_3 */
771 case 0x14: /* FUNC_MUX_CTRL_4 */
772 case 0x18: /* FUNC_MUX_CTRL_5 */
773 case 0x1c: /* FUNC_MUX_CTRL_6 */
774 case 0x20: /* FUNC_MUX_CTRL_7 */
775 case 0x24: /* FUNC_MUX_CTRL_8 */
776 case 0x28: /* FUNC_MUX_CTRL_9 */
777 case 0x2c: /* FUNC_MUX_CTRL_A */
778 case 0x30: /* FUNC_MUX_CTRL_B */
779 case 0x34: /* FUNC_MUX_CTRL_C */
780 case 0x38: /* FUNC_MUX_CTRL_D */
781 return s->func_mux_ctrl[(addr >> 2) - 1];
782
783 case 0x40: /* PULL_DWN_CTRL_0 */
784 case 0x44: /* PULL_DWN_CTRL_1 */
785 case 0x48: /* PULL_DWN_CTRL_2 */
786 case 0x4c: /* PULL_DWN_CTRL_3 */
787 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
788
789 case 0x50: /* GATE_INH_CTRL_0 */
790 return s->gate_inh_ctrl[0];
791
792 case 0x60: /* VOLTAGE_CTRL_0 */
793 return s->voltage_ctrl[0];
794
795 case 0x70: /* TEST_DBG_CTRL_0 */
796 return s->test_dbg_ctrl[0];
797
798 case 0x80: /* MOD_CONF_CTRL_0 */
799 return s->mod_conf_ctrl[0];
800 }
801
802 OMAP_BAD_REG(addr);
803 return 0;
804 }
805
806 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
807 uint32_t diff, uint32_t value)
808 {
809 if (s->compat1509) {
810 if (diff & (1 << 9)) /* BLUETOOTH */
811 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
812 (~value >> 9) & 1);
813 if (diff & (1 << 7)) /* USB.CLKO */
814 omap_clk_onoff(omap_findclk(s, "usb.clko"),
815 (value >> 7) & 1);
816 }
817 }
818
819 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
821 {
822 if (s->compat1509) {
823 if (diff & (1U << 31)) {
824 /* MCBSP3_CLK_HIZ_DI */
825 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
826 }
827 if (diff & (1 << 1)) {
828 /* CLK32K */
829 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
830 }
831 }
832 }
833
834 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
835 uint32_t diff, uint32_t value)
836 {
837 if (diff & (1U << 31)) {
838 /* CONF_MOD_UART3_CLK_MODE_R */
839 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
840 omap_findclk(s, ((value >> 31) & 1) ?
841 "ck_48m" : "armper_ck"));
842 }
843 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
844 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
845 omap_findclk(s, ((value >> 30) & 1) ?
846 "ck_48m" : "armper_ck"));
847 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
848 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
849 omap_findclk(s, ((value >> 29) & 1) ?
850 "ck_48m" : "armper_ck"));
851 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
852 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
853 omap_findclk(s, ((value >> 23) & 1) ?
854 "ck_48m" : "armper_ck"));
855 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
856 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
857 omap_findclk(s, ((value >> 12) & 1) ?
858 "ck_48m" : "armper_ck"));
859 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
860 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
861 }
862
863 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
864 uint64_t value, unsigned size)
865 {
866 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
867 uint32_t diff;
868
869 if (size != 4) {
870 omap_badwidth_write32(opaque, addr, value);
871 return;
872 }
873
874 switch (addr) {
875 case 0x00: /* FUNC_MUX_CTRL_0 */
876 diff = s->func_mux_ctrl[addr >> 2] ^ value;
877 s->func_mux_ctrl[addr >> 2] = value;
878 omap_pin_funcmux0_update(s, diff, value);
879 return;
880
881 case 0x04: /* FUNC_MUX_CTRL_1 */
882 diff = s->func_mux_ctrl[addr >> 2] ^ value;
883 s->func_mux_ctrl[addr >> 2] = value;
884 omap_pin_funcmux1_update(s, diff, value);
885 return;
886
887 case 0x08: /* FUNC_MUX_CTRL_2 */
888 s->func_mux_ctrl[addr >> 2] = value;
889 return;
890
891 case 0x0c: /* COMP_MODE_CTRL_0 */
892 s->comp_mode_ctrl[0] = value;
893 s->compat1509 = (value != 0x0000eaef);
894 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
895 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
896 return;
897
898 case 0x10: /* FUNC_MUX_CTRL_3 */
899 case 0x14: /* FUNC_MUX_CTRL_4 */
900 case 0x18: /* FUNC_MUX_CTRL_5 */
901 case 0x1c: /* FUNC_MUX_CTRL_6 */
902 case 0x20: /* FUNC_MUX_CTRL_7 */
903 case 0x24: /* FUNC_MUX_CTRL_8 */
904 case 0x28: /* FUNC_MUX_CTRL_9 */
905 case 0x2c: /* FUNC_MUX_CTRL_A */
906 case 0x30: /* FUNC_MUX_CTRL_B */
907 case 0x34: /* FUNC_MUX_CTRL_C */
908 case 0x38: /* FUNC_MUX_CTRL_D */
909 s->func_mux_ctrl[(addr >> 2) - 1] = value;
910 return;
911
912 case 0x40: /* PULL_DWN_CTRL_0 */
913 case 0x44: /* PULL_DWN_CTRL_1 */
914 case 0x48: /* PULL_DWN_CTRL_2 */
915 case 0x4c: /* PULL_DWN_CTRL_3 */
916 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
917 return;
918
919 case 0x50: /* GATE_INH_CTRL_0 */
920 s->gate_inh_ctrl[0] = value;
921 return;
922
923 case 0x60: /* VOLTAGE_CTRL_0 */
924 s->voltage_ctrl[0] = value;
925 return;
926
927 case 0x70: /* TEST_DBG_CTRL_0 */
928 s->test_dbg_ctrl[0] = value;
929 return;
930
931 case 0x80: /* MOD_CONF_CTRL_0 */
932 diff = s->mod_conf_ctrl[0] ^ value;
933 s->mod_conf_ctrl[0] = value;
934 omap_pin_modconf1_update(s, diff, value);
935 return;
936
937 default:
938 OMAP_BAD_REG(addr);
939 }
940 }
941
942 static const MemoryRegionOps omap_pin_cfg_ops = {
943 .read = omap_pin_cfg_read,
944 .write = omap_pin_cfg_write,
945 .endianness = DEVICE_NATIVE_ENDIAN,
946 };
947
948 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
949 {
950 /* Start in Compatibility Mode. */
951 mpu->compat1509 = 1;
952 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
953 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
954 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
955 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
956 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
957 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
958 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
959 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
960 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
961 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
962 }
963
964 static void omap_pin_cfg_init(MemoryRegion *system_memory,
965 hwaddr base,
966 struct omap_mpu_state_s *mpu)
967 {
968 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
969 "omap-pin-cfg", 0x800);
970 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
971 omap_pin_cfg_reset(mpu);
972 }
973
974 /* Device Identification, Die Identification */
975 static uint64_t omap_id_read(void *opaque, hwaddr addr,
976 unsigned size)
977 {
978 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
979
980 if (size != 4) {
981 return omap_badwidth_read32(opaque, addr);
982 }
983
984 switch (addr) {
985 case 0xfffe1800: /* DIE_ID_LSB */
986 return 0xc9581f0e;
987 case 0xfffe1804: /* DIE_ID_MSB */
988 return 0xa8858bfa;
989
990 case 0xfffe2000: /* PRODUCT_ID_LSB */
991 return 0x00aaaafc;
992 case 0xfffe2004: /* PRODUCT_ID_MSB */
993 return 0xcafeb574;
994
995 case 0xfffed400: /* JTAG_ID_LSB */
996 switch (s->mpu_model) {
997 case omap310:
998 return 0x03310315;
999 case omap1510:
1000 return 0x03310115;
1001 default:
1002 hw_error("%s: bad mpu model\n", __FUNCTION__);
1003 }
1004 break;
1005
1006 case 0xfffed404: /* JTAG_ID_MSB */
1007 switch (s->mpu_model) {
1008 case omap310:
1009 return 0xfb57402f;
1010 case omap1510:
1011 return 0xfb47002f;
1012 default:
1013 hw_error("%s: bad mpu model\n", __FUNCTION__);
1014 }
1015 break;
1016 }
1017
1018 OMAP_BAD_REG(addr);
1019 return 0;
1020 }
1021
1022 static void omap_id_write(void *opaque, hwaddr addr,
1023 uint64_t value, unsigned size)
1024 {
1025 if (size != 4) {
1026 omap_badwidth_write32(opaque, addr, value);
1027 return;
1028 }
1029
1030 OMAP_BAD_REG(addr);
1031 }
1032
1033 static const MemoryRegionOps omap_id_ops = {
1034 .read = omap_id_read,
1035 .write = omap_id_write,
1036 .endianness = DEVICE_NATIVE_ENDIAN,
1037 };
1038
1039 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1040 {
1041 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042 "omap-id", 0x100000000ULL);
1043 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044 0xfffe1800, 0x800);
1045 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047 0xfffed400, 0x100);
1048 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049 if (!cpu_is_omap15xx(mpu)) {
1050 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051 &mpu->id_iomem, 0xfffe2000, 0x800);
1052 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053 }
1054 }
1055
1056 /* MPUI Control (Dummy) */
1057 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058 unsigned size)
1059 {
1060 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1061
1062 if (size != 4) {
1063 return omap_badwidth_read32(opaque, addr);
1064 }
1065
1066 switch (addr) {
1067 case 0x00: /* CTRL */
1068 return s->mpui_ctrl;
1069 case 0x04: /* DEBUG_ADDR */
1070 return 0x01ffffff;
1071 case 0x08: /* DEBUG_DATA */
1072 return 0xffffffff;
1073 case 0x0c: /* DEBUG_FLAG */
1074 return 0x00000800;
1075 case 0x10: /* STATUS */
1076 return 0x00000000;
1077
1078 /* Not in OMAP310 */
1079 case 0x14: /* DSP_STATUS */
1080 case 0x18: /* DSP_BOOT_CONFIG */
1081 return 0x00000000;
1082 case 0x1c: /* DSP_MPUI_CONFIG */
1083 return 0x0000ffff;
1084 }
1085
1086 OMAP_BAD_REG(addr);
1087 return 0;
1088 }
1089
1090 static void omap_mpui_write(void *opaque, hwaddr addr,
1091 uint64_t value, unsigned size)
1092 {
1093 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1094
1095 if (size != 4) {
1096 omap_badwidth_write32(opaque, addr, value);
1097 return;
1098 }
1099
1100 switch (addr) {
1101 case 0x00: /* CTRL */
1102 s->mpui_ctrl = value & 0x007fffff;
1103 break;
1104
1105 case 0x04: /* DEBUG_ADDR */
1106 case 0x08: /* DEBUG_DATA */
1107 case 0x0c: /* DEBUG_FLAG */
1108 case 0x10: /* STATUS */
1109 /* Not in OMAP310 */
1110 case 0x14: /* DSP_STATUS */
1111 OMAP_RO_REG(addr);
1112 break;
1113 case 0x18: /* DSP_BOOT_CONFIG */
1114 case 0x1c: /* DSP_MPUI_CONFIG */
1115 break;
1116
1117 default:
1118 OMAP_BAD_REG(addr);
1119 }
1120 }
1121
1122 static const MemoryRegionOps omap_mpui_ops = {
1123 .read = omap_mpui_read,
1124 .write = omap_mpui_write,
1125 .endianness = DEVICE_NATIVE_ENDIAN,
1126 };
1127
1128 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1129 {
1130 s->mpui_ctrl = 0x0003ff1b;
1131 }
1132
1133 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134 struct omap_mpu_state_s *mpu)
1135 {
1136 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137 "omap-mpui", 0x100);
1138 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1139
1140 omap_mpui_reset(mpu);
1141 }
1142
1143 /* TIPB Bridges */
1144 struct omap_tipb_bridge_s {
1145 qemu_irq abort;
1146 MemoryRegion iomem;
1147
1148 int width_intr;
1149 uint16_t control;
1150 uint16_t alloc;
1151 uint16_t buffer;
1152 uint16_t enh_control;
1153 };
1154
1155 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156 unsigned size)
1157 {
1158 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1159
1160 if (size < 2) {
1161 return omap_badwidth_read16(opaque, addr);
1162 }
1163
1164 switch (addr) {
1165 case 0x00: /* TIPB_CNTL */
1166 return s->control;
1167 case 0x04: /* TIPB_BUS_ALLOC */
1168 return s->alloc;
1169 case 0x08: /* MPU_TIPB_CNTL */
1170 return s->buffer;
1171 case 0x0c: /* ENHANCED_TIPB_CNTL */
1172 return s->enh_control;
1173 case 0x10: /* ADDRESS_DBG */
1174 case 0x14: /* DATA_DEBUG_LOW */
1175 case 0x18: /* DATA_DEBUG_HIGH */
1176 return 0xffff;
1177 case 0x1c: /* DEBUG_CNTR_SIG */
1178 return 0x00f8;
1179 }
1180
1181 OMAP_BAD_REG(addr);
1182 return 0;
1183 }
1184
1185 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186 uint64_t value, unsigned size)
1187 {
1188 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1189
1190 if (size < 2) {
1191 omap_badwidth_write16(opaque, addr, value);
1192 return;
1193 }
1194
1195 switch (addr) {
1196 case 0x00: /* TIPB_CNTL */
1197 s->control = value & 0xffff;
1198 break;
1199
1200 case 0x04: /* TIPB_BUS_ALLOC */
1201 s->alloc = value & 0x003f;
1202 break;
1203
1204 case 0x08: /* MPU_TIPB_CNTL */
1205 s->buffer = value & 0x0003;
1206 break;
1207
1208 case 0x0c: /* ENHANCED_TIPB_CNTL */
1209 s->width_intr = !(value & 2);
1210 s->enh_control = value & 0x000f;
1211 break;
1212
1213 case 0x10: /* ADDRESS_DBG */
1214 case 0x14: /* DATA_DEBUG_LOW */
1215 case 0x18: /* DATA_DEBUG_HIGH */
1216 case 0x1c: /* DEBUG_CNTR_SIG */
1217 OMAP_RO_REG(addr);
1218 break;
1219
1220 default:
1221 OMAP_BAD_REG(addr);
1222 }
1223 }
1224
1225 static const MemoryRegionOps omap_tipb_bridge_ops = {
1226 .read = omap_tipb_bridge_read,
1227 .write = omap_tipb_bridge_write,
1228 .endianness = DEVICE_NATIVE_ENDIAN,
1229 };
1230
1231 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1232 {
1233 s->control = 0xffff;
1234 s->alloc = 0x0009;
1235 s->buffer = 0x0000;
1236 s->enh_control = 0x000f;
1237 }
1238
1239 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240 MemoryRegion *memory, hwaddr base,
1241 qemu_irq abort_irq, omap_clk clk)
1242 {
1243 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1244
1245 s->abort = abort_irq;
1246 omap_tipb_bridge_reset(s);
1247
1248 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249 "omap-tipb-bridge", 0x100);
1250 memory_region_add_subregion(memory, base, &s->iomem);
1251
1252 return s;
1253 }
1254
1255 /* Dummy Traffic Controller's Memory Interface */
1256 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257 unsigned size)
1258 {
1259 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260 uint32_t ret;
1261
1262 if (size != 4) {
1263 return omap_badwidth_read32(opaque, addr);
1264 }
1265
1266 switch (addr) {
1267 case 0x00: /* IMIF_PRIO */
1268 case 0x04: /* EMIFS_PRIO */
1269 case 0x08: /* EMIFF_PRIO */
1270 case 0x0c: /* EMIFS_CONFIG */
1271 case 0x10: /* EMIFS_CS0_CONFIG */
1272 case 0x14: /* EMIFS_CS1_CONFIG */
1273 case 0x18: /* EMIFS_CS2_CONFIG */
1274 case 0x1c: /* EMIFS_CS3_CONFIG */
1275 case 0x24: /* EMIFF_MRS */
1276 case 0x28: /* TIMEOUT1 */
1277 case 0x2c: /* TIMEOUT2 */
1278 case 0x30: /* TIMEOUT3 */
1279 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1280 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1281 return s->tcmi_regs[addr >> 2];
1282
1283 case 0x20: /* EMIFF_SDRAM_CONFIG */
1284 ret = s->tcmi_regs[addr >> 2];
1285 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286 /* XXX: We can try using the VGA_DIRTY flag for this */
1287 return ret;
1288 }
1289
1290 OMAP_BAD_REG(addr);
1291 return 0;
1292 }
1293
1294 static void omap_tcmi_write(void *opaque, hwaddr addr,
1295 uint64_t value, unsigned size)
1296 {
1297 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1298
1299 if (size != 4) {
1300 omap_badwidth_write32(opaque, addr, value);
1301 return;
1302 }
1303
1304 switch (addr) {
1305 case 0x00: /* IMIF_PRIO */
1306 case 0x04: /* EMIFS_PRIO */
1307 case 0x08: /* EMIFF_PRIO */
1308 case 0x10: /* EMIFS_CS0_CONFIG */
1309 case 0x14: /* EMIFS_CS1_CONFIG */
1310 case 0x18: /* EMIFS_CS2_CONFIG */
1311 case 0x1c: /* EMIFS_CS3_CONFIG */
1312 case 0x20: /* EMIFF_SDRAM_CONFIG */
1313 case 0x24: /* EMIFF_MRS */
1314 case 0x28: /* TIMEOUT1 */
1315 case 0x2c: /* TIMEOUT2 */
1316 case 0x30: /* TIMEOUT3 */
1317 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1318 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1319 s->tcmi_regs[addr >> 2] = value;
1320 break;
1321 case 0x0c: /* EMIFS_CONFIG */
1322 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323 break;
1324
1325 default:
1326 OMAP_BAD_REG(addr);
1327 }
1328 }
1329
1330 static const MemoryRegionOps omap_tcmi_ops = {
1331 .read = omap_tcmi_read,
1332 .write = omap_tcmi_write,
1333 .endianness = DEVICE_NATIVE_ENDIAN,
1334 };
1335
1336 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1337 {
1338 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1353 }
1354
1355 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356 struct omap_mpu_state_s *mpu)
1357 {
1358 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359 "omap-tcmi", 0x100);
1360 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361 omap_tcmi_reset(mpu);
1362 }
1363
1364 /* Digital phase-locked loops control */
1365 struct dpll_ctl_s {
1366 MemoryRegion iomem;
1367 uint16_t mode;
1368 omap_clk dpll;
1369 };
1370
1371 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372 unsigned size)
1373 {
1374 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1375
1376 if (size != 2) {
1377 return omap_badwidth_read16(opaque, addr);
1378 }
1379
1380 if (addr == 0x00) /* CTL_REG */
1381 return s->mode;
1382
1383 OMAP_BAD_REG(addr);
1384 return 0;
1385 }
1386
1387 static void omap_dpll_write(void *opaque, hwaddr addr,
1388 uint64_t value, unsigned size)
1389 {
1390 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391 uint16_t diff;
1392 static const int bypass_div[4] = { 1, 2, 4, 4 };
1393 int div, mult;
1394
1395 if (size != 2) {
1396 omap_badwidth_write16(opaque, addr, value);
1397 return;
1398 }
1399
1400 if (addr == 0x00) { /* CTL_REG */
1401 /* See omap_ulpd_pm_write() too */
1402 diff = s->mode & value;
1403 s->mode = value & 0x2fff;
1404 if (diff & (0x3ff << 2)) {
1405 if (value & (1 << 4)) { /* PLL_ENABLE */
1406 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1407 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1408 } else {
1409 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1410 mult = 1;
1411 }
1412 omap_clk_setrate(s->dpll, div, mult);
1413 }
1414
1415 /* Enter the desired mode. */
1416 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1417
1418 /* Act as if the lock is restored. */
1419 s->mode |= 2;
1420 } else {
1421 OMAP_BAD_REG(addr);
1422 }
1423 }
1424
1425 static const MemoryRegionOps omap_dpll_ops = {
1426 .read = omap_dpll_read,
1427 .write = omap_dpll_write,
1428 .endianness = DEVICE_NATIVE_ENDIAN,
1429 };
1430
1431 static void omap_dpll_reset(struct dpll_ctl_s *s)
1432 {
1433 s->mode = 0x2002;
1434 omap_clk_setrate(s->dpll, 1, 1);
1435 }
1436
1437 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1438 hwaddr base, omap_clk clk)
1439 {
1440 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1442
1443 s->dpll = clk;
1444 omap_dpll_reset(s);
1445
1446 memory_region_add_subregion(memory, base, &s->iomem);
1447 return s;
1448 }
1449
1450 /* MPU Clock/Reset/Power Mode Control */
1451 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452 unsigned size)
1453 {
1454 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1455
1456 if (size != 2) {
1457 return omap_badwidth_read16(opaque, addr);
1458 }
1459
1460 switch (addr) {
1461 case 0x00: /* ARM_CKCTL */
1462 return s->clkm.arm_ckctl;
1463
1464 case 0x04: /* ARM_IDLECT1 */
1465 return s->clkm.arm_idlect1;
1466
1467 case 0x08: /* ARM_IDLECT2 */
1468 return s->clkm.arm_idlect2;
1469
1470 case 0x0c: /* ARM_EWUPCT */
1471 return s->clkm.arm_ewupct;
1472
1473 case 0x10: /* ARM_RSTCT1 */
1474 return s->clkm.arm_rstct1;
1475
1476 case 0x14: /* ARM_RSTCT2 */
1477 return s->clkm.arm_rstct2;
1478
1479 case 0x18: /* ARM_SYSST */
1480 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1481
1482 case 0x1c: /* ARM_CKOUT1 */
1483 return s->clkm.arm_ckout1;
1484
1485 case 0x20: /* ARM_CKOUT2 */
1486 break;
1487 }
1488
1489 OMAP_BAD_REG(addr);
1490 return 0;
1491 }
1492
1493 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494 uint16_t diff, uint16_t value)
1495 {
1496 omap_clk clk;
1497
1498 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1499 if (value & (1 << 14))
1500 /* Reserved */;
1501 else {
1502 clk = omap_findclk(s, "arminth_ck");
1503 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1504 }
1505 }
1506 if (diff & (1 << 12)) { /* ARM_TIMXO */
1507 clk = omap_findclk(s, "armtim_ck");
1508 if (value & (1 << 12))
1509 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510 else
1511 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1512 }
1513 /* XXX: en_dspck */
1514 if (diff & (3 << 10)) { /* DSPMMUDIV */
1515 clk = omap_findclk(s, "dspmmu_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1517 }
1518 if (diff & (3 << 8)) { /* TCDIV */
1519 clk = omap_findclk(s, "tc_ck");
1520 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1521 }
1522 if (diff & (3 << 6)) { /* DSPDIV */
1523 clk = omap_findclk(s, "dsp_ck");
1524 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1525 }
1526 if (diff & (3 << 4)) { /* ARMDIV */
1527 clk = omap_findclk(s, "arm_ck");
1528 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1529 }
1530 if (diff & (3 << 2)) { /* LCDDIV */
1531 clk = omap_findclk(s, "lcd_ck");
1532 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1533 }
1534 if (diff & (3 << 0)) { /* PERDIV */
1535 clk = omap_findclk(s, "armper_ck");
1536 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537 }
1538 }
1539
1540 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541 uint16_t diff, uint16_t value)
1542 {
1543 omap_clk clk;
1544
1545 if (value & (1 << 11)) { /* SETARM_IDLE */
1546 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1547 }
1548 if (!(value & (1 << 10))) /* WKUP_MODE */
1549 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1550
1551 #define SET_CANIDLE(clock, bit) \
1552 if (diff & (1 << bit)) { \
1553 clk = omap_findclk(s, clock); \
1554 omap_clk_canidle(clk, (value >> bit) & 1); \
1555 }
1556 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1557 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1558 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1559 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1560 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1561 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1562 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1563 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1564 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1565 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1566 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1567 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1568 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1569 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1570 }
1571
1572 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1573 uint16_t diff, uint16_t value)
1574 {
1575 omap_clk clk;
1576
1577 #define SET_ONOFF(clock, bit) \
1578 if (diff & (1 << bit)) { \
1579 clk = omap_findclk(s, clock); \
1580 omap_clk_onoff(clk, (value >> bit) & 1); \
1581 }
1582 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1583 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1584 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1585 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1586 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1587 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1588 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1589 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1590 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1591 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1592 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1593 }
1594
1595 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1596 uint16_t diff, uint16_t value)
1597 {
1598 omap_clk clk;
1599
1600 if (diff & (3 << 4)) { /* TCLKOUT */
1601 clk = omap_findclk(s, "tclk_out");
1602 switch ((value >> 4) & 3) {
1603 case 1:
1604 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1605 omap_clk_onoff(clk, 1);
1606 break;
1607 case 2:
1608 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1609 omap_clk_onoff(clk, 1);
1610 break;
1611 default:
1612 omap_clk_onoff(clk, 0);
1613 }
1614 }
1615 if (diff & (3 << 2)) { /* DCLKOUT */
1616 clk = omap_findclk(s, "dclk_out");
1617 switch ((value >> 2) & 3) {
1618 case 0:
1619 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1620 break;
1621 case 1:
1622 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1623 break;
1624 case 2:
1625 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1626 break;
1627 case 3:
1628 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1629 break;
1630 }
1631 }
1632 if (diff & (3 << 0)) { /* ACLKOUT */
1633 clk = omap_findclk(s, "aclk_out");
1634 switch ((value >> 0) & 3) {
1635 case 1:
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1637 omap_clk_onoff(clk, 1);
1638 break;
1639 case 2:
1640 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1641 omap_clk_onoff(clk, 1);
1642 break;
1643 case 3:
1644 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1645 omap_clk_onoff(clk, 1);
1646 break;
1647 default:
1648 omap_clk_onoff(clk, 0);
1649 }
1650 }
1651 }
1652
1653 static void omap_clkm_write(void *opaque, hwaddr addr,
1654 uint64_t value, unsigned size)
1655 {
1656 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1657 uint16_t diff;
1658 omap_clk clk;
1659 static const char *clkschemename[8] = {
1660 "fully synchronous", "fully asynchronous", "synchronous scalable",
1661 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1662 };
1663
1664 if (size != 2) {
1665 omap_badwidth_write16(opaque, addr, value);
1666 return;
1667 }
1668
1669 switch (addr) {
1670 case 0x00: /* ARM_CKCTL */
1671 diff = s->clkm.arm_ckctl ^ value;
1672 s->clkm.arm_ckctl = value & 0x7fff;
1673 omap_clkm_ckctl_update(s, diff, value);
1674 return;
1675
1676 case 0x04: /* ARM_IDLECT1 */
1677 diff = s->clkm.arm_idlect1 ^ value;
1678 s->clkm.arm_idlect1 = value & 0x0fff;
1679 omap_clkm_idlect1_update(s, diff, value);
1680 return;
1681
1682 case 0x08: /* ARM_IDLECT2 */
1683 diff = s->clkm.arm_idlect2 ^ value;
1684 s->clkm.arm_idlect2 = value & 0x07ff;
1685 omap_clkm_idlect2_update(s, diff, value);
1686 return;
1687
1688 case 0x0c: /* ARM_EWUPCT */
1689 s->clkm.arm_ewupct = value & 0x003f;
1690 return;
1691
1692 case 0x10: /* ARM_RSTCT1 */
1693 diff = s->clkm.arm_rstct1 ^ value;
1694 s->clkm.arm_rstct1 = value & 0x0007;
1695 if (value & 9) {
1696 qemu_system_reset_request();
1697 s->clkm.cold_start = 0xa;
1698 }
1699 if (diff & ~value & 4) { /* DSP_RST */
1700 omap_mpui_reset(s);
1701 omap_tipb_bridge_reset(s->private_tipb);
1702 omap_tipb_bridge_reset(s->public_tipb);
1703 }
1704 if (diff & 2) { /* DSP_EN */
1705 clk = omap_findclk(s, "dsp_ck");
1706 omap_clk_canidle(clk, (~value >> 1) & 1);
1707 }
1708 return;
1709
1710 case 0x14: /* ARM_RSTCT2 */
1711 s->clkm.arm_rstct2 = value & 0x0001;
1712 return;
1713
1714 case 0x18: /* ARM_SYSST */
1715 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1716 s->clkm.clocking_scheme = (value >> 11) & 7;
1717 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1718 clkschemename[s->clkm.clocking_scheme]);
1719 }
1720 s->clkm.cold_start &= value & 0x3f;
1721 return;
1722
1723 case 0x1c: /* ARM_CKOUT1 */
1724 diff = s->clkm.arm_ckout1 ^ value;
1725 s->clkm.arm_ckout1 = value & 0x003f;
1726 omap_clkm_ckout1_update(s, diff, value);
1727 return;
1728
1729 case 0x20: /* ARM_CKOUT2 */
1730 default:
1731 OMAP_BAD_REG(addr);
1732 }
1733 }
1734
1735 static const MemoryRegionOps omap_clkm_ops = {
1736 .read = omap_clkm_read,
1737 .write = omap_clkm_write,
1738 .endianness = DEVICE_NATIVE_ENDIAN,
1739 };
1740
1741 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1742 unsigned size)
1743 {
1744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1745 CPUState *cpu = CPU(s->cpu);
1746
1747 if (size != 2) {
1748 return omap_badwidth_read16(opaque, addr);
1749 }
1750
1751 switch (addr) {
1752 case 0x04: /* DSP_IDLECT1 */
1753 return s->clkm.dsp_idlect1;
1754
1755 case 0x08: /* DSP_IDLECT2 */
1756 return s->clkm.dsp_idlect2;
1757
1758 case 0x14: /* DSP_RSTCT2 */
1759 return s->clkm.dsp_rstct2;
1760
1761 case 0x18: /* DSP_SYSST */
1762 cpu = CPU(s->cpu);
1763 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1764 (cpu->halted << 6); /* Quite useless... */
1765 }
1766
1767 OMAP_BAD_REG(addr);
1768 return 0;
1769 }
1770
1771 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1772 uint16_t diff, uint16_t value)
1773 {
1774 omap_clk clk;
1775
1776 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1777 }
1778
1779 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1780 uint16_t diff, uint16_t value)
1781 {
1782 omap_clk clk;
1783
1784 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1785 }
1786
1787 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1788 uint64_t value, unsigned size)
1789 {
1790 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1791 uint16_t diff;
1792
1793 if (size != 2) {
1794 omap_badwidth_write16(opaque, addr, value);
1795 return;
1796 }
1797
1798 switch (addr) {
1799 case 0x04: /* DSP_IDLECT1 */
1800 diff = s->clkm.dsp_idlect1 ^ value;
1801 s->clkm.dsp_idlect1 = value & 0x01f7;
1802 omap_clkdsp_idlect1_update(s, diff, value);
1803 break;
1804
1805 case 0x08: /* DSP_IDLECT2 */
1806 s->clkm.dsp_idlect2 = value & 0x0037;
1807 diff = s->clkm.dsp_idlect1 ^ value;
1808 omap_clkdsp_idlect2_update(s, diff, value);
1809 break;
1810
1811 case 0x14: /* DSP_RSTCT2 */
1812 s->clkm.dsp_rstct2 = value & 0x0001;
1813 break;
1814
1815 case 0x18: /* DSP_SYSST */
1816 s->clkm.cold_start &= value & 0x3f;
1817 break;
1818
1819 default:
1820 OMAP_BAD_REG(addr);
1821 }
1822 }
1823
1824 static const MemoryRegionOps omap_clkdsp_ops = {
1825 .read = omap_clkdsp_read,
1826 .write = omap_clkdsp_write,
1827 .endianness = DEVICE_NATIVE_ENDIAN,
1828 };
1829
1830 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1831 {
1832 if (s->wdt && s->wdt->reset)
1833 s->clkm.cold_start = 0x6;
1834 s->clkm.clocking_scheme = 0;
1835 omap_clkm_ckctl_update(s, ~0, 0x3000);
1836 s->clkm.arm_ckctl = 0x3000;
1837 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1838 s->clkm.arm_idlect1 = 0x0400;
1839 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1840 s->clkm.arm_idlect2 = 0x0100;
1841 s->clkm.arm_ewupct = 0x003f;
1842 s->clkm.arm_rstct1 = 0x0000;
1843 s->clkm.arm_rstct2 = 0x0000;
1844 s->clkm.arm_ckout1 = 0x0015;
1845 s->clkm.dpll1_mode = 0x2002;
1846 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1847 s->clkm.dsp_idlect1 = 0x0040;
1848 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1849 s->clkm.dsp_idlect2 = 0x0000;
1850 s->clkm.dsp_rstct2 = 0x0000;
1851 }
1852
1853 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1854 hwaddr dsp_base, struct omap_mpu_state_s *s)
1855 {
1856 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1857 "omap-clkm", 0x100);
1858 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1859 "omap-clkdsp", 0x1000);
1860
1861 s->clkm.arm_idlect1 = 0x03ff;
1862 s->clkm.arm_idlect2 = 0x0100;
1863 s->clkm.dsp_idlect1 = 0x0002;
1864 omap_clkm_reset(s);
1865 s->clkm.cold_start = 0x3a;
1866
1867 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1868 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1869 }
1870
1871 /* MPU I/O */
1872 struct omap_mpuio_s {
1873 qemu_irq irq;
1874 qemu_irq kbd_irq;
1875 qemu_irq *in;
1876 qemu_irq handler[16];
1877 qemu_irq wakeup;
1878 MemoryRegion iomem;
1879
1880 uint16_t inputs;
1881 uint16_t outputs;
1882 uint16_t dir;
1883 uint16_t edge;
1884 uint16_t mask;
1885 uint16_t ints;
1886
1887 uint16_t debounce;
1888 uint16_t latch;
1889 uint8_t event;
1890
1891 uint8_t buttons[5];
1892 uint8_t row_latch;
1893 uint8_t cols;
1894 int kbd_mask;
1895 int clk;
1896 };
1897
1898 static void omap_mpuio_set(void *opaque, int line, int level)
1899 {
1900 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1901 uint16_t prev = s->inputs;
1902
1903 if (level)
1904 s->inputs |= 1 << line;
1905 else
1906 s->inputs &= ~(1 << line);
1907
1908 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1909 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1910 s->ints |= 1 << line;
1911 qemu_irq_raise(s->irq);
1912 /* TODO: wakeup */
1913 }
1914 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1915 (s->event >> 1) == line) /* PIN_SELECT */
1916 s->latch = s->inputs;
1917 }
1918 }
1919
1920 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1921 {
1922 int i;
1923 uint8_t *row, rows = 0, cols = ~s->cols;
1924
1925 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1926 if (*row & cols)
1927 rows |= i;
1928
1929 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1930 s->row_latch = ~rows;
1931 }
1932
1933 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1934 unsigned size)
1935 {
1936 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1937 int offset = addr & OMAP_MPUI_REG_MASK;
1938 uint16_t ret;
1939
1940 if (size != 2) {
1941 return omap_badwidth_read16(opaque, addr);
1942 }
1943
1944 switch (offset) {
1945 case 0x00: /* INPUT_LATCH */
1946 return s->inputs;
1947
1948 case 0x04: /* OUTPUT_REG */
1949 return s->outputs;
1950
1951 case 0x08: /* IO_CNTL */
1952 return s->dir;
1953
1954 case 0x10: /* KBR_LATCH */
1955 return s->row_latch;
1956
1957 case 0x14: /* KBC_REG */
1958 return s->cols;
1959
1960 case 0x18: /* GPIO_EVENT_MODE_REG */
1961 return s->event;
1962
1963 case 0x1c: /* GPIO_INT_EDGE_REG */
1964 return s->edge;
1965
1966 case 0x20: /* KBD_INT */
1967 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1968
1969 case 0x24: /* GPIO_INT */
1970 ret = s->ints;
1971 s->ints &= s->mask;
1972 if (ret)
1973 qemu_irq_lower(s->irq);
1974 return ret;
1975
1976 case 0x28: /* KBD_MASKIT */
1977 return s->kbd_mask;
1978
1979 case 0x2c: /* GPIO_MASKIT */
1980 return s->mask;
1981
1982 case 0x30: /* GPIO_DEBOUNCING_REG */
1983 return s->debounce;
1984
1985 case 0x34: /* GPIO_LATCH_REG */
1986 return s->latch;
1987 }
1988
1989 OMAP_BAD_REG(addr);
1990 return 0;
1991 }
1992
1993 static void omap_mpuio_write(void *opaque, hwaddr addr,
1994 uint64_t value, unsigned size)
1995 {
1996 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1997 int offset = addr & OMAP_MPUI_REG_MASK;
1998 uint16_t diff;
1999 int ln;
2000
2001 if (size != 2) {
2002 omap_badwidth_write16(opaque, addr, value);
2003 return;
2004 }
2005
2006 switch (offset) {
2007 case 0x04: /* OUTPUT_REG */
2008 diff = (s->outputs ^ value) & ~s->dir;
2009 s->outputs = value;
2010 while ((ln = ctz32(diff)) != 32) {
2011 if (s->handler[ln])
2012 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2013 diff &= ~(1 << ln);
2014 }
2015 break;
2016
2017 case 0x08: /* IO_CNTL */
2018 diff = s->outputs & (s->dir ^ value);
2019 s->dir = value;
2020
2021 value = s->outputs & ~s->dir;
2022 while ((ln = ctz32(diff)) != 32) {
2023 if (s->handler[ln])
2024 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2025 diff &= ~(1 << ln);
2026 }
2027 break;
2028
2029 case 0x14: /* KBC_REG */
2030 s->cols = value;
2031 omap_mpuio_kbd_update(s);
2032 break;
2033
2034 case 0x18: /* GPIO_EVENT_MODE_REG */
2035 s->event = value & 0x1f;
2036 break;
2037
2038 case 0x1c: /* GPIO_INT_EDGE_REG */
2039 s->edge = value;
2040 break;
2041
2042 case 0x28: /* KBD_MASKIT */
2043 s->kbd_mask = value & 1;
2044 omap_mpuio_kbd_update(s);
2045 break;
2046
2047 case 0x2c: /* GPIO_MASKIT */
2048 s->mask = value;
2049 break;
2050
2051 case 0x30: /* GPIO_DEBOUNCING_REG */
2052 s->debounce = value & 0x1ff;
2053 break;
2054
2055 case 0x00: /* INPUT_LATCH */
2056 case 0x10: /* KBR_LATCH */
2057 case 0x20: /* KBD_INT */
2058 case 0x24: /* GPIO_INT */
2059 case 0x34: /* GPIO_LATCH_REG */
2060 OMAP_RO_REG(addr);
2061 return;
2062
2063 default:
2064 OMAP_BAD_REG(addr);
2065 return;
2066 }
2067 }
2068
2069 static const MemoryRegionOps omap_mpuio_ops = {
2070 .read = omap_mpuio_read,
2071 .write = omap_mpuio_write,
2072 .endianness = DEVICE_NATIVE_ENDIAN,
2073 };
2074
2075 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2076 {
2077 s->inputs = 0;
2078 s->outputs = 0;
2079 s->dir = ~0;
2080 s->event = 0;
2081 s->edge = 0;
2082 s->kbd_mask = 0;
2083 s->mask = 0;
2084 s->debounce = 0;
2085 s->latch = 0;
2086 s->ints = 0;
2087 s->row_latch = 0x1f;
2088 s->clk = 1;
2089 }
2090
2091 static void omap_mpuio_onoff(void *opaque, int line, int on)
2092 {
2093 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2094
2095 s->clk = on;
2096 if (on)
2097 omap_mpuio_kbd_update(s);
2098 }
2099
2100 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2101 hwaddr base,
2102 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2103 omap_clk clk)
2104 {
2105 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2106
2107 s->irq = gpio_int;
2108 s->kbd_irq = kbd_int;
2109 s->wakeup = wakeup;
2110 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2111 omap_mpuio_reset(s);
2112
2113 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2114 "omap-mpuio", 0x800);
2115 memory_region_add_subregion(memory, base, &s->iomem);
2116
2117 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2118
2119 return s;
2120 }
2121
2122 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2123 {
2124 return s->in;
2125 }
2126
2127 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2128 {
2129 if (line >= 16 || line < 0)
2130 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2131 s->handler[line] = handler;
2132 }
2133
2134 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2135 {
2136 if (row >= 5 || row < 0)
2137 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2138
2139 if (down)
2140 s->buttons[row] |= 1 << col;
2141 else
2142 s->buttons[row] &= ~(1 << col);
2143
2144 omap_mpuio_kbd_update(s);
2145 }
2146
2147 /* MicroWire Interface */
2148 struct omap_uwire_s {
2149 MemoryRegion iomem;
2150 qemu_irq txirq;
2151 qemu_irq rxirq;
2152 qemu_irq txdrq;
2153
2154 uint16_t txbuf;
2155 uint16_t rxbuf;
2156 uint16_t control;
2157 uint16_t setup[5];
2158
2159 uWireSlave *chip[4];
2160 };
2161
2162 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2163 {
2164 int chipselect = (s->control >> 10) & 3; /* INDEX */
2165 uWireSlave *slave = s->chip[chipselect];
2166
2167 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2168 if (s->control & (1 << 12)) /* CS_CMD */
2169 if (slave && slave->send)
2170 slave->send(slave->opaque,
2171 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2172 s->control &= ~(1 << 14); /* CSRB */
2173 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2174 * a DRQ. When is the level IRQ supposed to be reset? */
2175 }
2176
2177 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2178 if (s->control & (1 << 12)) /* CS_CMD */
2179 if (slave && slave->receive)
2180 s->rxbuf = slave->receive(slave->opaque);
2181 s->control |= 1 << 15; /* RDRB */
2182 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183 * a DRQ. When is the level IRQ supposed to be reset? */
2184 }
2185 }
2186
2187 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2188 unsigned size)
2189 {
2190 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2191 int offset = addr & OMAP_MPUI_REG_MASK;
2192
2193 if (size != 2) {
2194 return omap_badwidth_read16(opaque, addr);
2195 }
2196
2197 switch (offset) {
2198 case 0x00: /* RDR */
2199 s->control &= ~(1 << 15); /* RDRB */
2200 return s->rxbuf;
2201
2202 case 0x04: /* CSR */
2203 return s->control;
2204
2205 case 0x08: /* SR1 */
2206 return s->setup[0];
2207 case 0x0c: /* SR2 */
2208 return s->setup[1];
2209 case 0x10: /* SR3 */
2210 return s->setup[2];
2211 case 0x14: /* SR4 */
2212 return s->setup[3];
2213 case 0x18: /* SR5 */
2214 return s->setup[4];
2215 }
2216
2217 OMAP_BAD_REG(addr);
2218 return 0;
2219 }
2220
2221 static void omap_uwire_write(void *opaque, hwaddr addr,
2222 uint64_t value, unsigned size)
2223 {
2224 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2225 int offset = addr & OMAP_MPUI_REG_MASK;
2226
2227 if (size != 2) {
2228 omap_badwidth_write16(opaque, addr, value);
2229 return;
2230 }
2231
2232 switch (offset) {
2233 case 0x00: /* TDR */
2234 s->txbuf = value; /* TD */
2235 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2236 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2237 (s->control & (1 << 12)))) { /* CS_CMD */
2238 s->control |= 1 << 14; /* CSRB */
2239 omap_uwire_transfer_start(s);
2240 }
2241 break;
2242
2243 case 0x04: /* CSR */
2244 s->control = value & 0x1fff;
2245 if (value & (1 << 13)) /* START */
2246 omap_uwire_transfer_start(s);
2247 break;
2248
2249 case 0x08: /* SR1 */
2250 s->setup[0] = value & 0x003f;
2251 break;
2252
2253 case 0x0c: /* SR2 */
2254 s->setup[1] = value & 0x0fc0;
2255 break;
2256
2257 case 0x10: /* SR3 */
2258 s->setup[2] = value & 0x0003;
2259 break;
2260
2261 case 0x14: /* SR4 */
2262 s->setup[3] = value & 0x0001;
2263 break;
2264
2265 case 0x18: /* SR5 */
2266 s->setup[4] = value & 0x000f;
2267 break;
2268
2269 default:
2270 OMAP_BAD_REG(addr);
2271 return;
2272 }
2273 }
2274
2275 static const MemoryRegionOps omap_uwire_ops = {
2276 .read = omap_uwire_read,
2277 .write = omap_uwire_write,
2278 .endianness = DEVICE_NATIVE_ENDIAN,
2279 };
2280
2281 static void omap_uwire_reset(struct omap_uwire_s *s)
2282 {
2283 s->control = 0;
2284 s->setup[0] = 0;
2285 s->setup[1] = 0;
2286 s->setup[2] = 0;
2287 s->setup[3] = 0;
2288 s->setup[4] = 0;
2289 }
2290
2291 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2292 hwaddr base,
2293 qemu_irq txirq, qemu_irq rxirq,
2294 qemu_irq dma,
2295 omap_clk clk)
2296 {
2297 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2298
2299 s->txirq = txirq;
2300 s->rxirq = rxirq;
2301 s->txdrq = dma;
2302 omap_uwire_reset(s);
2303
2304 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2305 memory_region_add_subregion(system_memory, base, &s->iomem);
2306
2307 return s;
2308 }
2309
2310 void omap_uwire_attach(struct omap_uwire_s *s,
2311 uWireSlave *slave, int chipselect)
2312 {
2313 if (chipselect < 0 || chipselect > 3) {
2314 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2315 exit(-1);
2316 }
2317
2318 s->chip[chipselect] = slave;
2319 }
2320
2321 /* Pseudonoise Pulse-Width Light Modulator */
2322 struct omap_pwl_s {
2323 MemoryRegion iomem;
2324 uint8_t output;
2325 uint8_t level;
2326 uint8_t enable;
2327 int clk;
2328 };
2329
2330 static void omap_pwl_update(struct omap_pwl_s *s)
2331 {
2332 int output = (s->clk && s->enable) ? s->level : 0;
2333
2334 if (output != s->output) {
2335 s->output = output;
2336 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2337 }
2338 }
2339
2340 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2341 unsigned size)
2342 {
2343 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344 int offset = addr & OMAP_MPUI_REG_MASK;
2345
2346 if (size != 1) {
2347 return omap_badwidth_read8(opaque, addr);
2348 }
2349
2350 switch (offset) {
2351 case 0x00: /* PWL_LEVEL */
2352 return s->level;
2353 case 0x04: /* PWL_CTRL */
2354 return s->enable;
2355 }
2356 OMAP_BAD_REG(addr);
2357 return 0;
2358 }
2359
2360 static void omap_pwl_write(void *opaque, hwaddr addr,
2361 uint64_t value, unsigned size)
2362 {
2363 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2364 int offset = addr & OMAP_MPUI_REG_MASK;
2365
2366 if (size != 1) {
2367 omap_badwidth_write8(opaque, addr, value);
2368 return;
2369 }
2370
2371 switch (offset) {
2372 case 0x00: /* PWL_LEVEL */
2373 s->level = value;
2374 omap_pwl_update(s);
2375 break;
2376 case 0x04: /* PWL_CTRL */
2377 s->enable = value & 1;
2378 omap_pwl_update(s);
2379 break;
2380 default:
2381 OMAP_BAD_REG(addr);
2382 return;
2383 }
2384 }
2385
2386 static const MemoryRegionOps omap_pwl_ops = {
2387 .read = omap_pwl_read,
2388 .write = omap_pwl_write,
2389 .endianness = DEVICE_NATIVE_ENDIAN,
2390 };
2391
2392 static void omap_pwl_reset(struct omap_pwl_s *s)
2393 {
2394 s->output = 0;
2395 s->level = 0;
2396 s->enable = 0;
2397 s->clk = 1;
2398 omap_pwl_update(s);
2399 }
2400
2401 static void omap_pwl_clk_update(void *opaque, int line, int on)
2402 {
2403 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2404
2405 s->clk = on;
2406 omap_pwl_update(s);
2407 }
2408
2409 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2410 hwaddr base,
2411 omap_clk clk)
2412 {
2413 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2414
2415 omap_pwl_reset(s);
2416
2417 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2418 "omap-pwl", 0x800);
2419 memory_region_add_subregion(system_memory, base, &s->iomem);
2420
2421 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2422 return s;
2423 }
2424
2425 /* Pulse-Width Tone module */
2426 struct omap_pwt_s {
2427 MemoryRegion iomem;
2428 uint8_t frc;
2429 uint8_t vrc;
2430 uint8_t gcr;
2431 omap_clk clk;
2432 };
2433
2434 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2435 unsigned size)
2436 {
2437 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2438 int offset = addr & OMAP_MPUI_REG_MASK;
2439
2440 if (size != 1) {
2441 return omap_badwidth_read8(opaque, addr);
2442 }
2443
2444 switch (offset) {
2445 case 0x00: /* FRC */
2446 return s->frc;
2447 case 0x04: /* VCR */
2448 return s->vrc;
2449 case 0x08: /* GCR */
2450 return s->gcr;
2451 }
2452 OMAP_BAD_REG(addr);
2453 return 0;
2454 }
2455
2456 static void omap_pwt_write(void *opaque, hwaddr addr,
2457 uint64_t value, unsigned size)
2458 {
2459 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2460 int offset = addr & OMAP_MPUI_REG_MASK;
2461
2462 if (size != 1) {
2463 omap_badwidth_write8(opaque, addr, value);
2464 return;
2465 }
2466
2467 switch (offset) {
2468 case 0x00: /* FRC */
2469 s->frc = value & 0x3f;
2470 break;
2471 case 0x04: /* VRC */
2472 if ((value ^ s->vrc) & 1) {
2473 if (value & 1)
2474 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2475 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2476 ((omap_clk_getrate(s->clk) >> 3) /
2477 /* Pre-multiplexer divider */
2478 ((s->gcr & 2) ? 1 : 154) /
2479 /* Octave multiplexer */
2480 (2 << (value & 3)) *
2481 /* 101/107 divider */
2482 ((value & (1 << 2)) ? 101 : 107) *
2483 /* 49/55 divider */
2484 ((value & (1 << 3)) ? 49 : 55) *
2485 /* 50/63 divider */
2486 ((value & (1 << 4)) ? 50 : 63) *
2487 /* 80/127 divider */
2488 ((value & (1 << 5)) ? 80 : 127) /
2489 (107 * 55 * 63 * 127)));
2490 else
2491 printf("%s: silence!\n", __FUNCTION__);
2492 }
2493 s->vrc = value & 0x7f;
2494 break;
2495 case 0x08: /* GCR */
2496 s->gcr = value & 3;
2497 break;
2498 default:
2499 OMAP_BAD_REG(addr);
2500 return;
2501 }
2502 }
2503
2504 static const MemoryRegionOps omap_pwt_ops = {
2505 .read =omap_pwt_read,
2506 .write = omap_pwt_write,
2507 .endianness = DEVICE_NATIVE_ENDIAN,
2508 };
2509
2510 static void omap_pwt_reset(struct omap_pwt_s *s)
2511 {
2512 s->frc = 0;
2513 s->vrc = 0;
2514 s->gcr = 0;
2515 }
2516
2517 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2518 hwaddr base,
2519 omap_clk clk)
2520 {
2521 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2522 s->clk = clk;
2523 omap_pwt_reset(s);
2524
2525 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2526 "omap-pwt", 0x800);
2527 memory_region_add_subregion(system_memory, base, &s->iomem);
2528 return s;
2529 }
2530
2531 /* Real-time Clock module */
2532 struct omap_rtc_s {
2533 MemoryRegion iomem;
2534 qemu_irq irq;
2535 qemu_irq alarm;
2536 QEMUTimer *clk;
2537
2538 uint8_t interrupts;
2539 uint8_t status;
2540 int16_t comp_reg;
2541 int running;
2542 int pm_am;
2543 int auto_comp;
2544 int round;
2545 struct tm alarm_tm;
2546 time_t alarm_ti;
2547
2548 struct tm current_tm;
2549 time_t ti;
2550 uint64_t tick;
2551 };
2552
2553 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2554 {
2555 /* s->alarm is level-triggered */
2556 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2557 }
2558
2559 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2560 {
2561 s->alarm_ti = mktimegm(&s->alarm_tm);
2562 if (s->alarm_ti == -1)
2563 printf("%s: conversion failed\n", __FUNCTION__);
2564 }
2565
2566 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2567 unsigned size)
2568 {
2569 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2570 int offset = addr & OMAP_MPUI_REG_MASK;
2571 uint8_t i;
2572
2573 if (size != 1) {
2574 return omap_badwidth_read8(opaque, addr);
2575 }
2576
2577 switch (offset) {
2578 case 0x00: /* SECONDS_REG */
2579 return to_bcd(s->current_tm.tm_sec);
2580
2581 case 0x04: /* MINUTES_REG */
2582 return to_bcd(s->current_tm.tm_min);
2583
2584 case 0x08: /* HOURS_REG */
2585 if (s->pm_am)
2586 return ((s->current_tm.tm_hour > 11) << 7) |
2587 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2588 else
2589 return to_bcd(s->current_tm.tm_hour);
2590
2591 case 0x0c: /* DAYS_REG */
2592 return to_bcd(s->current_tm.tm_mday);
2593
2594 case 0x10: /* MONTHS_REG */
2595 return to_bcd(s->current_tm.tm_mon + 1);
2596
2597 case 0x14: /* YEARS_REG */
2598 return to_bcd(s->current_tm.tm_year % 100);
2599
2600 case 0x18: /* WEEK_REG */
2601 return s->current_tm.tm_wday;
2602
2603 case 0x20: /* ALARM_SECONDS_REG */
2604 return to_bcd(s->alarm_tm.tm_sec);
2605
2606 case 0x24: /* ALARM_MINUTES_REG */
2607 return to_bcd(s->alarm_tm.tm_min);
2608
2609 case 0x28: /* ALARM_HOURS_REG */
2610 if (s->pm_am)
2611 return ((s->alarm_tm.tm_hour > 11) << 7) |
2612 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2613 else
2614 return to_bcd(s->alarm_tm.tm_hour);
2615
2616 case 0x2c: /* ALARM_DAYS_REG */
2617 return to_bcd(s->alarm_tm.tm_mday);
2618
2619 case 0x30: /* ALARM_MONTHS_REG */
2620 return to_bcd(s->alarm_tm.tm_mon + 1);
2621
2622 case 0x34: /* ALARM_YEARS_REG */
2623 return to_bcd(s->alarm_tm.tm_year % 100);
2624
2625 case 0x40: /* RTC_CTRL_REG */
2626 return (s->pm_am << 3) | (s->auto_comp << 2) |
2627 (s->round << 1) | s->running;
2628
2629 case 0x44: /* RTC_STATUS_REG */
2630 i = s->status;
2631 s->status &= ~0x3d;
2632 return i;
2633
2634 case 0x48: /* RTC_INTERRUPTS_REG */
2635 return s->interrupts;
2636
2637 case 0x4c: /* RTC_COMP_LSB_REG */
2638 return ((uint16_t) s->comp_reg) & 0xff;
2639
2640 case 0x50: /* RTC_COMP_MSB_REG */
2641 return ((uint16_t) s->comp_reg) >> 8;
2642 }
2643
2644 OMAP_BAD_REG(addr);
2645 return 0;
2646 }
2647
2648 static void omap_rtc_write(void *opaque, hwaddr addr,
2649 uint64_t value, unsigned size)
2650 {
2651 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2652 int offset = addr & OMAP_MPUI_REG_MASK;
2653 struct tm new_tm;
2654 time_t ti[2];
2655
2656 if (size != 1) {
2657 omap_badwidth_write8(opaque, addr, value);
2658 return;
2659 }
2660
2661 switch (offset) {
2662 case 0x00: /* SECONDS_REG */
2663 #ifdef ALMDEBUG
2664 printf("RTC SEC_REG <-- %02x\n", value);
2665 #endif
2666 s->ti -= s->current_tm.tm_sec;
2667 s->ti += from_bcd(value);
2668 return;
2669
2670 case 0x04: /* MINUTES_REG */
2671 #ifdef ALMDEBUG
2672 printf("RTC MIN_REG <-- %02x\n", value);
2673 #endif
2674 s->ti -= s->current_tm.tm_min * 60;
2675 s->ti += from_bcd(value) * 60;
2676 return;
2677
2678 case 0x08: /* HOURS_REG */
2679 #ifdef ALMDEBUG
2680 printf("RTC HRS_REG <-- %02x\n", value);
2681 #endif
2682 s->ti -= s->current_tm.tm_hour * 3600;
2683 if (s->pm_am) {
2684 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2685 s->ti += ((value >> 7) & 1) * 43200;
2686 } else
2687 s->ti += from_bcd(value & 0x3f) * 3600;
2688 return;
2689
2690 case 0x0c: /* DAYS_REG */
2691 #ifdef ALMDEBUG
2692 printf("RTC DAY_REG <-- %02x\n", value);
2693 #endif
2694 s->ti -= s->current_tm.tm_mday * 86400;
2695 s->ti += from_bcd(value) * 86400;
2696 return;
2697
2698 case 0x10: /* MONTHS_REG */
2699 #ifdef ALMDEBUG
2700 printf("RTC MTH_REG <-- %02x\n", value);
2701 #endif
2702 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703 new_tm.tm_mon = from_bcd(value);
2704 ti[0] = mktimegm(&s->current_tm);
2705 ti[1] = mktimegm(&new_tm);
2706
2707 if (ti[0] != -1 && ti[1] != -1) {
2708 s->ti -= ti[0];
2709 s->ti += ti[1];
2710 } else {
2711 /* A less accurate version */
2712 s->ti -= s->current_tm.tm_mon * 2592000;
2713 s->ti += from_bcd(value) * 2592000;
2714 }
2715 return;
2716
2717 case 0x14: /* YEARS_REG */
2718 #ifdef ALMDEBUG
2719 printf("RTC YRS_REG <-- %02x\n", value);
2720 #endif
2721 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2722 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2723 ti[0] = mktimegm(&s->current_tm);
2724 ti[1] = mktimegm(&new_tm);
2725
2726 if (ti[0] != -1 && ti[1] != -1) {
2727 s->ti -= ti[0];
2728 s->ti += ti[1];
2729 } else {
2730 /* A less accurate version */
2731 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2732 s->ti += (time_t)from_bcd(value) * 31536000;
2733 }
2734 return;
2735
2736 case 0x18: /* WEEK_REG */
2737 return; /* Ignored */
2738
2739 case 0x20: /* ALARM_SECONDS_REG */
2740 #ifdef ALMDEBUG
2741 printf("ALM SEC_REG <-- %02x\n", value);
2742 #endif
2743 s->alarm_tm.tm_sec = from_bcd(value);
2744 omap_rtc_alarm_update(s);
2745 return;
2746
2747 case 0x24: /* ALARM_MINUTES_REG */
2748 #ifdef ALMDEBUG
2749 printf("ALM MIN_REG <-- %02x\n", value);
2750 #endif
2751 s->alarm_tm.tm_min = from_bcd(value);
2752 omap_rtc_alarm_update(s);
2753 return;
2754
2755 case 0x28: /* ALARM_HOURS_REG */
2756 #ifdef ALMDEBUG
2757 printf("ALM HRS_REG <-- %02x\n", value);
2758 #endif
2759 if (s->pm_am)
2760 s->alarm_tm.tm_hour =
2761 ((from_bcd(value & 0x3f)) % 12) +
2762 ((value >> 7) & 1) * 12;
2763 else
2764 s->alarm_tm.tm_hour = from_bcd(value);
2765 omap_rtc_alarm_update(s);
2766 return;
2767
2768 case 0x2c: /* ALARM_DAYS_REG */
2769 #ifdef ALMDEBUG
2770 printf("ALM DAY_REG <-- %02x\n", value);
2771 #endif
2772 s->alarm_tm.tm_mday = from_bcd(value);
2773 omap_rtc_alarm_update(s);
2774 return;
2775
2776 case 0x30: /* ALARM_MONTHS_REG */
2777 #ifdef ALMDEBUG
2778 printf("ALM MON_REG <-- %02x\n", value);
2779 #endif
2780 s->alarm_tm.tm_mon = from_bcd(value);
2781 omap_rtc_alarm_update(s);
2782 return;
2783
2784 case 0x34: /* ALARM_YEARS_REG */
2785 #ifdef ALMDEBUG
2786 printf("ALM YRS_REG <-- %02x\n", value);
2787 #endif
2788 s->alarm_tm.tm_year = from_bcd(value);
2789 omap_rtc_alarm_update(s);
2790 return;
2791
2792 case 0x40: /* RTC_CTRL_REG */
2793 #ifdef ALMDEBUG
2794 printf("RTC CONTROL <-- %02x\n", value);
2795 #endif
2796 s->pm_am = (value >> 3) & 1;
2797 s->auto_comp = (value >> 2) & 1;
2798 s->round = (value >> 1) & 1;
2799 s->running = value & 1;
2800 s->status &= 0xfd;
2801 s->status |= s->running << 1;
2802 return;
2803
2804 case 0x44: /* RTC_STATUS_REG */
2805 #ifdef ALMDEBUG
2806 printf("RTC STATUSL <-- %02x\n", value);
2807 #endif
2808 s->status &= ~((value & 0xc0) ^ 0x80);
2809 omap_rtc_interrupts_update(s);
2810 return;
2811
2812 case 0x48: /* RTC_INTERRUPTS_REG */
2813 #ifdef ALMDEBUG
2814 printf("RTC INTRS <-- %02x\n", value);
2815 #endif
2816 s->interrupts = value;
2817 return;
2818
2819 case 0x4c: /* RTC_COMP_LSB_REG */
2820 #ifdef ALMDEBUG
2821 printf("RTC COMPLSB <-- %02x\n", value);
2822 #endif
2823 s->comp_reg &= 0xff00;
2824 s->comp_reg |= 0x00ff & value;
2825 return;
2826
2827 case 0x50: /* RTC_COMP_MSB_REG */
2828 #ifdef ALMDEBUG
2829 printf("RTC COMPMSB <-- %02x\n", value);
2830 #endif
2831 s->comp_reg &= 0x00ff;
2832 s->comp_reg |= 0xff00 & (value << 8);
2833 return;
2834
2835 default:
2836 OMAP_BAD_REG(addr);
2837 return;
2838 }
2839 }
2840
2841 static const MemoryRegionOps omap_rtc_ops = {
2842 .read = omap_rtc_read,
2843 .write = omap_rtc_write,
2844 .endianness = DEVICE_NATIVE_ENDIAN,
2845 };
2846
2847 static void omap_rtc_tick(void *opaque)
2848 {
2849 struct omap_rtc_s *s = opaque;
2850
2851 if (s->round) {
2852 /* Round to nearest full minute. */
2853 if (s->current_tm.tm_sec < 30)
2854 s->ti -= s->current_tm.tm_sec;
2855 else
2856 s->ti += 60 - s->current_tm.tm_sec;
2857
2858 s->round = 0;
2859 }
2860
2861 localtime_r(&s->ti, &s->current_tm);
2862
2863 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2864 s->status |= 0x40;
2865 omap_rtc_interrupts_update(s);
2866 }
2867
2868 if (s->interrupts & 0x04)
2869 switch (s->interrupts & 3) {
2870 case 0:
2871 s->status |= 0x04;
2872 qemu_irq_pulse(s->irq);
2873 break;
2874 case 1:
2875 if (s->current_tm.tm_sec)
2876 break;
2877 s->status |= 0x08;
2878 qemu_irq_pulse(s->irq);
2879 break;
2880 case 2:
2881 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2882 break;
2883 s->status |= 0x10;
2884 qemu_irq_pulse(s->irq);
2885 break;
2886 case 3:
2887 if (s->current_tm.tm_sec ||
2888 s->current_tm.tm_min || s->current_tm.tm_hour)
2889 break;
2890 s->status |= 0x20;
2891 qemu_irq_pulse(s->irq);
2892 break;
2893 }
2894
2895 /* Move on */
2896 if (s->running)
2897 s->ti ++;
2898 s->tick += 1000;
2899
2900 /*
2901 * Every full hour add a rough approximation of the compensation
2902 * register to the 32kHz Timer (which drives the RTC) value.
2903 */
2904 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2905 s->tick += s->comp_reg * 1000 / 32768;
2906
2907 timer_mod(s->clk, s->tick);
2908 }
2909
2910 static void omap_rtc_reset(struct omap_rtc_s *s)
2911 {
2912 struct tm tm;
2913
2914 s->interrupts = 0;
2915 s->comp_reg = 0;
2916 s->running = 0;
2917 s->pm_am = 0;
2918 s->auto_comp = 0;
2919 s->round = 0;
2920 s->tick = qemu_clock_get_ms(rtc_clock);
2921 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2922 s->alarm_tm.tm_mday = 0x01;
2923 s->status = 1 << 7;
2924 qemu_get_timedate(&tm, 0);
2925 s->ti = mktimegm(&tm);
2926
2927 omap_rtc_alarm_update(s);
2928 omap_rtc_tick(s);
2929 }
2930
2931 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2932 hwaddr base,
2933 qemu_irq timerirq, qemu_irq alarmirq,
2934 omap_clk clk)
2935 {
2936 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2937
2938 s->irq = timerirq;
2939 s->alarm = alarmirq;
2940 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2941
2942 omap_rtc_reset(s);
2943
2944 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2945 "omap-rtc", 0x800);
2946 memory_region_add_subregion(system_memory, base, &s->iomem);
2947
2948 return s;
2949 }
2950
2951 /* Multi-channel Buffered Serial Port interfaces */
2952 struct omap_mcbsp_s {
2953 MemoryRegion iomem;
2954 qemu_irq txirq;
2955 qemu_irq rxirq;
2956 qemu_irq txdrq;
2957 qemu_irq rxdrq;
2958
2959 uint16_t spcr[2];
2960 uint16_t rcr[2];
2961 uint16_t xcr[2];
2962 uint16_t srgr[2];
2963 uint16_t mcr[2];
2964 uint16_t pcr;
2965 uint16_t rcer[8];
2966 uint16_t xcer[8];
2967 int tx_rate;
2968 int rx_rate;
2969 int tx_req;
2970 int rx_req;
2971
2972 I2SCodec *codec;
2973 QEMUTimer *source_timer;
2974 QEMUTimer *sink_timer;
2975 };
2976
2977 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2978 {
2979 int irq;
2980
2981 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2982 case 0:
2983 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2984 break;
2985 case 3:
2986 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2987 break;
2988 default:
2989 irq = 0;
2990 break;
2991 }
2992
2993 if (irq)
2994 qemu_irq_pulse(s->rxirq);
2995
2996 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2997 case 0:
2998 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2999 break;
3000 case 3:
3001 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3002 break;
3003 default:
3004 irq = 0;
3005 break;
3006 }
3007
3008 if (irq)
3009 qemu_irq_pulse(s->txirq);
3010 }
3011
3012 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3013 {
3014 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3015 s->spcr[0] |= 1 << 2; /* RFULL */
3016 s->spcr[0] |= 1 << 1; /* RRDY */
3017 qemu_irq_raise(s->rxdrq);
3018 omap_mcbsp_intr_update(s);
3019 }
3020
3021 static void omap_mcbsp_source_tick(void *opaque)
3022 {
3023 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3025
3026 if (!s->rx_rate)
3027 return;
3028 if (s->rx_req)
3029 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3030
3031 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3032
3033 omap_mcbsp_rx_newdata(s);
3034 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035 NANOSECONDS_PER_SECOND);
3036 }
3037
3038 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3039 {
3040 if (!s->codec || !s->codec->rts)
3041 omap_mcbsp_source_tick(s);
3042 else if (s->codec->in.len) {
3043 s->rx_req = s->codec->in.len;
3044 omap_mcbsp_rx_newdata(s);
3045 }
3046 }
3047
3048 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3049 {
3050 timer_del(s->source_timer);
3051 }
3052
3053 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3054 {
3055 s->spcr[0] &= ~(1 << 1); /* RRDY */
3056 qemu_irq_lower(s->rxdrq);
3057 omap_mcbsp_intr_update(s);
3058 }
3059
3060 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3061 {
3062 s->spcr[1] |= 1 << 1; /* XRDY */
3063 qemu_irq_raise(s->txdrq);
3064 omap_mcbsp_intr_update(s);
3065 }
3066
3067 static void omap_mcbsp_sink_tick(void *opaque)
3068 {
3069 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3071
3072 if (!s->tx_rate)
3073 return;
3074 if (s->tx_req)
3075 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3076
3077 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3078
3079 omap_mcbsp_tx_newdata(s);
3080 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081 NANOSECONDS_PER_SECOND);
3082 }
3083
3084 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3085 {
3086 if (!s->codec || !s->codec->cts)
3087 omap_mcbsp_sink_tick(s);
3088 else if (s->codec->out.size) {
3089 s->tx_req = s->codec->out.size;
3090 omap_mcbsp_tx_newdata(s);
3091 }
3092 }
3093
3094 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3095 {
3096 s->spcr[1] &= ~(1 << 1); /* XRDY */
3097 qemu_irq_lower(s->txdrq);
3098 omap_mcbsp_intr_update(s);
3099 if (s->codec && s->codec->cts)
3100 s->codec->tx_swallow(s->codec->opaque);
3101 }
3102
3103 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3104 {
3105 s->tx_req = 0;
3106 omap_mcbsp_tx_done(s);
3107 timer_del(s->sink_timer);
3108 }
3109
3110 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3111 {
3112 int prev_rx_rate, prev_tx_rate;
3113 int rx_rate = 0, tx_rate = 0;
3114 int cpu_rate = 1500000; /* XXX */
3115
3116 /* TODO: check CLKSTP bit */
3117 if (s->spcr[1] & (1 << 6)) { /* GRST */
3118 if (s->spcr[0] & (1 << 0)) { /* RRST */
3119 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3120 (s->pcr & (1 << 8))) { /* CLKRM */
3121 if (~s->pcr & (1 << 7)) /* SCLKME */
3122 rx_rate = cpu_rate /
3123 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3124 } else
3125 if (s->codec)
3126 rx_rate = s->codec->rx_rate;
3127 }
3128
3129 if (s->spcr[1] & (1 << 0)) { /* XRST */
3130 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3131 (s->pcr & (1 << 9))) { /* CLKXM */
3132 if (~s->pcr & (1 << 7)) /* SCLKME */
3133 tx_rate = cpu_rate /
3134 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3135 } else
3136 if (s->codec)
3137 tx_rate = s->codec->tx_rate;
3138 }
3139 }
3140 prev_tx_rate = s->tx_rate;
3141 prev_rx_rate = s->rx_rate;
3142 s->tx_rate = tx_rate;
3143 s->rx_rate = rx_rate;
3144
3145 if (s->codec)
3146 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3147
3148 if (!prev_tx_rate && tx_rate)
3149 omap_mcbsp_tx_start(s);
3150 else if (s->tx_rate && !tx_rate)
3151 omap_mcbsp_tx_stop(s);
3152
3153 if (!prev_rx_rate && rx_rate)
3154 omap_mcbsp_rx_start(s);
3155 else if (prev_tx_rate && !tx_rate)
3156 omap_mcbsp_rx_stop(s);
3157 }
3158
3159 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3160 unsigned size)
3161 {
3162 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163 int offset = addr & OMAP_MPUI_REG_MASK;
3164 uint16_t ret;
3165
3166 if (size != 2) {
3167 return omap_badwidth_read16(opaque, addr);
3168 }
3169
3170 switch (offset) {
3171 case 0x00: /* DRR2 */
3172 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3173 return 0x0000;
3174 /* Fall through. */
3175 case 0x02: /* DRR1 */
3176 if (s->rx_req < 2) {
3177 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178 omap_mcbsp_rx_done(s);
3179 } else {
3180 s->tx_req -= 2;
3181 if (s->codec && s->codec->in.len >= 2) {
3182 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183 ret |= s->codec->in.fifo[s->codec->in.start ++];
3184 s->codec->in.len -= 2;
3185 } else
3186 ret = 0x0000;
3187 if (!s->tx_req)
3188 omap_mcbsp_rx_done(s);
3189 return ret;
3190 }
3191 return 0x0000;
3192
3193 case 0x04: /* DXR2 */
3194 case 0x06: /* DXR1 */
3195 return 0x0000;
3196
3197 case 0x08: /* SPCR2 */
3198 return s->spcr[1];
3199 case 0x0a: /* SPCR1 */
3200 return s->spcr[0];
3201 case 0x0c: /* RCR2 */
3202 return s->rcr[1];
3203 case 0x0e: /* RCR1 */
3204 return s->rcr[0];
3205 case 0x10: /* XCR2 */
3206 return s->xcr[1];
3207 case 0x12: /* XCR1 */
3208 return s->xcr[0];
3209 case 0x14: /* SRGR2 */
3210 return s->srgr[1];
3211 case 0x16: /* SRGR1 */
3212 return s->srgr[0];
3213 case 0x18: /* MCR2 */
3214 return s->mcr[1];
3215 case 0x1a: /* MCR1 */
3216 return s->mcr[0];
3217 case 0x1c: /* RCERA */
3218 return s->rcer[0];
3219 case 0x1e: /* RCERB */
3220 return s->rcer[1];
3221 case 0x20: /* XCERA */
3222 return s->xcer[0];
3223 case 0x22: /* XCERB */
3224 return s->xcer[1];
3225 case 0x24: /* PCR0 */
3226 return s->pcr;
3227 case 0x26: /* RCERC */
3228 return s->rcer[2];
3229 case 0x28: /* RCERD */
3230 return s->rcer[3];
3231 case 0x2a: /* XCERC */
3232 return s->xcer[2];
3233 case 0x2c: /* XCERD */
3234 return s->xcer[3];
3235 case 0x2e: /* RCERE */
3236 return s->rcer[4];
3237 case 0x30: /* RCERF */
3238 return s->rcer[5];
3239 case 0x32: /* XCERE */
3240 return s->xcer[4];
3241 case 0x34: /* XCERF */
3242 return s->xcer[5];
3243 case 0x36: /* RCERG */
3244 return s->rcer[6];
3245 case 0x38: /* RCERH */
3246 return s->rcer[7];
3247 case 0x3a: /* XCERG */
3248 return s->xcer[6];
3249 case 0x3c: /* XCERH */
3250 return s->xcer[7];
3251 }
3252
3253 OMAP_BAD_REG(addr);
3254 return 0;
3255 }
3256
3257 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3258 uint32_t value)
3259 {
3260 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261 int offset = addr & OMAP_MPUI_REG_MASK;
3262
3263 switch (offset) {
3264 case 0x00: /* DRR2 */
3265 case 0x02: /* DRR1 */
3266 OMAP_RO_REG(addr);
3267 return;
3268
3269 case 0x04: /* DXR2 */
3270 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3271 return;
3272 /* Fall through. */
3273 case 0x06: /* DXR1 */
3274 if (s->tx_req > 1) {
3275 s->tx_req -= 2;
3276 if (s->codec && s->codec->cts) {
3277 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3279 }
3280 if (s->tx_req < 2)
3281 omap_mcbsp_tx_done(s);
3282 } else
3283 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3284 return;
3285
3286 case 0x08: /* SPCR2 */
3287 s->spcr[1] &= 0x0002;
3288 s->spcr[1] |= 0x03f9 & value;
3289 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3290 if (~value & 1) /* XRST */
3291 s->spcr[1] &= ~6;
3292 omap_mcbsp_req_update(s);
3293 return;
3294 case 0x0a: /* SPCR1 */
3295 s->spcr[0] &= 0x0006;
3296 s->spcr[0] |= 0xf8f9 & value;
3297 if (value & (1 << 15)) /* DLB */
3298 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299 if (~value & 1) { /* RRST */
3300 s->spcr[0] &= ~6;
3301 s->rx_req = 0;
3302 omap_mcbsp_rx_done(s);
3303 }
3304 omap_mcbsp_req_update(s);
3305 return;
3306
3307 case 0x0c: /* RCR2 */
3308 s->rcr[1] = value & 0xffff;
3309 return;
3310 case 0x0e: /* RCR1 */
3311 s->rcr[0] = value & 0x7fe0;
3312 return;
3313 case 0x10: /* XCR2 */
3314 s->xcr[1] = value & 0xffff;
3315 return;
3316 case 0x12: /* XCR1 */
3317 s->xcr[0] = value & 0x7fe0;
3318 return;
3319 case 0x14: /* SRGR2 */
3320 s->srgr[1] = value & 0xffff;
3321 omap_mcbsp_req_update(s);
3322 return;
3323 case 0x16: /* SRGR1 */
3324 s->srgr[0] = value & 0xffff;
3325 omap_mcbsp_req_update(s);
3326 return;
3327 case 0x18: /* MCR2 */
3328 s->mcr[1] = value & 0x03e3;
3329 if (value & 3) /* XMCM */
3330 printf("%s: Tx channel selection mode enable attempt\n",
3331 __FUNCTION__);
3332 return;
3333 case 0x1a: /* MCR1 */
3334 s->mcr[0] = value & 0x03e1;
3335 if (value & 1) /* RMCM */
3336 printf("%s: Rx channel selection mode enable attempt\n",
3337 __FUNCTION__);
3338 return;
3339 case 0x1c: /* RCERA */
3340 s->rcer[0] = value & 0xffff;
3341 return;
3342 case 0x1e: /* RCERB */
3343 s->rcer[1] = value & 0xffff;
3344 return;
3345 case 0x20: /* XCERA */
3346 s->xcer[0] = value & 0xffff;
3347 return;
3348 case 0x22: /* XCERB */
3349 s->xcer[1] = value & 0xffff;
3350 return;
3351 case 0x24: /* PCR0 */
3352 s->pcr = value & 0x7faf;
3353 return;
3354 case 0x26: /* RCERC */
3355 s->rcer[2] = value & 0xffff;
3356 return;
3357 case 0x28: /* RCERD */
3358 s->rcer[3] = value & 0xffff;
3359 return;
3360 case 0x2a: /* XCERC */
3361 s->xcer[2] = value & 0xffff;
3362 return;
3363 case 0x2c: /* XCERD */
3364 s->xcer[3] = value & 0xffff;
3365 return;
3366 case 0x2e: /* RCERE */
3367 s->rcer[4] = value & 0xffff;
3368 return;
3369 case 0x30: /* RCERF */
3370 s->rcer[5] = value & 0xffff;
3371 return;
3372 case 0x32: /* XCERE */
3373 s->xcer[4] = value & 0xffff;
3374 return;
3375 case 0x34: /* XCERF */
3376 s->xcer[5] = value & 0xffff;
3377 return;
3378 case 0x36: /* RCERG */
3379 s->rcer[6] = value & 0xffff;
3380 return;
3381 case 0x38: /* RCERH */
3382 s->rcer[7] = value & 0xffff;
3383 return;
3384 case 0x3a: /* XCERG */
3385 s->xcer[6] = value & 0xffff;
3386 return;
3387 case 0x3c: /* XCERH */
3388 s->xcer[7] = value & 0xffff;
3389 return;
3390 }
3391
3392 OMAP_BAD_REG(addr);
3393 }
3394
3395 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3396 uint32_t value)
3397 {
3398 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399 int offset = addr & OMAP_MPUI_REG_MASK;
3400
3401 if (offset == 0x04) { /* DXR */
3402 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3403 return;
3404 if (s->tx_req > 3) {
3405 s->tx_req -= 4;
3406 if (s->codec && s->codec->cts) {
3407 s->codec->out.fifo[s->codec->out.len ++] =
3408 (value >> 24) & 0xff;
3409 s->codec->out.fifo[s->codec->out.len ++] =
3410 (value >> 16) & 0xff;
3411 s->codec->out.fifo[s->codec->out.len ++] =
3412 (value >> 8) & 0xff;
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 0) & 0xff;
3415 }
3416 if (s->tx_req < 4)
3417 omap_mcbsp_tx_done(s);
3418 } else
3419 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3420 return;
3421 }
3422
3423 omap_badwidth_write16(opaque, addr, value);
3424 }
3425
3426 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427 uint64_t value, unsigned size)
3428 {
3429 switch (size) {
3430 case 2:
3431 omap_mcbsp_writeh(opaque, addr, value);
3432 break;
3433 case 4:
3434 omap_mcbsp_writew(opaque, addr, value);
3435 break;
3436 default:
3437 omap_badwidth_write16(opaque, addr, value);
3438 }
3439 }
3440
3441 static const MemoryRegionOps omap_mcbsp_ops = {
3442 .read = omap_mcbsp_read,
3443 .write = omap_mcbsp_write,
3444 .endianness = DEVICE_NATIVE_ENDIAN,
3445 };
3446
3447 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3448 {
3449 memset(&s->spcr, 0, sizeof(s->spcr));
3450 memset(&s->rcr, 0, sizeof(s->rcr));
3451 memset(&s->xcr, 0, sizeof(s->xcr));
3452 s->srgr[0] = 0x0001;
3453 s->srgr[1] = 0x2000;
3454 memset(&s->mcr, 0, sizeof(s->mcr));
3455 memset(&s->pcr, 0, sizeof(s->pcr));
3456 memset(&s->rcer, 0, sizeof(s->rcer));
3457 memset(&s->xcer, 0, sizeof(s->xcer));
3458 s->tx_req = 0;
3459 s->rx_req = 0;
3460 s->tx_rate = 0;
3461 s->rx_rate = 0;
3462 timer_del(s->source_timer);
3463 timer_del(s->sink_timer);
3464 }
3465
3466 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3467 hwaddr base,
3468 qemu_irq txirq, qemu_irq rxirq,
3469 qemu_irq *dma, omap_clk clk)
3470 {
3471 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3472
3473 s->txirq = txirq;
3474 s->rxirq = rxirq;
3475 s->txdrq = dma[0];
3476 s->rxdrq = dma[1];
3477 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3478 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3479 omap_mcbsp_reset(s);
3480
3481 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3482 memory_region_add_subregion(system_memory, base, &s->iomem);
3483
3484 return s;
3485 }
3486
3487 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3488 {
3489 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3490
3491 if (s->rx_rate) {
3492 s->rx_req = s->codec->in.len;
3493 omap_mcbsp_rx_newdata(s);
3494 }
3495 }
3496
3497 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3498 {
3499 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3500
3501 if (s->tx_rate) {
3502 s->tx_req = s->codec->out.size;
3503 omap_mcbsp_tx_newdata(s);
3504 }
3505 }
3506
3507 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3508 {
3509 s->codec = slave;
3510 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3511 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3512 }
3513
3514 /* LED Pulse Generators */
3515 struct omap_lpg_s {
3516 MemoryRegion iomem;
3517 QEMUTimer *tm;
3518
3519 uint8_t control;
3520 uint8_t power;
3521 int64_t on;
3522 int64_t period;
3523 int clk;
3524 int cycle;
3525 };
3526
3527 static void omap_lpg_tick(void *opaque)
3528 {
3529 struct omap_lpg_s *s = opaque;
3530
3531 if (s->cycle)
3532 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3533 else
3534 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3535
3536 s->cycle = !s->cycle;
3537 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3538 }
3539
3540 static void omap_lpg_update(struct omap_lpg_s *s)
3541 {
3542 int64_t on, period = 1, ticks = 1000;
3543 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3544
3545 if (~s->control & (1 << 6)) /* LPGRES */
3546 on = 0;
3547 else if (s->control & (1 << 7)) /* PERM_ON */
3548 on = period;
3549 else {
3550 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3551 256 / 32);
3552 on = (s->clk && s->power) ? muldiv64(ticks,
3553 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3554 }
3555
3556 timer_del(s->tm);
3557 if (on == period && s->on < s->period)
3558 printf("%s: LED is on\n", __FUNCTION__);
3559 else if (on == 0 && s->on)
3560 printf("%s: LED is off\n", __FUNCTION__);
3561 else if (on && (on != s->on || period != s->period)) {
3562 s->cycle = 0;
3563 s->on = on;
3564 s->period = period;
3565 omap_lpg_tick(s);
3566 return;
3567 }
3568
3569 s->on = on;
3570 s->period = period;
3571 }
3572
3573 static void omap_lpg_reset(struct omap_lpg_s *s)
3574 {
3575 s->control = 0x00;
3576 s->power = 0x00;
3577 s->clk = 1;
3578 omap_lpg_update(s);
3579 }
3580
3581 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3582 unsigned size)
3583 {
3584 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585 int offset = addr & OMAP_MPUI_REG_MASK;
3586
3587 if (size != 1) {
3588 return omap_badwidth_read8(opaque, addr);
3589 }
3590
3591 switch (offset) {
3592 case 0x00: /* LCR */
3593 return s->control;
3594
3595 case 0x04: /* PMR */
3596 return s->power;
3597 }
3598
3599 OMAP_BAD_REG(addr);
3600 return 0;
3601 }
3602
3603 static void omap_lpg_write(void *opaque, hwaddr addr,
3604 uint64_t value, unsigned size)
3605 {
3606 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3607 int offset = addr & OMAP_MPUI_REG_MASK;
3608
3609 if (size != 1) {
3610 omap_badwidth_write8(opaque, addr, value);
3611 return;
3612 }
3613
3614 switch (offset) {
3615 case 0x00: /* LCR */
3616 if (~value & (1 << 6)) /* LPGRES */
3617 omap_lpg_reset(s);
3618 s->control = value & 0xff;
3619 omap_lpg_update(s);
3620 return;
3621
3622 case 0x04: /* PMR */
3623 s->power = value & 0x01;
3624 omap_lpg_update(s);
3625 return;
3626
3627 default:
3628 OMAP_BAD_REG(addr);
3629 return;
3630 }
3631 }
3632
3633 static const MemoryRegionOps omap_lpg_ops = {
3634 .read = omap_lpg_read,
3635 .write = omap_lpg_write,
3636 .endianness = DEVICE_NATIVE_ENDIAN,
3637 };
3638
3639 static void omap_lpg_clk_update(void *opaque, int line, int on)
3640 {
3641 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3642
3643 s->clk = on;
3644 omap_lpg_update(s);
3645 }
3646
3647 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3648 hwaddr base, omap_clk clk)
3649 {
3650 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3651
3652 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3653
3654 omap_lpg_reset(s);
3655
3656 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3657 memory_region_add_subregion(system_memory, base, &s->iomem);
3658
3659 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3660
3661 return s;
3662 }
3663
3664 /* MPUI Peripheral Bridge configuration */
3665 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3666 unsigned size)
3667 {
3668 if (size != 2) {
3669 return omap_badwidth_read16(opaque, addr);
3670 }
3671
3672 if (addr == OMAP_MPUI_BASE) /* CMR */
3673 return 0xfe4d;
3674
3675 OMAP_BAD_REG(addr);
3676 return 0;
3677 }
3678
3679 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3680 uint64_t value, unsigned size)
3681 {
3682 /* FIXME: infinite loop */
3683 omap_badwidth_write16(opaque, addr, value);
3684 }
3685
3686 static const MemoryRegionOps omap_mpui_io_ops = {
3687 .read = omap_mpui_io_read,
3688 .write = omap_mpui_io_write,
3689 .endianness = DEVICE_NATIVE_ENDIAN,
3690 };
3691
3692 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3693 struct omap_mpu_state_s *mpu)
3694 {
3695 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3696 "omap-mpui-io", 0x7fff);
3697 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3698 &mpu->mpui_io_iomem);
3699 }
3700
3701 /* General chip reset */
3702 static void omap1_mpu_reset(void *opaque)
3703 {
3704 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3705
3706 omap_dma_reset(mpu->dma);
3707 omap_mpu_timer_reset(mpu->timer[0]);
3708 omap_mpu_timer_reset(mpu->timer[1]);
3709 omap_mpu_timer_reset(mpu->timer[2]);
3710 omap_wd_timer_reset(mpu->wdt);
3711 omap_os_timer_reset(mpu->os_timer);
3712 omap_lcdc_reset(mpu->lcd);
3713 omap_ulpd_pm_reset(mpu);
3714 omap_pin_cfg_reset(mpu);
3715 omap_mpui_reset(mpu);
3716 omap_tipb_bridge_reset(mpu->private_tipb);
3717 omap_tipb_bridge_reset(mpu->public_tipb);
3718 omap_dpll_reset(mpu->dpll[0]);
3719 omap_dpll_reset(mpu->dpll[1]);
3720 omap_dpll_reset(mpu->dpll[2]);
3721 omap_uart_reset(mpu->uart[0]);
3722 omap_uart_reset(mpu->uart[1]);
3723 omap_uart_reset(mpu->uart[2]);
3724 omap_mmc_reset(mpu->mmc);
3725 omap_mpuio_reset(mpu->mpuio);
3726 omap_uwire_reset(mpu->microwire);
3727 omap_pwl_reset(mpu->pwl);
3728 omap_pwt_reset(mpu->pwt);
3729 omap_rtc_reset(mpu->rtc);
3730 omap_mcbsp_reset(mpu->mcbsp1);
3731 omap_mcbsp_reset(mpu->mcbsp2);
3732 omap_mcbsp_reset(mpu->mcbsp3);
3733 omap_lpg_reset(mpu->led[0]);
3734 omap_lpg_reset(mpu->led[1]);
3735 omap_clkm_reset(mpu);
3736 cpu_reset(CPU(mpu->cpu));
3737 }
3738
3739 static const struct omap_map_s {
3740 hwaddr phys_dsp;
3741 hwaddr phys_mpu;
3742 uint32_t size;
3743 const char *name;
3744 } omap15xx_dsp_mm[] = {
3745 /* Strobe 0 */
3746 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3747 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3748 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3749 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3750 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3751 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3752 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3753 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3754 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3755 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3756 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3757 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3758 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3759 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3760 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3761 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3762 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3763 /* Strobe 1 */
3764 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3765
3766 { 0 }
3767 };
3768
3769 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3770 const struct omap_map_s *map)
3771 {
3772 MemoryRegion *io;
3773
3774 for (; map->phys_dsp; map ++) {
3775 io = g_new(MemoryRegion, 1);
3776 memory_region_init_alias(io, NULL, map->name,
3777 system_memory, map->phys_mpu, map->size);
3778 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3779 }
3780 }
3781
3782 void omap_mpu_wakeup(void *opaque, int irq, int req)
3783 {
3784 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3785 CPUState *cpu = CPU(mpu->cpu);
3786
3787 if (cpu->halted) {
3788 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3789 }
3790 }
3791
3792 static const struct dma_irq_map omap1_dma_irq_map[] = {
3793 { 0, OMAP_INT_DMA_CH0_6 },
3794 { 0, OMAP_INT_DMA_CH1_7 },
3795 { 0, OMAP_INT_DMA_CH2_8 },
3796 { 0, OMAP_INT_DMA_CH3 },
3797 { 0, OMAP_INT_DMA_CH4 },
3798 { 0, OMAP_INT_DMA_CH5 },
3799 { 1, OMAP_INT_1610_DMA_CH6 },
3800 { 1, OMAP_INT_1610_DMA_CH7 },
3801 { 1, OMAP_INT_1610_DMA_CH8 },
3802 { 1, OMAP_INT_1610_DMA_CH9 },
3803 { 1, OMAP_INT_1610_DMA_CH10 },
3804 { 1, OMAP_INT_1610_DMA_CH11 },
3805 { 1, OMAP_INT_1610_DMA_CH12 },
3806 { 1, OMAP_INT_1610_DMA_CH13 },
3807 { 1, OMAP_INT_1610_DMA_CH14 },
3808 { 1, OMAP_INT_1610_DMA_CH15 }
3809 };
3810
3811 /* DMA ports for OMAP1 */
3812 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3813 hwaddr addr)
3814 {
3815 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3816 }
3817
3818 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3819 hwaddr addr)
3820 {
3821 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3822 addr);
3823 }
3824
3825 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3826 hwaddr addr)
3827 {
3828 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3829 }
3830
3831 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3832 hwaddr addr)
3833 {
3834 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3835 }
3836
3837 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3838 hwaddr addr)
3839 {
3840 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3841 }
3842
3843 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3844 hwaddr addr)
3845 {
3846 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3847 }
3848
3849 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3850 unsigned long sdram_size,
3851 const char *core)
3852 {
3853 int i;
3854 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3855 qemu_irq dma_irqs[6];
3856 DriveInfo *dinfo;
3857 SysBusDevice *busdev;
3858
3859 if (!core)
3860 core = "ti925t";
3861
3862 /* Core */
3863 s->mpu_model = omap310;
3864 s->cpu = cpu_arm_init(core);
3865 if (s->cpu == NULL) {
3866 fprintf(stderr, "Unable to find CPU definition\n");
3867 exit(1);
3868 }
3869 s->sdram_size = sdram_size;
3870 s->sram_size = OMAP15XX_SRAM_SIZE;
3871
3872 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873
3874 /* Clocks */
3875 omap_clk_init(s);
3876
3877 /* Memory-mapped stuff */
3878 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3879 s->sdram_size);
3880 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3881 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3882 &error_fatal);
3883 vmstate_register_ram_global(&s->imif_ram);
3884 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3885
3886 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3887
3888 s->ih[0] = qdev_create(NULL, "omap-intc");
3889 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3890 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3891 qdev_init_nofail(s->ih[0]);
3892 busdev = SYS_BUS_DEVICE(s->ih[0]);
3893 sysbus_connect_irq(busdev, 0,
3894 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3895 sysbus_connect_irq(busdev, 1,
3896 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3897 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3898 s->ih[1] = qdev_create(NULL, "omap-intc");
3899 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3900 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3901 qdev_init_nofail(s->ih[1]);
3902 busdev = SYS_BUS_DEVICE(s->ih[1]);
3903 sysbus_connect_irq(busdev, 0,
3904 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3905 /* The second interrupt controller's FIQ output is not wired up */
3906 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3907
3908 for (i = 0; i < 6; i++) {
3909 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3910 omap1_dma_irq_map[i].intr);
3911 }
3912 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3913 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3914 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3915
3916 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3917 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3918 s->port[imif ].addr_valid = omap_validate_imif_addr;
3919 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3920 s->port[local ].addr_valid = omap_validate_local_addr;
3921 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3922
3923 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3924 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3925 OMAP_EMIFF_BASE, s->sdram_size);
3926 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3927 OMAP_IMIF_BASE, s->sram_size);
3928
3929 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3931 omap_findclk(s, "mputim_ck"));
3932 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3934 omap_findclk(s, "mputim_ck"));
3935 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3937 omap_findclk(s, "mputim_ck"));
3938
3939 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3940 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3941 omap_findclk(s, "armwdt_ck"));
3942
3943 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3944 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3945 omap_findclk(s, "clk32-kHz"));
3946
3947 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3948 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3949 omap_dma_get_lcdch(s->dma),
3950 omap_findclk(s, "lcd_ck"));
3951
3952 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3953 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3954 omap_id_init(system_memory, s);
3955
3956 omap_mpui_init(system_memory, 0xfffec900, s);
3957
3958 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3959 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3960 omap_findclk(s, "tipb_ck"));
3961 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3962 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3963 omap_findclk(s, "tipb_ck"));
3964
3965 omap_tcmi_init(system_memory, 0xfffecc00, s);
3966
3967 s->uart[0] = omap_uart_init(0xfffb0000,
3968 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3969 omap_findclk(s, "uart1_ck"),
3970 omap_findclk(s, "uart1_ck"),
3971 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3972 "uart1",
3973 serial_hds[0]);
3974 s->uart[1] = omap_uart_init(0xfffb0800,
3975 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3976 omap_findclk(s, "uart2_ck"),
3977 omap_findclk(s, "uart2_ck"),
3978 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3979 "uart2",
3980 serial_hds[0] ? serial_hds[1] : NULL);
3981 s->uart[2] = omap_uart_init(0xfffb9800,
3982 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3983 omap_findclk(s, "uart3_ck"),
3984 omap_findclk(s, "uart3_ck"),
3985 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3986 "uart3",
3987 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3988
3989 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3990 omap_findclk(s, "dpll1"));
3991 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3992 omap_findclk(s, "dpll2"));
3993 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3994 omap_findclk(s, "dpll3"));
3995
3996 dinfo = drive_get(IF_SD, 0, 0);
3997 if (!dinfo) {
3998 fprintf(stderr, "qemu: missing SecureDigital device\n");
3999 exit(1);
4000 }
4001 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4002 blk_by_legacy_dinfo(dinfo),
4003 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4004 &s->drq[OMAP_DMA_MMC_TX],
4005 omap_findclk(s, "mmc_ck"));
4006
4007 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4008 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4009 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4010 s->wakeup, omap_findclk(s, "clk32-kHz"));
4011
4012 s->gpio = qdev_create(NULL, "omap-gpio");
4013 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4014 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4015 qdev_init_nofail(s->gpio);
4016 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4017 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4018 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4019
4020 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4021 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4022 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4023 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4024
4025 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4026 omap_findclk(s, "armxor_ck"));
4027 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4028 omap_findclk(s, "armxor_ck"));
4029
4030 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4031 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4032 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4033 qdev_init_nofail(s->i2c[0]);
4034 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4035 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4036 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4037 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4038 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4039
4040 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4041 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4043 omap_findclk(s, "clk32-kHz"));
4044
4045 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4046 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4047 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4048 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4049 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4050 qdev_get_gpio_in(s->ih[0],
4051 OMAP_INT_310_McBSP2_TX),
4052 qdev_get_gpio_in(s->ih[0],
4053 OMAP_INT_310_McBSP2_RX),
4054 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4055 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4056 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4057 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4058 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4059
4060 s->led[0] = omap_lpg_init(system_memory,
4061 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4062 s->led[1] = omap_lpg_init(system_memory,
4063 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4064
4065 /* Register mappings not currenlty implemented:
4066 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4067 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4068 * USB W2FC fffb4000 - fffb47ff
4069 * Camera Interface fffb6800 - fffb6fff
4070 * USB Host fffba000 - fffba7ff
4071 * FAC fffba800 - fffbafff
4072 * HDQ/1-Wire fffbc000 - fffbc7ff
4073 * TIPB switches fffbc800 - fffbcfff
4074 * Mailbox fffcf000 - fffcf7ff
4075 * Local bus IF fffec100 - fffec1ff
4076 * Local bus MMU fffec200 - fffec2ff
4077 * DSP MMU fffed200 - fffed2ff
4078 */
4079
4080 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4081 omap_setup_mpui_io(system_memory, s);
4082
4083 qemu_register_reset(omap1_mpu_reset, s);
4084
4085 return s;
4086 }