]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
Merge tag 'hppa-boot-reboot-fixes-pull-request' of https://github.com/hdeller/qemu...
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/fdt.h"
33 #include "hw/arm/smmuv3.h"
34 #include "hw/block/flash.h"
35 #include "hw/boards.h"
36 #include "hw/ide/internal.h"
37 #include "hw/ide/ahci_internal.h"
38 #include "hw/intc/arm_gicv3_common.h"
39 #include "hw/loader.h"
40 #include "hw/pci-host/gpex.h"
41 #include "hw/qdev-properties.h"
42 #include "hw/usb.h"
43 #include "hw/char/pl011.h"
44 #include "hw/watchdog/sbsa_gwdt.h"
45 #include "net/net.h"
46 #include "qom/object.h"
47
48 #define RAMLIMIT_GB 8192
49 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
50
51 #define NUM_IRQS 256
52 #define NUM_SMMU_IRQS 4
53 #define NUM_SATA_PORTS 6
54
55 #define VIRTUAL_PMU_IRQ 7
56 #define ARCH_GIC_MAINT_IRQ 9
57 #define ARCH_TIMER_VIRT_IRQ 11
58 #define ARCH_TIMER_S_EL1_IRQ 13
59 #define ARCH_TIMER_NS_EL1_IRQ 14
60 #define ARCH_TIMER_NS_EL2_IRQ 10
61
62 enum {
63 SBSA_FLASH,
64 SBSA_MEM,
65 SBSA_CPUPERIPHS,
66 SBSA_GIC_DIST,
67 SBSA_GIC_REDIST,
68 SBSA_GIC_ITS,
69 SBSA_SECURE_EC,
70 SBSA_GWDT_WS0,
71 SBSA_GWDT_REFRESH,
72 SBSA_GWDT_CONTROL,
73 SBSA_SMMU,
74 SBSA_UART,
75 SBSA_RTC,
76 SBSA_PCIE,
77 SBSA_PCIE_MMIO,
78 SBSA_PCIE_MMIO_HIGH,
79 SBSA_PCIE_PIO,
80 SBSA_PCIE_ECAM,
81 SBSA_GPIO,
82 SBSA_SECURE_UART,
83 SBSA_SECURE_UART_MM,
84 SBSA_SECURE_MEM,
85 SBSA_AHCI,
86 SBSA_EHCI,
87 };
88
89 struct SBSAMachineState {
90 MachineState parent;
91 struct arm_boot_info bootinfo;
92 int smp_cpus;
93 void *fdt;
94 int fdt_size;
95 int psci_conduit;
96 DeviceState *gic;
97 PFlashCFI01 *flash[2];
98 };
99
100 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
101 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
102
103 static const MemMapEntry sbsa_ref_memmap[] = {
104 /* 512M boot ROM */
105 [SBSA_FLASH] = { 0, 0x20000000 },
106 /* 512M secure memory */
107 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
108 /* Space reserved for CPU peripheral devices */
109 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
110 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
111 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
112 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
113 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
114 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
115 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
116 [SBSA_UART] = { 0x60000000, 0x00001000 },
117 [SBSA_RTC] = { 0x60010000, 0x00001000 },
118 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
119 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
120 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
121 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
122 /* Space here reserved for more SMMUs */
123 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
124 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
125 /* Space here reserved for other devices */
126 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
127 /* 32-bit address PCIE MMIO space */
128 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
129 /* 256M PCIE ECAM space */
130 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
131 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
132 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
133 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
134 };
135
136 static const int sbsa_ref_irqmap[] = {
137 [SBSA_UART] = 1,
138 [SBSA_RTC] = 2,
139 [SBSA_PCIE] = 3, /* ... to 6 */
140 [SBSA_GPIO] = 7,
141 [SBSA_SECURE_UART] = 8,
142 [SBSA_SECURE_UART_MM] = 9,
143 [SBSA_AHCI] = 10,
144 [SBSA_EHCI] = 11,
145 [SBSA_SMMU] = 12, /* ... to 15 */
146 [SBSA_GWDT_WS0] = 16,
147 };
148
149 static const char * const valid_cpus[] = {
150 ARM_CPU_TYPE_NAME("cortex-a57"),
151 ARM_CPU_TYPE_NAME("cortex-a72"),
152 ARM_CPU_TYPE_NAME("neoverse-n1"),
153 ARM_CPU_TYPE_NAME("max"),
154 };
155
156 static bool cpu_type_valid(const char *cpu)
157 {
158 int i;
159
160 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
161 if (strcmp(cpu, valid_cpus[i]) == 0) {
162 return true;
163 }
164 }
165 return false;
166 }
167
168 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
169 {
170 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
171 return arm_cpu_mp_affinity(idx, clustersz);
172 }
173
174 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
175 {
176 char *nodename;
177
178 nodename = g_strdup_printf("/intc");
179 qemu_fdt_add_subnode(sms->fdt, nodename);
180 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
181 2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
182 2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
183 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
184 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
185
186 nodename = g_strdup_printf("/intc/its");
187 qemu_fdt_add_subnode(sms->fdt, nodename);
188 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
189 2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
190 2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
191
192 g_free(nodename);
193 }
194
195 /*
196 * Firmware on this machine only uses ACPI table to load OS, these limited
197 * device tree nodes are just to let firmware know the info which varies from
198 * command line parameters, so it is not necessary to be fully compatible
199 * with the kernel CPU and NUMA binding rules.
200 */
201 static void create_fdt(SBSAMachineState *sms)
202 {
203 void *fdt = create_device_tree(&sms->fdt_size);
204 const MachineState *ms = MACHINE(sms);
205 int nb_numa_nodes = ms->numa_state->num_nodes;
206 int cpu;
207
208 if (!fdt) {
209 error_report("create_device_tree() failed");
210 exit(1);
211 }
212
213 sms->fdt = fdt;
214
215 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
216 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
217 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
218
219 /*
220 * This versioning scheme is for informing platform fw only. It is neither:
221 * - A QEMU versioned machine type; a given version of QEMU will emulate
222 * a given version of the platform.
223 * - A reflection of level of SBSA (now SystemReady SR) support provided.
224 *
225 * machine-version-major: updated when changes breaking fw compatibility
226 * are introduced.
227 * machine-version-minor: updated when features are added that don't break
228 * fw compatibility.
229 */
230 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
231 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 2);
232
233 if (ms->numa_state->have_numa_distance) {
234 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235 uint32_t *matrix = g_malloc0(size);
236 int idx, i, j;
237
238 for (i = 0; i < nb_numa_nodes; i++) {
239 for (j = 0; j < nb_numa_nodes; j++) {
240 idx = (i * nb_numa_nodes + j) * 3;
241 matrix[idx + 0] = cpu_to_be32(i);
242 matrix[idx + 1] = cpu_to_be32(j);
243 matrix[idx + 2] =
244 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
245 }
246 }
247
248 qemu_fdt_add_subnode(fdt, "/distance-map");
249 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
250 matrix, size);
251 g_free(matrix);
252 }
253
254 /*
255 * From Documentation/devicetree/bindings/arm/cpus.yaml
256 * On ARM v8 64-bit systems this property is required
257 * and matches the MPIDR_EL1 register affinity bits.
258 *
259 * * If cpus node's #address-cells property is set to 2
260 *
261 * The first reg cell bits [7:0] must be set to
262 * bits [39:32] of MPIDR_EL1.
263 *
264 * The second reg cell bits [23:0] must be set to
265 * bits [23:0] of MPIDR_EL1.
266 */
267 qemu_fdt_add_subnode(sms->fdt, "/cpus");
268 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
269 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
270
271 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
272 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
273 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
274 CPUState *cs = CPU(armcpu);
275 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
276
277 qemu_fdt_add_subnode(sms->fdt, nodename);
278 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
279
280 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
281 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
282 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
283 }
284
285 g_free(nodename);
286 }
287
288 sbsa_fdt_add_gic_node(sms);
289 }
290
291 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
292
293 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
294 const char *name,
295 const char *alias_prop_name)
296 {
297 /*
298 * Create a single flash device. We use the same parameters as
299 * the flash devices on the Versatile Express board.
300 */
301 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
302
303 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
304 qdev_prop_set_uint8(dev, "width", 4);
305 qdev_prop_set_uint8(dev, "device-width", 2);
306 qdev_prop_set_bit(dev, "big-endian", false);
307 qdev_prop_set_uint16(dev, "id0", 0x89);
308 qdev_prop_set_uint16(dev, "id1", 0x18);
309 qdev_prop_set_uint16(dev, "id2", 0x00);
310 qdev_prop_set_uint16(dev, "id3", 0x00);
311 qdev_prop_set_string(dev, "name", name);
312 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
313 object_property_add_alias(OBJECT(sms), alias_prop_name,
314 OBJECT(dev), "drive");
315 return PFLASH_CFI01(dev);
316 }
317
318 static void sbsa_flash_create(SBSAMachineState *sms)
319 {
320 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
321 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
322 }
323
324 static void sbsa_flash_map1(PFlashCFI01 *flash,
325 hwaddr base, hwaddr size,
326 MemoryRegion *sysmem)
327 {
328 DeviceState *dev = DEVICE(flash);
329
330 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
331 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
332 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
333 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
334
335 memory_region_add_subregion(sysmem, base,
336 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
337 0));
338 }
339
340 static void sbsa_flash_map(SBSAMachineState *sms,
341 MemoryRegion *sysmem,
342 MemoryRegion *secure_sysmem)
343 {
344 /*
345 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
346 * sysmem is the system memory space. secure_sysmem is the secure view
347 * of the system, and the first flash device should be made visible only
348 * there. The second flash device is visible to both secure and nonsecure.
349 */
350 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
351 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
352
353 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
354 secure_sysmem);
355 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
356 sysmem);
357 }
358
359 static bool sbsa_firmware_init(SBSAMachineState *sms,
360 MemoryRegion *sysmem,
361 MemoryRegion *secure_sysmem)
362 {
363 const char *bios_name;
364 int i;
365 BlockBackend *pflash_blk0;
366
367 /* Map legacy -drive if=pflash to machine properties */
368 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
369 pflash_cfi01_legacy_drive(sms->flash[i],
370 drive_get(IF_PFLASH, 0, i));
371 }
372
373 sbsa_flash_map(sms, sysmem, secure_sysmem);
374
375 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
376
377 bios_name = MACHINE(sms)->firmware;
378 if (bios_name) {
379 char *fname;
380 MemoryRegion *mr;
381 int image_size;
382
383 if (pflash_blk0) {
384 error_report("The contents of the first flash device may be "
385 "specified with -bios or with -drive if=pflash... "
386 "but you cannot use both options at once");
387 exit(1);
388 }
389
390 /* Fall back to -bios */
391
392 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
393 if (!fname) {
394 error_report("Could not find ROM image '%s'", bios_name);
395 exit(1);
396 }
397 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
398 image_size = load_image_mr(fname, mr);
399 g_free(fname);
400 if (image_size < 0) {
401 error_report("Could not load ROM image '%s'", bios_name);
402 exit(1);
403 }
404 }
405
406 return pflash_blk0 || bios_name;
407 }
408
409 static void create_secure_ram(SBSAMachineState *sms,
410 MemoryRegion *secure_sysmem)
411 {
412 MemoryRegion *secram = g_new(MemoryRegion, 1);
413 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
414 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
415
416 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
417 &error_fatal);
418 memory_region_add_subregion(secure_sysmem, base, secram);
419 }
420
421 static void create_its(SBSAMachineState *sms)
422 {
423 const char *itsclass = its_class_name();
424 DeviceState *dev;
425
426 dev = qdev_new(itsclass);
427
428 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
429 &error_abort);
430 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
431 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
432 }
433
434 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
435 {
436 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
437 SysBusDevice *gicbusdev;
438 const char *gictype;
439 uint32_t redist0_capacity, redist0_count;
440 int i;
441
442 gictype = gicv3_class_name();
443
444 sms->gic = qdev_new(gictype);
445 qdev_prop_set_uint32(sms->gic, "revision", 3);
446 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
447 /*
448 * Note that the num-irq property counts both internal and external
449 * interrupts; there are always 32 of the former (mandated by GIC spec).
450 */
451 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
452 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
453
454 redist0_capacity =
455 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
456 redist0_count = MIN(smp_cpus, redist0_capacity);
457
458 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
459 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
460
461 object_property_set_link(OBJECT(sms->gic), "sysmem",
462 OBJECT(mem), &error_fatal);
463 qdev_prop_set_bit(sms->gic, "has-lpi", true);
464
465 gicbusdev = SYS_BUS_DEVICE(sms->gic);
466 sysbus_realize_and_unref(gicbusdev, &error_fatal);
467 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
468 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
469
470 /*
471 * Wire the outputs from each CPU's generic timer and the GICv3
472 * maintenance interrupt signal to the appropriate GIC PPI inputs,
473 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
474 */
475 for (i = 0; i < smp_cpus; i++) {
476 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
477 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
478 int irq;
479 /*
480 * Mapping from the output timer irq lines from the CPU to the
481 * GIC PPI inputs used for this board.
482 */
483 const int timer_irq[] = {
484 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
485 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
486 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
487 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
488 };
489
490 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
491 qdev_connect_gpio_out(cpudev, irq,
492 qdev_get_gpio_in(sms->gic,
493 ppibase + timer_irq[irq]));
494 }
495
496 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
497 qdev_get_gpio_in(sms->gic, ppibase
498 + ARCH_GIC_MAINT_IRQ));
499 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
500 qdev_get_gpio_in(sms->gic, ppibase
501 + VIRTUAL_PMU_IRQ));
502
503 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
504 sysbus_connect_irq(gicbusdev, i + smp_cpus,
505 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
506 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
507 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
508 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
509 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
510 }
511 create_its(sms);
512 }
513
514 static void create_uart(const SBSAMachineState *sms, int uart,
515 MemoryRegion *mem, Chardev *chr)
516 {
517 hwaddr base = sbsa_ref_memmap[uart].base;
518 int irq = sbsa_ref_irqmap[uart];
519 DeviceState *dev = qdev_new(TYPE_PL011);
520 SysBusDevice *s = SYS_BUS_DEVICE(dev);
521
522 qdev_prop_set_chr(dev, "chardev", chr);
523 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
524 memory_region_add_subregion(mem, base,
525 sysbus_mmio_get_region(s, 0));
526 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
527 }
528
529 static void create_rtc(const SBSAMachineState *sms)
530 {
531 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
532 int irq = sbsa_ref_irqmap[SBSA_RTC];
533
534 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
535 }
536
537 static void create_wdt(const SBSAMachineState *sms)
538 {
539 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
540 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
541 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
542 SysBusDevice *s = SYS_BUS_DEVICE(dev);
543 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
544
545 sysbus_realize_and_unref(s, &error_fatal);
546 sysbus_mmio_map(s, 0, rbase);
547 sysbus_mmio_map(s, 1, cbase);
548 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
549 }
550
551 static DeviceState *gpio_key_dev;
552 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
553 {
554 /* use gpio Pin 3 for power button event */
555 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
556 }
557
558 static Notifier sbsa_ref_powerdown_notifier = {
559 .notify = sbsa_ref_powerdown_req
560 };
561
562 static void create_gpio(const SBSAMachineState *sms)
563 {
564 DeviceState *pl061_dev;
565 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
566 int irq = sbsa_ref_irqmap[SBSA_GPIO];
567
568 pl061_dev = sysbus_create_simple("pl061", base,
569 qdev_get_gpio_in(sms->gic, irq));
570
571 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
572 qdev_get_gpio_in(pl061_dev, 3));
573
574 /* connect powerdown request */
575 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
576 }
577
578 static void create_ahci(const SBSAMachineState *sms)
579 {
580 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
581 int irq = sbsa_ref_irqmap[SBSA_AHCI];
582 DeviceState *dev;
583 DriveInfo *hd[NUM_SATA_PORTS];
584 SysbusAHCIState *sysahci;
585 AHCIState *ahci;
586 int i;
587
588 dev = qdev_new("sysbus-ahci");
589 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
590 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
591 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
592 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
593
594 sysahci = SYSBUS_AHCI(dev);
595 ahci = &sysahci->ahci;
596 ide_drive_get(hd, ARRAY_SIZE(hd));
597 for (i = 0; i < ahci->ports; i++) {
598 if (hd[i] == NULL) {
599 continue;
600 }
601 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
602 }
603 }
604
605 static void create_ehci(const SBSAMachineState *sms)
606 {
607 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
608 int irq = sbsa_ref_irqmap[SBSA_EHCI];
609
610 sysbus_create_simple("platform-ehci-usb", base,
611 qdev_get_gpio_in(sms->gic, irq));
612 }
613
614 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
615 {
616 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
617 int irq = sbsa_ref_irqmap[SBSA_SMMU];
618 DeviceState *dev;
619 int i;
620
621 dev = qdev_new(TYPE_ARM_SMMUV3);
622
623 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
624 &error_abort);
625 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
626 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
627 for (i = 0; i < NUM_SMMU_IRQS; i++) {
628 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
629 qdev_get_gpio_in(sms->gic, irq + i));
630 }
631 }
632
633 static void create_pcie(SBSAMachineState *sms)
634 {
635 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
636 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
637 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
638 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
639 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
640 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
641 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
642 int irq = sbsa_ref_irqmap[SBSA_PCIE];
643 MachineClass *mc = MACHINE_GET_CLASS(sms);
644 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
645 MemoryRegion *ecam_alias, *ecam_reg;
646 DeviceState *dev;
647 PCIHostState *pci;
648 int i;
649
650 dev = qdev_new(TYPE_GPEX_HOST);
651 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
652
653 /* Map ECAM space */
654 ecam_alias = g_new0(MemoryRegion, 1);
655 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
656 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
657 ecam_reg, 0, size_ecam);
658 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
659
660 /* Map the MMIO space */
661 mmio_alias = g_new0(MemoryRegion, 1);
662 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
663 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
664 mmio_reg, base_mmio, size_mmio);
665 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
666
667 /* Map the MMIO_HIGH space */
668 mmio_alias_high = g_new0(MemoryRegion, 1);
669 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
670 mmio_reg, base_mmio_high, size_mmio_high);
671 memory_region_add_subregion(get_system_memory(), base_mmio_high,
672 mmio_alias_high);
673
674 /* Map IO port space */
675 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
676
677 for (i = 0; i < GPEX_NUM_IRQS; i++) {
678 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
679 qdev_get_gpio_in(sms->gic, irq + i));
680 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
681 }
682
683 pci = PCI_HOST_BRIDGE(dev);
684 if (pci->bus) {
685 for (i = 0; i < nb_nics; i++) {
686 NICInfo *nd = &nd_table[i];
687
688 if (!nd->model) {
689 nd->model = g_strdup(mc->default_nic);
690 }
691
692 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
693 }
694 }
695
696 pci_create_simple(pci->bus, -1, "bochs-display");
697
698 create_smmu(sms, pci->bus);
699 }
700
701 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
702 {
703 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
704 bootinfo);
705
706 *fdt_size = board->fdt_size;
707 return board->fdt;
708 }
709
710 static void create_secure_ec(MemoryRegion *mem)
711 {
712 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
713 DeviceState *dev = qdev_new("sbsa-ec");
714 SysBusDevice *s = SYS_BUS_DEVICE(dev);
715
716 memory_region_add_subregion(mem, base,
717 sysbus_mmio_get_region(s, 0));
718 }
719
720 static void sbsa_ref_init(MachineState *machine)
721 {
722 unsigned int smp_cpus = machine->smp.cpus;
723 unsigned int max_cpus = machine->smp.max_cpus;
724 SBSAMachineState *sms = SBSA_MACHINE(machine);
725 MachineClass *mc = MACHINE_GET_CLASS(machine);
726 MemoryRegion *sysmem = get_system_memory();
727 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
728 bool firmware_loaded;
729 const CPUArchIdList *possible_cpus;
730 int n, sbsa_max_cpus;
731
732 if (!cpu_type_valid(machine->cpu_type)) {
733 error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
734 exit(1);
735 }
736
737 if (kvm_enabled()) {
738 error_report("sbsa-ref: KVM is not supported for this machine");
739 exit(1);
740 }
741
742 /*
743 * The Secure view of the world is the same as the NonSecure,
744 * but with a few extra devices. Create it as a container region
745 * containing the system memory at low priority; any secure-only
746 * devices go in at higher priority and take precedence.
747 */
748 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
749 UINT64_MAX);
750 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
751
752 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
753
754 /*
755 * This machine has EL3 enabled, external firmware should supply PSCI
756 * implementation, so the QEMU's internal PSCI is disabled.
757 */
758 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
759
760 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
761
762 if (max_cpus > sbsa_max_cpus) {
763 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
764 "supported by machine 'sbsa-ref' (%d)",
765 max_cpus, sbsa_max_cpus);
766 exit(1);
767 }
768
769 sms->smp_cpus = smp_cpus;
770
771 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
772 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
773 exit(1);
774 }
775
776 possible_cpus = mc->possible_cpu_arch_ids(machine);
777 for (n = 0; n < possible_cpus->len; n++) {
778 Object *cpuobj;
779 CPUState *cs;
780
781 if (n >= smp_cpus) {
782 break;
783 }
784
785 cpuobj = object_new(possible_cpus->cpus[n].type);
786 object_property_set_int(cpuobj, "mp-affinity",
787 possible_cpus->cpus[n].arch_id, NULL);
788
789 cs = CPU(cpuobj);
790 cs->cpu_index = n;
791
792 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
793 &error_fatal);
794
795 if (object_property_find(cpuobj, "reset-cbar")) {
796 object_property_set_int(cpuobj, "reset-cbar",
797 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
798 &error_abort);
799 }
800
801 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
802 &error_abort);
803
804 object_property_set_link(cpuobj, "secure-memory",
805 OBJECT(secure_sysmem), &error_abort);
806
807 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
808 object_unref(cpuobj);
809 }
810
811 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
812 machine->ram);
813
814 create_fdt(sms);
815
816 create_secure_ram(sms, secure_sysmem);
817
818 create_gic(sms, sysmem);
819
820 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
821 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
822 /* Second secure UART for RAS and MM from EL0 */
823 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
824
825 create_rtc(sms);
826
827 create_wdt(sms);
828
829 create_gpio(sms);
830
831 create_ahci(sms);
832
833 create_ehci(sms);
834
835 create_pcie(sms);
836
837 create_secure_ec(secure_sysmem);
838
839 sms->bootinfo.ram_size = machine->ram_size;
840 sms->bootinfo.board_id = -1;
841 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
842 sms->bootinfo.get_dtb = sbsa_ref_dtb;
843 sms->bootinfo.firmware_loaded = firmware_loaded;
844 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
845 }
846
847 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
848 {
849 unsigned int max_cpus = ms->smp.max_cpus;
850 SBSAMachineState *sms = SBSA_MACHINE(ms);
851 int n;
852
853 if (ms->possible_cpus) {
854 assert(ms->possible_cpus->len == max_cpus);
855 return ms->possible_cpus;
856 }
857
858 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
859 sizeof(CPUArchId) * max_cpus);
860 ms->possible_cpus->len = max_cpus;
861 for (n = 0; n < ms->possible_cpus->len; n++) {
862 ms->possible_cpus->cpus[n].type = ms->cpu_type;
863 ms->possible_cpus->cpus[n].arch_id =
864 sbsa_ref_cpu_mp_affinity(sms, n);
865 ms->possible_cpus->cpus[n].props.has_thread_id = true;
866 ms->possible_cpus->cpus[n].props.thread_id = n;
867 }
868 return ms->possible_cpus;
869 }
870
871 static CpuInstanceProperties
872 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
873 {
874 MachineClass *mc = MACHINE_GET_CLASS(ms);
875 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
876
877 assert(cpu_index < possible_cpus->len);
878 return possible_cpus->cpus[cpu_index].props;
879 }
880
881 static int64_t
882 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
883 {
884 return idx % ms->numa_state->num_nodes;
885 }
886
887 static void sbsa_ref_instance_init(Object *obj)
888 {
889 SBSAMachineState *sms = SBSA_MACHINE(obj);
890
891 sbsa_flash_create(sms);
892 }
893
894 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
895 {
896 MachineClass *mc = MACHINE_CLASS(oc);
897
898 mc->init = sbsa_ref_init;
899 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
900 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
901 mc->max_cpus = 512;
902 mc->pci_allow_0_address = true;
903 mc->minimum_page_bits = 12;
904 mc->block_default_type = IF_IDE;
905 mc->no_cdrom = 1;
906 mc->default_nic = "e1000e";
907 mc->default_ram_size = 1 * GiB;
908 mc->default_ram_id = "sbsa-ref.ram";
909 mc->default_cpus = 4;
910 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
911 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
912 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
913 }
914
915 static const TypeInfo sbsa_ref_info = {
916 .name = TYPE_SBSA_MACHINE,
917 .parent = TYPE_MACHINE,
918 .instance_init = sbsa_ref_instance_init,
919 .class_init = sbsa_ref_class_init,
920 .instance_size = sizeof(SBSAMachineState),
921 };
922
923 static void sbsa_ref_machine_init(void)
924 {
925 type_register_static(&sbsa_ref_info);
926 }
927
928 type_init(sbsa_ref_machine_init);