]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
2a0e2ed1d071da1a78150652b1e1750102586071
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/sysemu.h"
28 #include "exec/address-spaces.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/block/flash.h"
33 #include "hw/boards.h"
34 #include "hw/ide/internal.h"
35 #include "hw/ide/ahci_internal.h"
36 #include "hw/intc/arm_gicv3_common.h"
37 #include "hw/loader.h"
38 #include "hw/pci-host/gpex.h"
39 #include "hw/qdev-properties.h"
40 #include "hw/usb.h"
41 #include "net/net.h"
42
43 #define RAMLIMIT_GB 8192
44 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
45
46 #define NUM_IRQS 256
47 #define NUM_SMMU_IRQS 4
48 #define NUM_SATA_PORTS 6
49
50 #define VIRTUAL_PMU_IRQ 7
51 #define ARCH_GIC_MAINT_IRQ 9
52 #define ARCH_TIMER_VIRT_IRQ 11
53 #define ARCH_TIMER_S_EL1_IRQ 13
54 #define ARCH_TIMER_NS_EL1_IRQ 14
55 #define ARCH_TIMER_NS_EL2_IRQ 10
56
57 enum {
58 SBSA_FLASH,
59 SBSA_MEM,
60 SBSA_CPUPERIPHS,
61 SBSA_GIC_DIST,
62 SBSA_GIC_REDIST,
63 SBSA_SMMU,
64 SBSA_UART,
65 SBSA_RTC,
66 SBSA_PCIE,
67 SBSA_PCIE_MMIO,
68 SBSA_PCIE_MMIO_HIGH,
69 SBSA_PCIE_PIO,
70 SBSA_PCIE_ECAM,
71 SBSA_GPIO,
72 SBSA_SECURE_UART,
73 SBSA_SECURE_UART_MM,
74 SBSA_SECURE_MEM,
75 SBSA_AHCI,
76 SBSA_EHCI,
77 };
78
79 typedef struct MemMapEntry {
80 hwaddr base;
81 hwaddr size;
82 } MemMapEntry;
83
84 typedef struct {
85 MachineState parent;
86 struct arm_boot_info bootinfo;
87 int smp_cpus;
88 void *fdt;
89 int fdt_size;
90 int psci_conduit;
91 PFlashCFI01 *flash[2];
92 } SBSAMachineState;
93
94 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
95 #define SBSA_MACHINE(obj) \
96 OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
97
98 static const MemMapEntry sbsa_ref_memmap[] = {
99 /* 512M boot ROM */
100 [SBSA_FLASH] = { 0, 0x20000000 },
101 /* 512M secure memory */
102 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
103 /* Space reserved for CPU peripheral devices */
104 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
105 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
106 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
107 [SBSA_UART] = { 0x60000000, 0x00001000 },
108 [SBSA_RTC] = { 0x60010000, 0x00001000 },
109 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
110 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
111 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
112 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
113 /* Space here reserved for more SMMUs */
114 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
115 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
116 /* Space here reserved for other devices */
117 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
118 /* 32-bit address PCIE MMIO space */
119 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
120 /* 256M PCIE ECAM space */
121 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
122 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
123 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
124 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
125 };
126
127 static const int sbsa_ref_irqmap[] = {
128 [SBSA_UART] = 1,
129 [SBSA_RTC] = 2,
130 [SBSA_PCIE] = 3, /* ... to 6 */
131 [SBSA_GPIO] = 7,
132 [SBSA_SECURE_UART] = 8,
133 [SBSA_SECURE_UART_MM] = 9,
134 [SBSA_AHCI] = 10,
135 [SBSA_EHCI] = 11,
136 };
137
138 /*
139 * Firmware on this machine only uses ACPI table to load OS, these limited
140 * device tree nodes are just to let firmware know the info which varies from
141 * command line parameters, so it is not necessary to be fully compatible
142 * with the kernel CPU and NUMA binding rules.
143 */
144 static void create_fdt(SBSAMachineState *sms)
145 {
146 void *fdt = create_device_tree(&sms->fdt_size);
147 const MachineState *ms = MACHINE(sms);
148 int cpu;
149
150 if (!fdt) {
151 error_report("create_device_tree() failed");
152 exit(1);
153 }
154
155 sms->fdt = fdt;
156
157 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
158 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
159 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
160
161 if (have_numa_distance) {
162 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
163 uint32_t *matrix = g_malloc0(size);
164 int idx, i, j;
165
166 for (i = 0; i < nb_numa_nodes; i++) {
167 for (j = 0; j < nb_numa_nodes; j++) {
168 idx = (i * nb_numa_nodes + j) * 3;
169 matrix[idx + 0] = cpu_to_be32(i);
170 matrix[idx + 1] = cpu_to_be32(j);
171 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
172 }
173 }
174
175 qemu_fdt_add_subnode(fdt, "/distance-map");
176 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
177 matrix, size);
178 g_free(matrix);
179 }
180
181 qemu_fdt_add_subnode(sms->fdt, "/cpus");
182
183 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
184 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
185 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
186 CPUState *cs = CPU(armcpu);
187
188 qemu_fdt_add_subnode(sms->fdt, nodename);
189
190 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
191 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
192 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
193 }
194
195 g_free(nodename);
196 }
197 }
198
199 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
200
201 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
202 const char *name,
203 const char *alias_prop_name)
204 {
205 /*
206 * Create a single flash device. We use the same parameters as
207 * the flash devices on the Versatile Express board.
208 */
209 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
210
211 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
212 qdev_prop_set_uint8(dev, "width", 4);
213 qdev_prop_set_uint8(dev, "device-width", 2);
214 qdev_prop_set_bit(dev, "big-endian", false);
215 qdev_prop_set_uint16(dev, "id0", 0x89);
216 qdev_prop_set_uint16(dev, "id1", 0x18);
217 qdev_prop_set_uint16(dev, "id2", 0x00);
218 qdev_prop_set_uint16(dev, "id3", 0x00);
219 qdev_prop_set_string(dev, "name", name);
220 object_property_add_child(OBJECT(sms), name, OBJECT(dev),
221 &error_abort);
222 object_property_add_alias(OBJECT(sms), alias_prop_name,
223 OBJECT(dev), "drive", &error_abort);
224 return PFLASH_CFI01(dev);
225 }
226
227 static void sbsa_flash_create(SBSAMachineState *sms)
228 {
229 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
230 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
231 }
232
233 static void sbsa_flash_map1(PFlashCFI01 *flash,
234 hwaddr base, hwaddr size,
235 MemoryRegion *sysmem)
236 {
237 DeviceState *dev = DEVICE(flash);
238
239 assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
240 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
241 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
242 qdev_init_nofail(dev);
243
244 memory_region_add_subregion(sysmem, base,
245 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
246 0));
247 }
248
249 static void sbsa_flash_map(SBSAMachineState *sms,
250 MemoryRegion *sysmem,
251 MemoryRegion *secure_sysmem)
252 {
253 /*
254 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
255 * sysmem is the system memory space. secure_sysmem is the secure view
256 * of the system, and the first flash device should be made visible only
257 * there. The second flash device is visible to both secure and nonsecure.
258 */
259 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
260 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
261
262 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
263 secure_sysmem);
264 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
265 sysmem);
266 }
267
268 static bool sbsa_firmware_init(SBSAMachineState *sms,
269 MemoryRegion *sysmem,
270 MemoryRegion *secure_sysmem)
271 {
272 int i;
273 BlockBackend *pflash_blk0;
274
275 /* Map legacy -drive if=pflash to machine properties */
276 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
277 pflash_cfi01_legacy_drive(sms->flash[i],
278 drive_get(IF_PFLASH, 0, i));
279 }
280
281 sbsa_flash_map(sms, sysmem, secure_sysmem);
282
283 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
284
285 if (bios_name) {
286 char *fname;
287 MemoryRegion *mr;
288 int image_size;
289
290 if (pflash_blk0) {
291 error_report("The contents of the first flash device may be "
292 "specified with -bios or with -drive if=pflash... "
293 "but you cannot use both options at once");
294 exit(1);
295 }
296
297 /* Fall back to -bios */
298
299 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
300 if (!fname) {
301 error_report("Could not find ROM image '%s'", bios_name);
302 exit(1);
303 }
304 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
305 image_size = load_image_mr(fname, mr);
306 g_free(fname);
307 if (image_size < 0) {
308 error_report("Could not load ROM image '%s'", bios_name);
309 exit(1);
310 }
311 }
312
313 return pflash_blk0 || bios_name;
314 }
315
316 static void create_secure_ram(SBSAMachineState *sms,
317 MemoryRegion *secure_sysmem)
318 {
319 MemoryRegion *secram = g_new(MemoryRegion, 1);
320 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
321 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
322
323 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
324 &error_fatal);
325 memory_region_add_subregion(secure_sysmem, base, secram);
326 }
327
328 static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
329 {
330 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
331 DeviceState *gicdev;
332 SysBusDevice *gicbusdev;
333 const char *gictype;
334 uint32_t redist0_capacity, redist0_count;
335 int i;
336
337 gictype = gicv3_class_name();
338
339 gicdev = qdev_create(NULL, gictype);
340 qdev_prop_set_uint32(gicdev, "revision", 3);
341 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
342 /*
343 * Note that the num-irq property counts both internal and external
344 * interrupts; there are always 32 of the former (mandated by GIC spec).
345 */
346 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
347 qdev_prop_set_bit(gicdev, "has-security-extensions", true);
348
349 redist0_capacity =
350 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
351 redist0_count = MIN(smp_cpus, redist0_capacity);
352
353 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
354 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
355
356 qdev_init_nofail(gicdev);
357 gicbusdev = SYS_BUS_DEVICE(gicdev);
358 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
359 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
360
361 /*
362 * Wire the outputs from each CPU's generic timer and the GICv3
363 * maintenance interrupt signal to the appropriate GIC PPI inputs,
364 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
365 */
366 for (i = 0; i < smp_cpus; i++) {
367 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
368 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
369 int irq;
370 /*
371 * Mapping from the output timer irq lines from the CPU to the
372 * GIC PPI inputs used for this board.
373 */
374 const int timer_irq[] = {
375 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
376 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
377 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
378 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
379 };
380
381 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
382 qdev_connect_gpio_out(cpudev, irq,
383 qdev_get_gpio_in(gicdev,
384 ppibase + timer_irq[irq]));
385 }
386
387 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
388 qdev_get_gpio_in(gicdev, ppibase
389 + ARCH_GIC_MAINT_IRQ));
390 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
391 qdev_get_gpio_in(gicdev, ppibase
392 + VIRTUAL_PMU_IRQ));
393
394 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
395 sysbus_connect_irq(gicbusdev, i + smp_cpus,
396 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
397 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
398 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
399 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
400 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
401 }
402
403 for (i = 0; i < NUM_IRQS; i++) {
404 pic[i] = qdev_get_gpio_in(gicdev, i);
405 }
406 }
407
408 static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
409 MemoryRegion *mem, Chardev *chr)
410 {
411 hwaddr base = sbsa_ref_memmap[uart].base;
412 int irq = sbsa_ref_irqmap[uart];
413 DeviceState *dev = qdev_create(NULL, "pl011");
414 SysBusDevice *s = SYS_BUS_DEVICE(dev);
415
416 qdev_prop_set_chr(dev, "chardev", chr);
417 qdev_init_nofail(dev);
418 memory_region_add_subregion(mem, base,
419 sysbus_mmio_get_region(s, 0));
420 sysbus_connect_irq(s, 0, pic[irq]);
421 }
422
423 static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
424 {
425 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
426 int irq = sbsa_ref_irqmap[SBSA_RTC];
427
428 sysbus_create_simple("pl031", base, pic[irq]);
429 }
430
431 static DeviceState *gpio_key_dev;
432 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
433 {
434 /* use gpio Pin 3 for power button event */
435 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
436 }
437
438 static Notifier sbsa_ref_powerdown_notifier = {
439 .notify = sbsa_ref_powerdown_req
440 };
441
442 static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
443 {
444 DeviceState *pl061_dev;
445 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
446 int irq = sbsa_ref_irqmap[SBSA_GPIO];
447
448 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
449
450 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
451 qdev_get_gpio_in(pl061_dev, 3));
452
453 /* connect powerdown request */
454 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
455 }
456
457 static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
458 {
459 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
460 int irq = sbsa_ref_irqmap[SBSA_AHCI];
461 DeviceState *dev;
462 DriveInfo *hd[NUM_SATA_PORTS];
463 SysbusAHCIState *sysahci;
464 AHCIState *ahci;
465 int i;
466
467 dev = qdev_create(NULL, "sysbus-ahci");
468 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
469 qdev_init_nofail(dev);
470 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
471 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
472
473 sysahci = SYSBUS_AHCI(dev);
474 ahci = &sysahci->ahci;
475 ide_drive_get(hd, ARRAY_SIZE(hd));
476 for (i = 0; i < ahci->ports; i++) {
477 if (hd[i] == NULL) {
478 continue;
479 }
480 ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
481 }
482 }
483
484 static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
485 {
486 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
487 int irq = sbsa_ref_irqmap[SBSA_EHCI];
488
489 sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
490 }
491
492 static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
493 PCIBus *bus)
494 {
495 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
496 int irq = sbsa_ref_irqmap[SBSA_SMMU];
497 DeviceState *dev;
498 int i;
499
500 dev = qdev_create(NULL, "arm-smmuv3");
501
502 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
503 &error_abort);
504 qdev_init_nofail(dev);
505 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
506 for (i = 0; i < NUM_SMMU_IRQS; i++) {
507 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
508 }
509 }
510
511 static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
512 {
513 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
514 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
515 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
516 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
517 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
518 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
519 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
520 int irq = sbsa_ref_irqmap[SBSA_PCIE];
521 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
522 MemoryRegion *ecam_alias, *ecam_reg;
523 DeviceState *dev;
524 PCIHostState *pci;
525 int i;
526
527 dev = qdev_create(NULL, TYPE_GPEX_HOST);
528 qdev_init_nofail(dev);
529
530 /* Map ECAM space */
531 ecam_alias = g_new0(MemoryRegion, 1);
532 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
533 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
534 ecam_reg, 0, size_ecam);
535 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
536
537 /* Map the MMIO space */
538 mmio_alias = g_new0(MemoryRegion, 1);
539 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
540 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
541 mmio_reg, base_mmio, size_mmio);
542 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
543
544 /* Map the MMIO_HIGH space */
545 mmio_alias_high = g_new0(MemoryRegion, 1);
546 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
547 mmio_reg, base_mmio_high, size_mmio_high);
548 memory_region_add_subregion(get_system_memory(), base_mmio_high,
549 mmio_alias_high);
550
551 /* Map IO port space */
552 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
553
554 for (i = 0; i < GPEX_NUM_IRQS; i++) {
555 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
556 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
557 }
558
559 pci = PCI_HOST_BRIDGE(dev);
560 if (pci->bus) {
561 for (i = 0; i < nb_nics; i++) {
562 NICInfo *nd = &nd_table[i];
563
564 if (!nd->model) {
565 nd->model = g_strdup("e1000e");
566 }
567
568 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
569 }
570 }
571
572 pci_create_simple(pci->bus, -1, "VGA");
573
574 create_smmu(sms, pic, pci->bus);
575 }
576
577 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
578 {
579 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
580 bootinfo);
581
582 *fdt_size = board->fdt_size;
583 return board->fdt;
584 }
585
586 static void sbsa_ref_init(MachineState *machine)
587 {
588 unsigned int smp_cpus = machine->smp.cpus;
589 unsigned int max_cpus = machine->smp.max_cpus;
590 SBSAMachineState *sms = SBSA_MACHINE(machine);
591 MachineClass *mc = MACHINE_GET_CLASS(machine);
592 MemoryRegion *sysmem = get_system_memory();
593 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
594 MemoryRegion *ram = g_new(MemoryRegion, 1);
595 bool firmware_loaded;
596 const CPUArchIdList *possible_cpus;
597 int n, sbsa_max_cpus;
598 qemu_irq pic[NUM_IRQS];
599
600 if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
601 error_report("sbsa-ref: CPU type other than the built-in "
602 "cortex-a57 not supported");
603 exit(1);
604 }
605
606 if (kvm_enabled()) {
607 error_report("sbsa-ref: KVM is not supported for this machine");
608 exit(1);
609 }
610
611 /*
612 * The Secure view of the world is the same as the NonSecure,
613 * but with a few extra devices. Create it as a container region
614 * containing the system memory at low priority; any secure-only
615 * devices go in at higher priority and take precedence.
616 */
617 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
618 UINT64_MAX);
619 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
620
621 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
622
623 if (machine->kernel_filename && firmware_loaded) {
624 error_report("sbsa-ref: No fw_cfg device on this machine, "
625 "so -kernel option is not supported when firmware loaded, "
626 "please load OS from hard disk instead");
627 exit(1);
628 }
629
630 /*
631 * This machine has EL3 enabled, external firmware should supply PSCI
632 * implementation, so the QEMU's internal PSCI is disabled.
633 */
634 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
635
636 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
637
638 if (max_cpus > sbsa_max_cpus) {
639 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
640 "supported by machine 'sbsa-ref' (%d)",
641 max_cpus, sbsa_max_cpus);
642 exit(1);
643 }
644
645 sms->smp_cpus = smp_cpus;
646
647 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
648 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
649 exit(1);
650 }
651
652 possible_cpus = mc->possible_cpu_arch_ids(machine);
653 for (n = 0; n < possible_cpus->len; n++) {
654 Object *cpuobj;
655 CPUState *cs;
656
657 if (n >= smp_cpus) {
658 break;
659 }
660
661 cpuobj = object_new(possible_cpus->cpus[n].type);
662 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
663 "mp-affinity", NULL);
664
665 cs = CPU(cpuobj);
666 cs->cpu_index = n;
667
668 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
669 &error_fatal);
670
671 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
672 object_property_set_int(cpuobj,
673 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
674 "reset-cbar", &error_abort);
675 }
676
677 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
678 &error_abort);
679
680 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
681 "secure-memory", &error_abort);
682
683 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
684 object_unref(cpuobj);
685 }
686
687 memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
688 machine->ram_size);
689 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
690
691 create_fdt(sms);
692
693 create_secure_ram(sms, secure_sysmem);
694
695 create_gic(sms, pic);
696
697 create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
698 create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
699 /* Second secure UART for RAS and MM from EL0 */
700 create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
701
702 create_rtc(sms, pic);
703
704 create_gpio(sms, pic);
705
706 create_ahci(sms, pic);
707
708 create_ehci(sms, pic);
709
710 create_pcie(sms, pic);
711
712 sms->bootinfo.ram_size = machine->ram_size;
713 sms->bootinfo.kernel_filename = machine->kernel_filename;
714 sms->bootinfo.nb_cpus = smp_cpus;
715 sms->bootinfo.board_id = -1;
716 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
717 sms->bootinfo.get_dtb = sbsa_ref_dtb;
718 sms->bootinfo.firmware_loaded = firmware_loaded;
719 arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
720 }
721
722 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
723 {
724 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
725 return arm_cpu_mp_affinity(idx, clustersz);
726 }
727
728 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
729 {
730 unsigned int max_cpus = ms->smp.max_cpus;
731 SBSAMachineState *sms = SBSA_MACHINE(ms);
732 int n;
733
734 if (ms->possible_cpus) {
735 assert(ms->possible_cpus->len == max_cpus);
736 return ms->possible_cpus;
737 }
738
739 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
740 sizeof(CPUArchId) * max_cpus);
741 ms->possible_cpus->len = max_cpus;
742 for (n = 0; n < ms->possible_cpus->len; n++) {
743 ms->possible_cpus->cpus[n].type = ms->cpu_type;
744 ms->possible_cpus->cpus[n].arch_id =
745 sbsa_ref_cpu_mp_affinity(sms, n);
746 ms->possible_cpus->cpus[n].props.has_thread_id = true;
747 ms->possible_cpus->cpus[n].props.thread_id = n;
748 }
749 return ms->possible_cpus;
750 }
751
752 static CpuInstanceProperties
753 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
754 {
755 MachineClass *mc = MACHINE_GET_CLASS(ms);
756 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
757
758 assert(cpu_index < possible_cpus->len);
759 return possible_cpus->cpus[cpu_index].props;
760 }
761
762 static int64_t
763 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
764 {
765 return idx % nb_numa_nodes;
766 }
767
768 static void sbsa_ref_instance_init(Object *obj)
769 {
770 SBSAMachineState *sms = SBSA_MACHINE(obj);
771
772 sbsa_flash_create(sms);
773 }
774
775 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
776 {
777 MachineClass *mc = MACHINE_CLASS(oc);
778
779 mc->init = sbsa_ref_init;
780 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
781 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
782 mc->max_cpus = 512;
783 mc->pci_allow_0_address = true;
784 mc->minimum_page_bits = 12;
785 mc->block_default_type = IF_IDE;
786 mc->no_cdrom = 1;
787 mc->default_ram_size = 1 * GiB;
788 mc->default_cpus = 4;
789 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
790 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
791 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
792 }
793
794 static const TypeInfo sbsa_ref_info = {
795 .name = TYPE_SBSA_MACHINE,
796 .parent = TYPE_MACHINE,
797 .instance_init = sbsa_ref_instance_init,
798 .class_init = sbsa_ref_class_init,
799 .instance_size = sizeof(SBSAMachineState),
800 };
801
802 static void sbsa_ref_machine_init(void)
803 {
804 type_register_static(&sbsa_ref_info);
805 }
806
807 type_init(sbsa_ref_machine_init);