]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
Merge tag 'pull-target-arm-20220509' of https://git.linaro.org/people/pmaydell/qemu...
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/block/flash.h"
33 #include "hw/boards.h"
34 #include "hw/ide/internal.h"
35 #include "hw/ide/ahci_internal.h"
36 #include "hw/intc/arm_gicv3_common.h"
37 #include "hw/loader.h"
38 #include "hw/pci-host/gpex.h"
39 #include "hw/qdev-properties.h"
40 #include "hw/usb.h"
41 #include "hw/char/pl011.h"
42 #include "hw/watchdog/sbsa_gwdt.h"
43 #include "net/net.h"
44 #include "qom/object.h"
45
46 #define RAMLIMIT_GB 8192
47 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
48
49 #define NUM_IRQS 256
50 #define NUM_SMMU_IRQS 4
51 #define NUM_SATA_PORTS 6
52
53 #define VIRTUAL_PMU_IRQ 7
54 #define ARCH_GIC_MAINT_IRQ 9
55 #define ARCH_TIMER_VIRT_IRQ 11
56 #define ARCH_TIMER_S_EL1_IRQ 13
57 #define ARCH_TIMER_NS_EL1_IRQ 14
58 #define ARCH_TIMER_NS_EL2_IRQ 10
59
60 enum {
61 SBSA_FLASH,
62 SBSA_MEM,
63 SBSA_CPUPERIPHS,
64 SBSA_GIC_DIST,
65 SBSA_GIC_REDIST,
66 SBSA_SECURE_EC,
67 SBSA_GWDT_WS0,
68 SBSA_GWDT_REFRESH,
69 SBSA_GWDT_CONTROL,
70 SBSA_SMMU,
71 SBSA_UART,
72 SBSA_RTC,
73 SBSA_PCIE,
74 SBSA_PCIE_MMIO,
75 SBSA_PCIE_MMIO_HIGH,
76 SBSA_PCIE_PIO,
77 SBSA_PCIE_ECAM,
78 SBSA_GPIO,
79 SBSA_SECURE_UART,
80 SBSA_SECURE_UART_MM,
81 SBSA_SECURE_MEM,
82 SBSA_AHCI,
83 SBSA_EHCI,
84 };
85
86 struct SBSAMachineState {
87 MachineState parent;
88 struct arm_boot_info bootinfo;
89 int smp_cpus;
90 void *fdt;
91 int fdt_size;
92 int psci_conduit;
93 DeviceState *gic;
94 PFlashCFI01 *flash[2];
95 };
96
97 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
98 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
99
100 static const MemMapEntry sbsa_ref_memmap[] = {
101 /* 512M boot ROM */
102 [SBSA_FLASH] = { 0, 0x20000000 },
103 /* 512M secure memory */
104 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
105 /* Space reserved for CPU peripheral devices */
106 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
107 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
108 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
109 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
110 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
111 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
112 [SBSA_UART] = { 0x60000000, 0x00001000 },
113 [SBSA_RTC] = { 0x60010000, 0x00001000 },
114 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
115 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
116 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
117 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
118 /* Space here reserved for more SMMUs */
119 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
120 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
121 /* Space here reserved for other devices */
122 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
123 /* 32-bit address PCIE MMIO space */
124 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
125 /* 256M PCIE ECAM space */
126 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
127 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
128 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
129 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
130 };
131
132 static const int sbsa_ref_irqmap[] = {
133 [SBSA_UART] = 1,
134 [SBSA_RTC] = 2,
135 [SBSA_PCIE] = 3, /* ... to 6 */
136 [SBSA_GPIO] = 7,
137 [SBSA_SECURE_UART] = 8,
138 [SBSA_SECURE_UART_MM] = 9,
139 [SBSA_AHCI] = 10,
140 [SBSA_EHCI] = 11,
141 [SBSA_SMMU] = 12, /* ... to 15 */
142 [SBSA_GWDT_WS0] = 16,
143 };
144
145 static const char * const valid_cpus[] = {
146 ARM_CPU_TYPE_NAME("cortex-a57"),
147 ARM_CPU_TYPE_NAME("cortex-a72"),
148 ARM_CPU_TYPE_NAME("cortex-a76"),
149 ARM_CPU_TYPE_NAME("neoverse-n1"),
150 ARM_CPU_TYPE_NAME("max"),
151 };
152
153 static bool cpu_type_valid(const char *cpu)
154 {
155 int i;
156
157 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
158 if (strcmp(cpu, valid_cpus[i]) == 0) {
159 return true;
160 }
161 }
162 return false;
163 }
164
165 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
166 {
167 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
168 return arm_cpu_mp_affinity(idx, clustersz);
169 }
170
171 /*
172 * Firmware on this machine only uses ACPI table to load OS, these limited
173 * device tree nodes are just to let firmware know the info which varies from
174 * command line parameters, so it is not necessary to be fully compatible
175 * with the kernel CPU and NUMA binding rules.
176 */
177 static void create_fdt(SBSAMachineState *sms)
178 {
179 void *fdt = create_device_tree(&sms->fdt_size);
180 const MachineState *ms = MACHINE(sms);
181 int nb_numa_nodes = ms->numa_state->num_nodes;
182 int cpu;
183
184 if (!fdt) {
185 error_report("create_device_tree() failed");
186 exit(1);
187 }
188
189 sms->fdt = fdt;
190
191 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
192 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
193 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
194
195 /*
196 * This versioning scheme is for informing platform fw only. It is neither:
197 * - A QEMU versioned machine type; a given version of QEMU will emulate
198 * a given version of the platform.
199 * - A reflection of level of SBSA (now SystemReady SR) support provided.
200 *
201 * machine-version-major: updated when changes breaking fw compatibility
202 * are introduced.
203 * machine-version-minor: updated when features are added that don't break
204 * fw compatibility.
205 */
206 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
207 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 0);
208
209 if (ms->numa_state->have_numa_distance) {
210 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
211 uint32_t *matrix = g_malloc0(size);
212 int idx, i, j;
213
214 for (i = 0; i < nb_numa_nodes; i++) {
215 for (j = 0; j < nb_numa_nodes; j++) {
216 idx = (i * nb_numa_nodes + j) * 3;
217 matrix[idx + 0] = cpu_to_be32(i);
218 matrix[idx + 1] = cpu_to_be32(j);
219 matrix[idx + 2] =
220 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
221 }
222 }
223
224 qemu_fdt_add_subnode(fdt, "/distance-map");
225 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
226 matrix, size);
227 g_free(matrix);
228 }
229
230 /*
231 * From Documentation/devicetree/bindings/arm/cpus.yaml
232 * On ARM v8 64-bit systems this property is required
233 * and matches the MPIDR_EL1 register affinity bits.
234 *
235 * * If cpus node's #address-cells property is set to 2
236 *
237 * The first reg cell bits [7:0] must be set to
238 * bits [39:32] of MPIDR_EL1.
239 *
240 * The second reg cell bits [23:0] must be set to
241 * bits [23:0] of MPIDR_EL1.
242 */
243 qemu_fdt_add_subnode(sms->fdt, "/cpus");
244 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
245 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
246
247 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
248 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
249 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
250 CPUState *cs = CPU(armcpu);
251 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
252
253 qemu_fdt_add_subnode(sms->fdt, nodename);
254 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
255
256 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
257 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
258 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
259 }
260
261 g_free(nodename);
262 }
263 }
264
265 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
266
267 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
268 const char *name,
269 const char *alias_prop_name)
270 {
271 /*
272 * Create a single flash device. We use the same parameters as
273 * the flash devices on the Versatile Express board.
274 */
275 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
276
277 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
278 qdev_prop_set_uint8(dev, "width", 4);
279 qdev_prop_set_uint8(dev, "device-width", 2);
280 qdev_prop_set_bit(dev, "big-endian", false);
281 qdev_prop_set_uint16(dev, "id0", 0x89);
282 qdev_prop_set_uint16(dev, "id1", 0x18);
283 qdev_prop_set_uint16(dev, "id2", 0x00);
284 qdev_prop_set_uint16(dev, "id3", 0x00);
285 qdev_prop_set_string(dev, "name", name);
286 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
287 object_property_add_alias(OBJECT(sms), alias_prop_name,
288 OBJECT(dev), "drive");
289 return PFLASH_CFI01(dev);
290 }
291
292 static void sbsa_flash_create(SBSAMachineState *sms)
293 {
294 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
295 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
296 }
297
298 static void sbsa_flash_map1(PFlashCFI01 *flash,
299 hwaddr base, hwaddr size,
300 MemoryRegion *sysmem)
301 {
302 DeviceState *dev = DEVICE(flash);
303
304 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
305 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
306 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
307 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
308
309 memory_region_add_subregion(sysmem, base,
310 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
311 0));
312 }
313
314 static void sbsa_flash_map(SBSAMachineState *sms,
315 MemoryRegion *sysmem,
316 MemoryRegion *secure_sysmem)
317 {
318 /*
319 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
320 * sysmem is the system memory space. secure_sysmem is the secure view
321 * of the system, and the first flash device should be made visible only
322 * there. The second flash device is visible to both secure and nonsecure.
323 */
324 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
325 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
326
327 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
328 secure_sysmem);
329 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
330 sysmem);
331 }
332
333 static bool sbsa_firmware_init(SBSAMachineState *sms,
334 MemoryRegion *sysmem,
335 MemoryRegion *secure_sysmem)
336 {
337 const char *bios_name;
338 int i;
339 BlockBackend *pflash_blk0;
340
341 /* Map legacy -drive if=pflash to machine properties */
342 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
343 pflash_cfi01_legacy_drive(sms->flash[i],
344 drive_get(IF_PFLASH, 0, i));
345 }
346
347 sbsa_flash_map(sms, sysmem, secure_sysmem);
348
349 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
350
351 bios_name = MACHINE(sms)->firmware;
352 if (bios_name) {
353 char *fname;
354 MemoryRegion *mr;
355 int image_size;
356
357 if (pflash_blk0) {
358 error_report("The contents of the first flash device may be "
359 "specified with -bios or with -drive if=pflash... "
360 "but you cannot use both options at once");
361 exit(1);
362 }
363
364 /* Fall back to -bios */
365
366 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
367 if (!fname) {
368 error_report("Could not find ROM image '%s'", bios_name);
369 exit(1);
370 }
371 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
372 image_size = load_image_mr(fname, mr);
373 g_free(fname);
374 if (image_size < 0) {
375 error_report("Could not load ROM image '%s'", bios_name);
376 exit(1);
377 }
378 }
379
380 return pflash_blk0 || bios_name;
381 }
382
383 static void create_secure_ram(SBSAMachineState *sms,
384 MemoryRegion *secure_sysmem)
385 {
386 MemoryRegion *secram = g_new(MemoryRegion, 1);
387 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
388 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
389
390 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
391 &error_fatal);
392 memory_region_add_subregion(secure_sysmem, base, secram);
393 }
394
395 static void create_gic(SBSAMachineState *sms)
396 {
397 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
398 SysBusDevice *gicbusdev;
399 const char *gictype;
400 uint32_t redist0_capacity, redist0_count;
401 int i;
402
403 gictype = gicv3_class_name();
404
405 sms->gic = qdev_new(gictype);
406 qdev_prop_set_uint32(sms->gic, "revision", 3);
407 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
408 /*
409 * Note that the num-irq property counts both internal and external
410 * interrupts; there are always 32 of the former (mandated by GIC spec).
411 */
412 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
413 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
414
415 redist0_capacity =
416 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
417 redist0_count = MIN(smp_cpus, redist0_capacity);
418
419 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
420 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
421
422 gicbusdev = SYS_BUS_DEVICE(sms->gic);
423 sysbus_realize_and_unref(gicbusdev, &error_fatal);
424 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
425 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
426
427 /*
428 * Wire the outputs from each CPU's generic timer and the GICv3
429 * maintenance interrupt signal to the appropriate GIC PPI inputs,
430 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
431 */
432 for (i = 0; i < smp_cpus; i++) {
433 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
434 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
435 int irq;
436 /*
437 * Mapping from the output timer irq lines from the CPU to the
438 * GIC PPI inputs used for this board.
439 */
440 const int timer_irq[] = {
441 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
442 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
443 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
444 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
445 };
446
447 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
448 qdev_connect_gpio_out(cpudev, irq,
449 qdev_get_gpio_in(sms->gic,
450 ppibase + timer_irq[irq]));
451 }
452
453 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
454 qdev_get_gpio_in(sms->gic, ppibase
455 + ARCH_GIC_MAINT_IRQ));
456 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
457 qdev_get_gpio_in(sms->gic, ppibase
458 + VIRTUAL_PMU_IRQ));
459
460 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
461 sysbus_connect_irq(gicbusdev, i + smp_cpus,
462 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
463 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
464 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
465 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
466 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
467 }
468 }
469
470 static void create_uart(const SBSAMachineState *sms, int uart,
471 MemoryRegion *mem, Chardev *chr)
472 {
473 hwaddr base = sbsa_ref_memmap[uart].base;
474 int irq = sbsa_ref_irqmap[uart];
475 DeviceState *dev = qdev_new(TYPE_PL011);
476 SysBusDevice *s = SYS_BUS_DEVICE(dev);
477
478 qdev_prop_set_chr(dev, "chardev", chr);
479 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
480 memory_region_add_subregion(mem, base,
481 sysbus_mmio_get_region(s, 0));
482 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
483 }
484
485 static void create_rtc(const SBSAMachineState *sms)
486 {
487 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
488 int irq = sbsa_ref_irqmap[SBSA_RTC];
489
490 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
491 }
492
493 static void create_wdt(const SBSAMachineState *sms)
494 {
495 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
496 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
497 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
498 SysBusDevice *s = SYS_BUS_DEVICE(dev);
499 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
500
501 sysbus_realize_and_unref(s, &error_fatal);
502 sysbus_mmio_map(s, 0, rbase);
503 sysbus_mmio_map(s, 1, cbase);
504 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
505 }
506
507 static DeviceState *gpio_key_dev;
508 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
509 {
510 /* use gpio Pin 3 for power button event */
511 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
512 }
513
514 static Notifier sbsa_ref_powerdown_notifier = {
515 .notify = sbsa_ref_powerdown_req
516 };
517
518 static void create_gpio(const SBSAMachineState *sms)
519 {
520 DeviceState *pl061_dev;
521 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
522 int irq = sbsa_ref_irqmap[SBSA_GPIO];
523
524 pl061_dev = sysbus_create_simple("pl061", base,
525 qdev_get_gpio_in(sms->gic, irq));
526
527 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
528 qdev_get_gpio_in(pl061_dev, 3));
529
530 /* connect powerdown request */
531 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
532 }
533
534 static void create_ahci(const SBSAMachineState *sms)
535 {
536 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
537 int irq = sbsa_ref_irqmap[SBSA_AHCI];
538 DeviceState *dev;
539 DriveInfo *hd[NUM_SATA_PORTS];
540 SysbusAHCIState *sysahci;
541 AHCIState *ahci;
542 int i;
543
544 dev = qdev_new("sysbus-ahci");
545 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
546 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
547 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
548 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
549
550 sysahci = SYSBUS_AHCI(dev);
551 ahci = &sysahci->ahci;
552 ide_drive_get(hd, ARRAY_SIZE(hd));
553 for (i = 0; i < ahci->ports; i++) {
554 if (hd[i] == NULL) {
555 continue;
556 }
557 ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
558 }
559 }
560
561 static void create_ehci(const SBSAMachineState *sms)
562 {
563 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
564 int irq = sbsa_ref_irqmap[SBSA_EHCI];
565
566 sysbus_create_simple("platform-ehci-usb", base,
567 qdev_get_gpio_in(sms->gic, irq));
568 }
569
570 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
571 {
572 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
573 int irq = sbsa_ref_irqmap[SBSA_SMMU];
574 DeviceState *dev;
575 int i;
576
577 dev = qdev_new("arm-smmuv3");
578
579 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
580 &error_abort);
581 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
582 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
583 for (i = 0; i < NUM_SMMU_IRQS; i++) {
584 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
585 qdev_get_gpio_in(sms->gic, irq + i));
586 }
587 }
588
589 static void create_pcie(SBSAMachineState *sms)
590 {
591 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
592 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
593 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
594 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
595 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
596 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
597 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
598 int irq = sbsa_ref_irqmap[SBSA_PCIE];
599 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
600 MemoryRegion *ecam_alias, *ecam_reg;
601 DeviceState *dev;
602 PCIHostState *pci;
603 int i;
604
605 dev = qdev_new(TYPE_GPEX_HOST);
606 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
607
608 /* Map ECAM space */
609 ecam_alias = g_new0(MemoryRegion, 1);
610 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
611 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
612 ecam_reg, 0, size_ecam);
613 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
614
615 /* Map the MMIO space */
616 mmio_alias = g_new0(MemoryRegion, 1);
617 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
618 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
619 mmio_reg, base_mmio, size_mmio);
620 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
621
622 /* Map the MMIO_HIGH space */
623 mmio_alias_high = g_new0(MemoryRegion, 1);
624 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
625 mmio_reg, base_mmio_high, size_mmio_high);
626 memory_region_add_subregion(get_system_memory(), base_mmio_high,
627 mmio_alias_high);
628
629 /* Map IO port space */
630 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
631
632 for (i = 0; i < GPEX_NUM_IRQS; i++) {
633 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
634 qdev_get_gpio_in(sms->gic, irq + i));
635 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
636 }
637
638 pci = PCI_HOST_BRIDGE(dev);
639 if (pci->bus) {
640 for (i = 0; i < nb_nics; i++) {
641 NICInfo *nd = &nd_table[i];
642
643 if (!nd->model) {
644 nd->model = g_strdup("e1000e");
645 }
646
647 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
648 }
649 }
650
651 pci_create_simple(pci->bus, -1, "VGA");
652
653 create_smmu(sms, pci->bus);
654 }
655
656 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
657 {
658 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
659 bootinfo);
660
661 *fdt_size = board->fdt_size;
662 return board->fdt;
663 }
664
665 static void create_secure_ec(MemoryRegion *mem)
666 {
667 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
668 DeviceState *dev = qdev_new("sbsa-ec");
669 SysBusDevice *s = SYS_BUS_DEVICE(dev);
670
671 memory_region_add_subregion(mem, base,
672 sysbus_mmio_get_region(s, 0));
673 }
674
675 static void sbsa_ref_init(MachineState *machine)
676 {
677 unsigned int smp_cpus = machine->smp.cpus;
678 unsigned int max_cpus = machine->smp.max_cpus;
679 SBSAMachineState *sms = SBSA_MACHINE(machine);
680 MachineClass *mc = MACHINE_GET_CLASS(machine);
681 MemoryRegion *sysmem = get_system_memory();
682 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
683 bool firmware_loaded;
684 const CPUArchIdList *possible_cpus;
685 int n, sbsa_max_cpus;
686
687 if (!cpu_type_valid(machine->cpu_type)) {
688 error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
689 exit(1);
690 }
691
692 if (kvm_enabled()) {
693 error_report("sbsa-ref: KVM is not supported for this machine");
694 exit(1);
695 }
696
697 /*
698 * The Secure view of the world is the same as the NonSecure,
699 * but with a few extra devices. Create it as a container region
700 * containing the system memory at low priority; any secure-only
701 * devices go in at higher priority and take precedence.
702 */
703 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
704 UINT64_MAX);
705 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
706
707 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
708
709 /*
710 * This machine has EL3 enabled, external firmware should supply PSCI
711 * implementation, so the QEMU's internal PSCI is disabled.
712 */
713 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
714
715 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
716
717 if (max_cpus > sbsa_max_cpus) {
718 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
719 "supported by machine 'sbsa-ref' (%d)",
720 max_cpus, sbsa_max_cpus);
721 exit(1);
722 }
723
724 sms->smp_cpus = smp_cpus;
725
726 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
727 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
728 exit(1);
729 }
730
731 possible_cpus = mc->possible_cpu_arch_ids(machine);
732 for (n = 0; n < possible_cpus->len; n++) {
733 Object *cpuobj;
734 CPUState *cs;
735
736 if (n >= smp_cpus) {
737 break;
738 }
739
740 cpuobj = object_new(possible_cpus->cpus[n].type);
741 object_property_set_int(cpuobj, "mp-affinity",
742 possible_cpus->cpus[n].arch_id, NULL);
743
744 cs = CPU(cpuobj);
745 cs->cpu_index = n;
746
747 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
748 &error_fatal);
749
750 if (object_property_find(cpuobj, "reset-cbar")) {
751 object_property_set_int(cpuobj, "reset-cbar",
752 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
753 &error_abort);
754 }
755
756 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
757 &error_abort);
758
759 object_property_set_link(cpuobj, "secure-memory",
760 OBJECT(secure_sysmem), &error_abort);
761
762 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
763 object_unref(cpuobj);
764 }
765
766 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
767 machine->ram);
768
769 create_fdt(sms);
770
771 create_secure_ram(sms, secure_sysmem);
772
773 create_gic(sms);
774
775 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
776 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
777 /* Second secure UART for RAS and MM from EL0 */
778 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
779
780 create_rtc(sms);
781
782 create_wdt(sms);
783
784 create_gpio(sms);
785
786 create_ahci(sms);
787
788 create_ehci(sms);
789
790 create_pcie(sms);
791
792 create_secure_ec(secure_sysmem);
793
794 sms->bootinfo.ram_size = machine->ram_size;
795 sms->bootinfo.board_id = -1;
796 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
797 sms->bootinfo.get_dtb = sbsa_ref_dtb;
798 sms->bootinfo.firmware_loaded = firmware_loaded;
799 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
800 }
801
802 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
803 {
804 unsigned int max_cpus = ms->smp.max_cpus;
805 SBSAMachineState *sms = SBSA_MACHINE(ms);
806 int n;
807
808 if (ms->possible_cpus) {
809 assert(ms->possible_cpus->len == max_cpus);
810 return ms->possible_cpus;
811 }
812
813 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
814 sizeof(CPUArchId) * max_cpus);
815 ms->possible_cpus->len = max_cpus;
816 for (n = 0; n < ms->possible_cpus->len; n++) {
817 ms->possible_cpus->cpus[n].type = ms->cpu_type;
818 ms->possible_cpus->cpus[n].arch_id =
819 sbsa_ref_cpu_mp_affinity(sms, n);
820 ms->possible_cpus->cpus[n].props.has_thread_id = true;
821 ms->possible_cpus->cpus[n].props.thread_id = n;
822 }
823 return ms->possible_cpus;
824 }
825
826 static CpuInstanceProperties
827 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
828 {
829 MachineClass *mc = MACHINE_GET_CLASS(ms);
830 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
831
832 assert(cpu_index < possible_cpus->len);
833 return possible_cpus->cpus[cpu_index].props;
834 }
835
836 static int64_t
837 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
838 {
839 return idx % ms->numa_state->num_nodes;
840 }
841
842 static void sbsa_ref_instance_init(Object *obj)
843 {
844 SBSAMachineState *sms = SBSA_MACHINE(obj);
845
846 sbsa_flash_create(sms);
847 }
848
849 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
850 {
851 MachineClass *mc = MACHINE_CLASS(oc);
852
853 mc->init = sbsa_ref_init;
854 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
855 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
856 mc->max_cpus = 512;
857 mc->pci_allow_0_address = true;
858 mc->minimum_page_bits = 12;
859 mc->block_default_type = IF_IDE;
860 mc->no_cdrom = 1;
861 mc->default_ram_size = 1 * GiB;
862 mc->default_ram_id = "sbsa-ref.ram";
863 mc->default_cpus = 4;
864 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
865 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
866 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
867 }
868
869 static const TypeInfo sbsa_ref_info = {
870 .name = TYPE_SBSA_MACHINE,
871 .parent = TYPE_MACHINE,
872 .instance_init = sbsa_ref_instance_init,
873 .class_init = sbsa_ref_class_init,
874 .instance_size = sizeof(SBSAMachineState),
875 };
876
877 static void sbsa_ref_machine_init(void)
878 {
879 type_register_static(&sbsa_ref_info);
880 }
881
882 type_init(sbsa_ref_machine_init);