]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/stellaris.c
hw/mips: Express dependencies of the r4k platform with Kconfig
[mirror_qemu.git] / hw / arm / stellaris.c
1 /*
2 * Luminary Micro Stellaris peripherals
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/watchdog/cmsdk-apb-watchdog.h"
26 #include "hw/misc/unimp.h"
27 #include "cpu.h"
28
29 #define GPIO_A 0
30 #define GPIO_B 1
31 #define GPIO_C 2
32 #define GPIO_D 3
33 #define GPIO_E 4
34 #define GPIO_F 5
35 #define GPIO_G 6
36
37 #define BP_OLED_I2C 0x01
38 #define BP_OLED_SSI 0x02
39 #define BP_GAMEPAD 0x04
40
41 #define NUM_IRQ_LINES 64
42
43 typedef const struct {
44 const char *name;
45 uint32_t did0;
46 uint32_t did1;
47 uint32_t dc0;
48 uint32_t dc1;
49 uint32_t dc2;
50 uint32_t dc3;
51 uint32_t dc4;
52 uint32_t peripherals;
53 } stellaris_board_info;
54
55 /* General purpose timer module. */
56
57 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
58 #define STELLARIS_GPTM(obj) \
59 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
60
61 typedef struct gptm_state {
62 SysBusDevice parent_obj;
63
64 MemoryRegion iomem;
65 uint32_t config;
66 uint32_t mode[2];
67 uint32_t control;
68 uint32_t state;
69 uint32_t mask;
70 uint32_t load[2];
71 uint32_t match[2];
72 uint32_t prescale[2];
73 uint32_t match_prescale[2];
74 uint32_t rtc;
75 int64_t tick[2];
76 struct gptm_state *opaque[2];
77 QEMUTimer *timer[2];
78 /* The timers have an alternate output used to trigger the ADC. */
79 qemu_irq trigger;
80 qemu_irq irq;
81 } gptm_state;
82
83 static void gptm_update_irq(gptm_state *s)
84 {
85 int level;
86 level = (s->state & s->mask) != 0;
87 qemu_set_irq(s->irq, level);
88 }
89
90 static void gptm_stop(gptm_state *s, int n)
91 {
92 timer_del(s->timer[n]);
93 }
94
95 static void gptm_reload(gptm_state *s, int n, int reset)
96 {
97 int64_t tick;
98 if (reset)
99 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
100 else
101 tick = s->tick[n];
102
103 if (s->config == 0) {
104 /* 32-bit CountDown. */
105 uint32_t count;
106 count = s->load[0] | (s->load[1] << 16);
107 tick += (int64_t)count * system_clock_scale;
108 } else if (s->config == 1) {
109 /* 32-bit RTC. 1Hz tick. */
110 tick += NANOSECONDS_PER_SECOND;
111 } else if (s->mode[n] == 0xa) {
112 /* PWM mode. Not implemented. */
113 } else {
114 qemu_log_mask(LOG_UNIMP,
115 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
116 s->mode[n]);
117 return;
118 }
119 s->tick[n] = tick;
120 timer_mod(s->timer[n], tick);
121 }
122
123 static void gptm_tick(void *opaque)
124 {
125 gptm_state **p = (gptm_state **)opaque;
126 gptm_state *s;
127 int n;
128
129 s = *p;
130 n = p - s->opaque;
131 if (s->config == 0) {
132 s->state |= 1;
133 if ((s->control & 0x20)) {
134 /* Output trigger. */
135 qemu_irq_pulse(s->trigger);
136 }
137 if (s->mode[0] & 1) {
138 /* One-shot. */
139 s->control &= ~1;
140 } else {
141 /* Periodic. */
142 gptm_reload(s, 0, 0);
143 }
144 } else if (s->config == 1) {
145 /* RTC. */
146 uint32_t match;
147 s->rtc++;
148 match = s->match[0] | (s->match[1] << 16);
149 if (s->rtc > match)
150 s->rtc = 0;
151 if (s->rtc == 0) {
152 s->state |= 8;
153 }
154 gptm_reload(s, 0, 0);
155 } else if (s->mode[n] == 0xa) {
156 /* PWM mode. Not implemented. */
157 } else {
158 qemu_log_mask(LOG_UNIMP,
159 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
160 s->mode[n]);
161 }
162 gptm_update_irq(s);
163 }
164
165 static uint64_t gptm_read(void *opaque, hwaddr offset,
166 unsigned size)
167 {
168 gptm_state *s = (gptm_state *)opaque;
169
170 switch (offset) {
171 case 0x00: /* CFG */
172 return s->config;
173 case 0x04: /* TAMR */
174 return s->mode[0];
175 case 0x08: /* TBMR */
176 return s->mode[1];
177 case 0x0c: /* CTL */
178 return s->control;
179 case 0x18: /* IMR */
180 return s->mask;
181 case 0x1c: /* RIS */
182 return s->state;
183 case 0x20: /* MIS */
184 return s->state & s->mask;
185 case 0x24: /* CR */
186 return 0;
187 case 0x28: /* TAILR */
188 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
189 case 0x2c: /* TBILR */
190 return s->load[1];
191 case 0x30: /* TAMARCHR */
192 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
193 case 0x34: /* TBMATCHR */
194 return s->match[1];
195 case 0x38: /* TAPR */
196 return s->prescale[0];
197 case 0x3c: /* TBPR */
198 return s->prescale[1];
199 case 0x40: /* TAPMR */
200 return s->match_prescale[0];
201 case 0x44: /* TBPMR */
202 return s->match_prescale[1];
203 case 0x48: /* TAR */
204 if (s->config == 1) {
205 return s->rtc;
206 }
207 qemu_log_mask(LOG_UNIMP,
208 "GPTM: read of TAR but timer read not supported\n");
209 return 0;
210 case 0x4c: /* TBR */
211 qemu_log_mask(LOG_UNIMP,
212 "GPTM: read of TBR but timer read not supported\n");
213 return 0;
214 default:
215 qemu_log_mask(LOG_GUEST_ERROR,
216 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
217 offset);
218 return 0;
219 }
220 }
221
222 static void gptm_write(void *opaque, hwaddr offset,
223 uint64_t value, unsigned size)
224 {
225 gptm_state *s = (gptm_state *)opaque;
226 uint32_t oldval;
227
228 /* The timers should be disabled before changing the configuration.
229 We take advantage of this and defer everything until the timer
230 is enabled. */
231 switch (offset) {
232 case 0x00: /* CFG */
233 s->config = value;
234 break;
235 case 0x04: /* TAMR */
236 s->mode[0] = value;
237 break;
238 case 0x08: /* TBMR */
239 s->mode[1] = value;
240 break;
241 case 0x0c: /* CTL */
242 oldval = s->control;
243 s->control = value;
244 /* TODO: Implement pause. */
245 if ((oldval ^ value) & 1) {
246 if (value & 1) {
247 gptm_reload(s, 0, 1);
248 } else {
249 gptm_stop(s, 0);
250 }
251 }
252 if (((oldval ^ value) & 0x100) && s->config >= 4) {
253 if (value & 0x100) {
254 gptm_reload(s, 1, 1);
255 } else {
256 gptm_stop(s, 1);
257 }
258 }
259 break;
260 case 0x18: /* IMR */
261 s->mask = value & 0x77;
262 gptm_update_irq(s);
263 break;
264 case 0x24: /* CR */
265 s->state &= ~value;
266 break;
267 case 0x28: /* TAILR */
268 s->load[0] = value & 0xffff;
269 if (s->config < 4) {
270 s->load[1] = value >> 16;
271 }
272 break;
273 case 0x2c: /* TBILR */
274 s->load[1] = value & 0xffff;
275 break;
276 case 0x30: /* TAMARCHR */
277 s->match[0] = value & 0xffff;
278 if (s->config < 4) {
279 s->match[1] = value >> 16;
280 }
281 break;
282 case 0x34: /* TBMATCHR */
283 s->match[1] = value >> 16;
284 break;
285 case 0x38: /* TAPR */
286 s->prescale[0] = value;
287 break;
288 case 0x3c: /* TBPR */
289 s->prescale[1] = value;
290 break;
291 case 0x40: /* TAPMR */
292 s->match_prescale[0] = value;
293 break;
294 case 0x44: /* TBPMR */
295 s->match_prescale[0] = value;
296 break;
297 default:
298 qemu_log_mask(LOG_GUEST_ERROR,
299 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
300 offset);
301 }
302 gptm_update_irq(s);
303 }
304
305 static const MemoryRegionOps gptm_ops = {
306 .read = gptm_read,
307 .write = gptm_write,
308 .endianness = DEVICE_NATIVE_ENDIAN,
309 };
310
311 static const VMStateDescription vmstate_stellaris_gptm = {
312 .name = "stellaris_gptm",
313 .version_id = 1,
314 .minimum_version_id = 1,
315 .fields = (VMStateField[]) {
316 VMSTATE_UINT32(config, gptm_state),
317 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
318 VMSTATE_UINT32(control, gptm_state),
319 VMSTATE_UINT32(state, gptm_state),
320 VMSTATE_UINT32(mask, gptm_state),
321 VMSTATE_UNUSED(8),
322 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
323 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
324 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
325 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
326 VMSTATE_UINT32(rtc, gptm_state),
327 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
328 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
329 VMSTATE_END_OF_LIST()
330 }
331 };
332
333 static void stellaris_gptm_init(Object *obj)
334 {
335 DeviceState *dev = DEVICE(obj);
336 gptm_state *s = STELLARIS_GPTM(obj);
337 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
338
339 sysbus_init_irq(sbd, &s->irq);
340 qdev_init_gpio_out(dev, &s->trigger, 1);
341
342 memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
343 "gptm", 0x1000);
344 sysbus_init_mmio(sbd, &s->iomem);
345
346 s->opaque[0] = s->opaque[1] = s;
347 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
348 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
349 }
350
351
352 /* System controller. */
353
354 typedef struct {
355 MemoryRegion iomem;
356 uint32_t pborctl;
357 uint32_t ldopctl;
358 uint32_t int_status;
359 uint32_t int_mask;
360 uint32_t resc;
361 uint32_t rcc;
362 uint32_t rcc2;
363 uint32_t rcgc[3];
364 uint32_t scgc[3];
365 uint32_t dcgc[3];
366 uint32_t clkvclr;
367 uint32_t ldoarst;
368 uint32_t user0;
369 uint32_t user1;
370 qemu_irq irq;
371 stellaris_board_info *board;
372 } ssys_state;
373
374 static void ssys_update(ssys_state *s)
375 {
376 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
377 }
378
379 static uint32_t pllcfg_sandstorm[16] = {
380 0x31c0, /* 1 Mhz */
381 0x1ae0, /* 1.8432 Mhz */
382 0x18c0, /* 2 Mhz */
383 0xd573, /* 2.4576 Mhz */
384 0x37a6, /* 3.57954 Mhz */
385 0x1ae2, /* 3.6864 Mhz */
386 0x0c40, /* 4 Mhz */
387 0x98bc, /* 4.906 Mhz */
388 0x935b, /* 4.9152 Mhz */
389 0x09c0, /* 5 Mhz */
390 0x4dee, /* 5.12 Mhz */
391 0x0c41, /* 6 Mhz */
392 0x75db, /* 6.144 Mhz */
393 0x1ae6, /* 7.3728 Mhz */
394 0x0600, /* 8 Mhz */
395 0x585b /* 8.192 Mhz */
396 };
397
398 static uint32_t pllcfg_fury[16] = {
399 0x3200, /* 1 Mhz */
400 0x1b20, /* 1.8432 Mhz */
401 0x1900, /* 2 Mhz */
402 0xf42b, /* 2.4576 Mhz */
403 0x37e3, /* 3.57954 Mhz */
404 0x1b21, /* 3.6864 Mhz */
405 0x0c80, /* 4 Mhz */
406 0x98ee, /* 4.906 Mhz */
407 0xd5b4, /* 4.9152 Mhz */
408 0x0a00, /* 5 Mhz */
409 0x4e27, /* 5.12 Mhz */
410 0x1902, /* 6 Mhz */
411 0xec1c, /* 6.144 Mhz */
412 0x1b23, /* 7.3728 Mhz */
413 0x0640, /* 8 Mhz */
414 0xb11c /* 8.192 Mhz */
415 };
416
417 #define DID0_VER_MASK 0x70000000
418 #define DID0_VER_0 0x00000000
419 #define DID0_VER_1 0x10000000
420
421 #define DID0_CLASS_MASK 0x00FF0000
422 #define DID0_CLASS_SANDSTORM 0x00000000
423 #define DID0_CLASS_FURY 0x00010000
424
425 static int ssys_board_class(const ssys_state *s)
426 {
427 uint32_t did0 = s->board->did0;
428 switch (did0 & DID0_VER_MASK) {
429 case DID0_VER_0:
430 return DID0_CLASS_SANDSTORM;
431 case DID0_VER_1:
432 switch (did0 & DID0_CLASS_MASK) {
433 case DID0_CLASS_SANDSTORM:
434 case DID0_CLASS_FURY:
435 return did0 & DID0_CLASS_MASK;
436 }
437 /* for unknown classes, fall through */
438 default:
439 /* This can only happen if the hardwired constant did0 value
440 * in this board's stellaris_board_info struct is wrong.
441 */
442 g_assert_not_reached();
443 }
444 }
445
446 static uint64_t ssys_read(void *opaque, hwaddr offset,
447 unsigned size)
448 {
449 ssys_state *s = (ssys_state *)opaque;
450
451 switch (offset) {
452 case 0x000: /* DID0 */
453 return s->board->did0;
454 case 0x004: /* DID1 */
455 return s->board->did1;
456 case 0x008: /* DC0 */
457 return s->board->dc0;
458 case 0x010: /* DC1 */
459 return s->board->dc1;
460 case 0x014: /* DC2 */
461 return s->board->dc2;
462 case 0x018: /* DC3 */
463 return s->board->dc3;
464 case 0x01c: /* DC4 */
465 return s->board->dc4;
466 case 0x030: /* PBORCTL */
467 return s->pborctl;
468 case 0x034: /* LDOPCTL */
469 return s->ldopctl;
470 case 0x040: /* SRCR0 */
471 return 0;
472 case 0x044: /* SRCR1 */
473 return 0;
474 case 0x048: /* SRCR2 */
475 return 0;
476 case 0x050: /* RIS */
477 return s->int_status;
478 case 0x054: /* IMC */
479 return s->int_mask;
480 case 0x058: /* MISC */
481 return s->int_status & s->int_mask;
482 case 0x05c: /* RESC */
483 return s->resc;
484 case 0x060: /* RCC */
485 return s->rcc;
486 case 0x064: /* PLLCFG */
487 {
488 int xtal;
489 xtal = (s->rcc >> 6) & 0xf;
490 switch (ssys_board_class(s)) {
491 case DID0_CLASS_FURY:
492 return pllcfg_fury[xtal];
493 case DID0_CLASS_SANDSTORM:
494 return pllcfg_sandstorm[xtal];
495 default:
496 g_assert_not_reached();
497 }
498 }
499 case 0x070: /* RCC2 */
500 return s->rcc2;
501 case 0x100: /* RCGC0 */
502 return s->rcgc[0];
503 case 0x104: /* RCGC1 */
504 return s->rcgc[1];
505 case 0x108: /* RCGC2 */
506 return s->rcgc[2];
507 case 0x110: /* SCGC0 */
508 return s->scgc[0];
509 case 0x114: /* SCGC1 */
510 return s->scgc[1];
511 case 0x118: /* SCGC2 */
512 return s->scgc[2];
513 case 0x120: /* DCGC0 */
514 return s->dcgc[0];
515 case 0x124: /* DCGC1 */
516 return s->dcgc[1];
517 case 0x128: /* DCGC2 */
518 return s->dcgc[2];
519 case 0x150: /* CLKVCLR */
520 return s->clkvclr;
521 case 0x160: /* LDOARST */
522 return s->ldoarst;
523 case 0x1e0: /* USER0 */
524 return s->user0;
525 case 0x1e4: /* USER1 */
526 return s->user1;
527 default:
528 qemu_log_mask(LOG_GUEST_ERROR,
529 "SSYS: read at bad offset 0x%x\n", (int)offset);
530 return 0;
531 }
532 }
533
534 static bool ssys_use_rcc2(ssys_state *s)
535 {
536 return (s->rcc2 >> 31) & 0x1;
537 }
538
539 /*
540 * Caculate the sys. clock period in ms.
541 */
542 static void ssys_calculate_system_clock(ssys_state *s)
543 {
544 if (ssys_use_rcc2(s)) {
545 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
546 } else {
547 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
548 }
549 }
550
551 static void ssys_write(void *opaque, hwaddr offset,
552 uint64_t value, unsigned size)
553 {
554 ssys_state *s = (ssys_state *)opaque;
555
556 switch (offset) {
557 case 0x030: /* PBORCTL */
558 s->pborctl = value & 0xffff;
559 break;
560 case 0x034: /* LDOPCTL */
561 s->ldopctl = value & 0x1f;
562 break;
563 case 0x040: /* SRCR0 */
564 case 0x044: /* SRCR1 */
565 case 0x048: /* SRCR2 */
566 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
567 break;
568 case 0x054: /* IMC */
569 s->int_mask = value & 0x7f;
570 break;
571 case 0x058: /* MISC */
572 s->int_status &= ~value;
573 break;
574 case 0x05c: /* RESC */
575 s->resc = value & 0x3f;
576 break;
577 case 0x060: /* RCC */
578 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
579 /* PLL enable. */
580 s->int_status |= (1 << 6);
581 }
582 s->rcc = value;
583 ssys_calculate_system_clock(s);
584 break;
585 case 0x070: /* RCC2 */
586 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
587 break;
588 }
589
590 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
591 /* PLL enable. */
592 s->int_status |= (1 << 6);
593 }
594 s->rcc2 = value;
595 ssys_calculate_system_clock(s);
596 break;
597 case 0x100: /* RCGC0 */
598 s->rcgc[0] = value;
599 break;
600 case 0x104: /* RCGC1 */
601 s->rcgc[1] = value;
602 break;
603 case 0x108: /* RCGC2 */
604 s->rcgc[2] = value;
605 break;
606 case 0x110: /* SCGC0 */
607 s->scgc[0] = value;
608 break;
609 case 0x114: /* SCGC1 */
610 s->scgc[1] = value;
611 break;
612 case 0x118: /* SCGC2 */
613 s->scgc[2] = value;
614 break;
615 case 0x120: /* DCGC0 */
616 s->dcgc[0] = value;
617 break;
618 case 0x124: /* DCGC1 */
619 s->dcgc[1] = value;
620 break;
621 case 0x128: /* DCGC2 */
622 s->dcgc[2] = value;
623 break;
624 case 0x150: /* CLKVCLR */
625 s->clkvclr = value;
626 break;
627 case 0x160: /* LDOARST */
628 s->ldoarst = value;
629 break;
630 default:
631 qemu_log_mask(LOG_GUEST_ERROR,
632 "SSYS: write at bad offset 0x%x\n", (int)offset);
633 }
634 ssys_update(s);
635 }
636
637 static const MemoryRegionOps ssys_ops = {
638 .read = ssys_read,
639 .write = ssys_write,
640 .endianness = DEVICE_NATIVE_ENDIAN,
641 };
642
643 static void ssys_reset(void *opaque)
644 {
645 ssys_state *s = (ssys_state *)opaque;
646
647 s->pborctl = 0x7ffd;
648 s->rcc = 0x078e3ac0;
649
650 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
651 s->rcc2 = 0;
652 } else {
653 s->rcc2 = 0x07802810;
654 }
655 s->rcgc[0] = 1;
656 s->scgc[0] = 1;
657 s->dcgc[0] = 1;
658 ssys_calculate_system_clock(s);
659 }
660
661 static int stellaris_sys_post_load(void *opaque, int version_id)
662 {
663 ssys_state *s = opaque;
664
665 ssys_calculate_system_clock(s);
666
667 return 0;
668 }
669
670 static const VMStateDescription vmstate_stellaris_sys = {
671 .name = "stellaris_sys",
672 .version_id = 2,
673 .minimum_version_id = 1,
674 .post_load = stellaris_sys_post_load,
675 .fields = (VMStateField[]) {
676 VMSTATE_UINT32(pborctl, ssys_state),
677 VMSTATE_UINT32(ldopctl, ssys_state),
678 VMSTATE_UINT32(int_mask, ssys_state),
679 VMSTATE_UINT32(int_status, ssys_state),
680 VMSTATE_UINT32(resc, ssys_state),
681 VMSTATE_UINT32(rcc, ssys_state),
682 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
683 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
684 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
685 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
686 VMSTATE_UINT32(clkvclr, ssys_state),
687 VMSTATE_UINT32(ldoarst, ssys_state),
688 VMSTATE_END_OF_LIST()
689 }
690 };
691
692 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
693 stellaris_board_info * board,
694 uint8_t *macaddr)
695 {
696 ssys_state *s;
697
698 s = g_new0(ssys_state, 1);
699 s->irq = irq;
700 s->board = board;
701 /* Most devices come preprogrammed with a MAC address in the user data. */
702 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
703 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
704
705 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
706 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
707 ssys_reset(s);
708 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
709 return 0;
710 }
711
712
713 /* I2C controller. */
714
715 #define TYPE_STELLARIS_I2C "stellaris-i2c"
716 #define STELLARIS_I2C(obj) \
717 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
718
719 typedef struct {
720 SysBusDevice parent_obj;
721
722 I2CBus *bus;
723 qemu_irq irq;
724 MemoryRegion iomem;
725 uint32_t msa;
726 uint32_t mcs;
727 uint32_t mdr;
728 uint32_t mtpr;
729 uint32_t mimr;
730 uint32_t mris;
731 uint32_t mcr;
732 } stellaris_i2c_state;
733
734 #define STELLARIS_I2C_MCS_BUSY 0x01
735 #define STELLARIS_I2C_MCS_ERROR 0x02
736 #define STELLARIS_I2C_MCS_ADRACK 0x04
737 #define STELLARIS_I2C_MCS_DATACK 0x08
738 #define STELLARIS_I2C_MCS_ARBLST 0x10
739 #define STELLARIS_I2C_MCS_IDLE 0x20
740 #define STELLARIS_I2C_MCS_BUSBSY 0x40
741
742 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
743 unsigned size)
744 {
745 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
746
747 switch (offset) {
748 case 0x00: /* MSA */
749 return s->msa;
750 case 0x04: /* MCS */
751 /* We don't emulate timing, so the controller is never busy. */
752 return s->mcs | STELLARIS_I2C_MCS_IDLE;
753 case 0x08: /* MDR */
754 return s->mdr;
755 case 0x0c: /* MTPR */
756 return s->mtpr;
757 case 0x10: /* MIMR */
758 return s->mimr;
759 case 0x14: /* MRIS */
760 return s->mris;
761 case 0x18: /* MMIS */
762 return s->mris & s->mimr;
763 case 0x20: /* MCR */
764 return s->mcr;
765 default:
766 qemu_log_mask(LOG_GUEST_ERROR,
767 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
768 return 0;
769 }
770 }
771
772 static void stellaris_i2c_update(stellaris_i2c_state *s)
773 {
774 int level;
775
776 level = (s->mris & s->mimr) != 0;
777 qemu_set_irq(s->irq, level);
778 }
779
780 static void stellaris_i2c_write(void *opaque, hwaddr offset,
781 uint64_t value, unsigned size)
782 {
783 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
784
785 switch (offset) {
786 case 0x00: /* MSA */
787 s->msa = value & 0xff;
788 break;
789 case 0x04: /* MCS */
790 if ((s->mcr & 0x10) == 0) {
791 /* Disabled. Do nothing. */
792 break;
793 }
794 /* Grab the bus if this is starting a transfer. */
795 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
796 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
797 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
798 } else {
799 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
800 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
801 }
802 }
803 /* If we don't have the bus then indicate an error. */
804 if (!i2c_bus_busy(s->bus)
805 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
806 s->mcs |= STELLARIS_I2C_MCS_ERROR;
807 break;
808 }
809 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
810 if (value & 1) {
811 /* Transfer a byte. */
812 /* TODO: Handle errors. */
813 if (s->msa & 1) {
814 /* Recv */
815 s->mdr = i2c_recv(s->bus);
816 } else {
817 /* Send */
818 i2c_send(s->bus, s->mdr);
819 }
820 /* Raise an interrupt. */
821 s->mris |= 1;
822 }
823 if (value & 4) {
824 /* Finish transfer. */
825 i2c_end_transfer(s->bus);
826 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
827 }
828 break;
829 case 0x08: /* MDR */
830 s->mdr = value & 0xff;
831 break;
832 case 0x0c: /* MTPR */
833 s->mtpr = value & 0xff;
834 break;
835 case 0x10: /* MIMR */
836 s->mimr = 1;
837 break;
838 case 0x1c: /* MICR */
839 s->mris &= ~value;
840 break;
841 case 0x20: /* MCR */
842 if (value & 1) {
843 qemu_log_mask(LOG_UNIMP,
844 "stellaris_i2c: Loopback not implemented\n");
845 }
846 if (value & 0x20) {
847 qemu_log_mask(LOG_UNIMP,
848 "stellaris_i2c: Slave mode not implemented\n");
849 }
850 s->mcr = value & 0x31;
851 break;
852 default:
853 qemu_log_mask(LOG_GUEST_ERROR,
854 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
855 }
856 stellaris_i2c_update(s);
857 }
858
859 static void stellaris_i2c_reset(stellaris_i2c_state *s)
860 {
861 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
862 i2c_end_transfer(s->bus);
863
864 s->msa = 0;
865 s->mcs = 0;
866 s->mdr = 0;
867 s->mtpr = 1;
868 s->mimr = 0;
869 s->mris = 0;
870 s->mcr = 0;
871 stellaris_i2c_update(s);
872 }
873
874 static const MemoryRegionOps stellaris_i2c_ops = {
875 .read = stellaris_i2c_read,
876 .write = stellaris_i2c_write,
877 .endianness = DEVICE_NATIVE_ENDIAN,
878 };
879
880 static const VMStateDescription vmstate_stellaris_i2c = {
881 .name = "stellaris_i2c",
882 .version_id = 1,
883 .minimum_version_id = 1,
884 .fields = (VMStateField[]) {
885 VMSTATE_UINT32(msa, stellaris_i2c_state),
886 VMSTATE_UINT32(mcs, stellaris_i2c_state),
887 VMSTATE_UINT32(mdr, stellaris_i2c_state),
888 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
889 VMSTATE_UINT32(mimr, stellaris_i2c_state),
890 VMSTATE_UINT32(mris, stellaris_i2c_state),
891 VMSTATE_UINT32(mcr, stellaris_i2c_state),
892 VMSTATE_END_OF_LIST()
893 }
894 };
895
896 static void stellaris_i2c_init(Object *obj)
897 {
898 DeviceState *dev = DEVICE(obj);
899 stellaris_i2c_state *s = STELLARIS_I2C(obj);
900 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
901 I2CBus *bus;
902
903 sysbus_init_irq(sbd, &s->irq);
904 bus = i2c_init_bus(dev, "i2c");
905 s->bus = bus;
906
907 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
908 "i2c", 0x1000);
909 sysbus_init_mmio(sbd, &s->iomem);
910 /* ??? For now we only implement the master interface. */
911 stellaris_i2c_reset(s);
912 }
913
914 /* Analogue to Digital Converter. This is only partially implemented,
915 enough for applications that use a combined ADC and timer tick. */
916
917 #define STELLARIS_ADC_EM_CONTROLLER 0
918 #define STELLARIS_ADC_EM_COMP 1
919 #define STELLARIS_ADC_EM_EXTERNAL 4
920 #define STELLARIS_ADC_EM_TIMER 5
921 #define STELLARIS_ADC_EM_PWM0 6
922 #define STELLARIS_ADC_EM_PWM1 7
923 #define STELLARIS_ADC_EM_PWM2 8
924
925 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
926 #define STELLARIS_ADC_FIFO_FULL 0x1000
927
928 #define TYPE_STELLARIS_ADC "stellaris-adc"
929 #define STELLARIS_ADC(obj) \
930 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
931
932 typedef struct StellarisADCState {
933 SysBusDevice parent_obj;
934
935 MemoryRegion iomem;
936 uint32_t actss;
937 uint32_t ris;
938 uint32_t im;
939 uint32_t emux;
940 uint32_t ostat;
941 uint32_t ustat;
942 uint32_t sspri;
943 uint32_t sac;
944 struct {
945 uint32_t state;
946 uint32_t data[16];
947 } fifo[4];
948 uint32_t ssmux[4];
949 uint32_t ssctl[4];
950 uint32_t noise;
951 qemu_irq irq[4];
952 } stellaris_adc_state;
953
954 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
955 {
956 int tail;
957
958 tail = s->fifo[n].state & 0xf;
959 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
960 s->ustat |= 1 << n;
961 } else {
962 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
963 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
964 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
965 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
966 }
967 return s->fifo[n].data[tail];
968 }
969
970 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
971 uint32_t value)
972 {
973 int head;
974
975 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
976 FIFO fir each sequencer. */
977 head = (s->fifo[n].state >> 4) & 0xf;
978 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
979 s->ostat |= 1 << n;
980 return;
981 }
982 s->fifo[n].data[head] = value;
983 head = (head + 1) & 0xf;
984 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
985 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
986 if ((s->fifo[n].state & 0xf) == head)
987 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
988 }
989
990 static void stellaris_adc_update(stellaris_adc_state *s)
991 {
992 int level;
993 int n;
994
995 for (n = 0; n < 4; n++) {
996 level = (s->ris & s->im & (1 << n)) != 0;
997 qemu_set_irq(s->irq[n], level);
998 }
999 }
1000
1001 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1002 {
1003 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1004 int n;
1005
1006 for (n = 0; n < 4; n++) {
1007 if ((s->actss & (1 << n)) == 0) {
1008 continue;
1009 }
1010
1011 if (((s->emux >> (n * 4)) & 0xff) != 5) {
1012 continue;
1013 }
1014
1015 /* Some applications use the ADC as a random number source, so introduce
1016 some variation into the signal. */
1017 s->noise = s->noise * 314159 + 1;
1018 /* ??? actual inputs not implemented. Return an arbitrary value. */
1019 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1020 s->ris |= (1 << n);
1021 stellaris_adc_update(s);
1022 }
1023 }
1024
1025 static void stellaris_adc_reset(stellaris_adc_state *s)
1026 {
1027 int n;
1028
1029 for (n = 0; n < 4; n++) {
1030 s->ssmux[n] = 0;
1031 s->ssctl[n] = 0;
1032 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1033 }
1034 }
1035
1036 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1037 unsigned size)
1038 {
1039 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1040
1041 /* TODO: Implement this. */
1042 if (offset >= 0x40 && offset < 0xc0) {
1043 int n;
1044 n = (offset - 0x40) >> 5;
1045 switch (offset & 0x1f) {
1046 case 0x00: /* SSMUX */
1047 return s->ssmux[n];
1048 case 0x04: /* SSCTL */
1049 return s->ssctl[n];
1050 case 0x08: /* SSFIFO */
1051 return stellaris_adc_fifo_read(s, n);
1052 case 0x0c: /* SSFSTAT */
1053 return s->fifo[n].state;
1054 default:
1055 break;
1056 }
1057 }
1058 switch (offset) {
1059 case 0x00: /* ACTSS */
1060 return s->actss;
1061 case 0x04: /* RIS */
1062 return s->ris;
1063 case 0x08: /* IM */
1064 return s->im;
1065 case 0x0c: /* ISC */
1066 return s->ris & s->im;
1067 case 0x10: /* OSTAT */
1068 return s->ostat;
1069 case 0x14: /* EMUX */
1070 return s->emux;
1071 case 0x18: /* USTAT */
1072 return s->ustat;
1073 case 0x20: /* SSPRI */
1074 return s->sspri;
1075 case 0x30: /* SAC */
1076 return s->sac;
1077 default:
1078 qemu_log_mask(LOG_GUEST_ERROR,
1079 "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1080 return 0;
1081 }
1082 }
1083
1084 static void stellaris_adc_write(void *opaque, hwaddr offset,
1085 uint64_t value, unsigned size)
1086 {
1087 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1088
1089 /* TODO: Implement this. */
1090 if (offset >= 0x40 && offset < 0xc0) {
1091 int n;
1092 n = (offset - 0x40) >> 5;
1093 switch (offset & 0x1f) {
1094 case 0x00: /* SSMUX */
1095 s->ssmux[n] = value & 0x33333333;
1096 return;
1097 case 0x04: /* SSCTL */
1098 if (value != 6) {
1099 qemu_log_mask(LOG_UNIMP,
1100 "ADC: Unimplemented sequence %" PRIx64 "\n",
1101 value);
1102 }
1103 s->ssctl[n] = value;
1104 return;
1105 default:
1106 break;
1107 }
1108 }
1109 switch (offset) {
1110 case 0x00: /* ACTSS */
1111 s->actss = value & 0xf;
1112 break;
1113 case 0x08: /* IM */
1114 s->im = value;
1115 break;
1116 case 0x0c: /* ISC */
1117 s->ris &= ~value;
1118 break;
1119 case 0x10: /* OSTAT */
1120 s->ostat &= ~value;
1121 break;
1122 case 0x14: /* EMUX */
1123 s->emux = value;
1124 break;
1125 case 0x18: /* USTAT */
1126 s->ustat &= ~value;
1127 break;
1128 case 0x20: /* SSPRI */
1129 s->sspri = value;
1130 break;
1131 case 0x28: /* PSSI */
1132 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1133 break;
1134 case 0x30: /* SAC */
1135 s->sac = value;
1136 break;
1137 default:
1138 qemu_log_mask(LOG_GUEST_ERROR,
1139 "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1140 }
1141 stellaris_adc_update(s);
1142 }
1143
1144 static const MemoryRegionOps stellaris_adc_ops = {
1145 .read = stellaris_adc_read,
1146 .write = stellaris_adc_write,
1147 .endianness = DEVICE_NATIVE_ENDIAN,
1148 };
1149
1150 static const VMStateDescription vmstate_stellaris_adc = {
1151 .name = "stellaris_adc",
1152 .version_id = 1,
1153 .minimum_version_id = 1,
1154 .fields = (VMStateField[]) {
1155 VMSTATE_UINT32(actss, stellaris_adc_state),
1156 VMSTATE_UINT32(ris, stellaris_adc_state),
1157 VMSTATE_UINT32(im, stellaris_adc_state),
1158 VMSTATE_UINT32(emux, stellaris_adc_state),
1159 VMSTATE_UINT32(ostat, stellaris_adc_state),
1160 VMSTATE_UINT32(ustat, stellaris_adc_state),
1161 VMSTATE_UINT32(sspri, stellaris_adc_state),
1162 VMSTATE_UINT32(sac, stellaris_adc_state),
1163 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1164 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1165 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1166 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1167 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1168 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1169 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1170 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1171 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1172 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1173 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1174 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1175 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1176 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1177 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1178 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1179 VMSTATE_UINT32(noise, stellaris_adc_state),
1180 VMSTATE_END_OF_LIST()
1181 }
1182 };
1183
1184 static void stellaris_adc_init(Object *obj)
1185 {
1186 DeviceState *dev = DEVICE(obj);
1187 stellaris_adc_state *s = STELLARIS_ADC(obj);
1188 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1189 int n;
1190
1191 for (n = 0; n < 4; n++) {
1192 sysbus_init_irq(sbd, &s->irq[n]);
1193 }
1194
1195 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1196 "adc", 0x1000);
1197 sysbus_init_mmio(sbd, &s->iomem);
1198 stellaris_adc_reset(s);
1199 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1200 }
1201
1202 static
1203 void do_sys_reset(void *opaque, int n, int level)
1204 {
1205 if (level) {
1206 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1207 }
1208 }
1209
1210 /* Board init. */
1211 static stellaris_board_info stellaris_boards[] = {
1212 { "LM3S811EVB",
1213 0,
1214 0x0032000e,
1215 0x001f001f, /* dc0 */
1216 0x001132bf,
1217 0x01071013,
1218 0x3f0f01ff,
1219 0x0000001f,
1220 BP_OLED_I2C
1221 },
1222 { "LM3S6965EVB",
1223 0x10010002,
1224 0x1073402e,
1225 0x00ff007f, /* dc0 */
1226 0x001133ff,
1227 0x030f5317,
1228 0x0f0f87ff,
1229 0x5000007f,
1230 BP_OLED_SSI | BP_GAMEPAD
1231 }
1232 };
1233
1234 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1235 {
1236 static const int uart_irq[] = {5, 6, 33, 34};
1237 static const int timer_irq[] = {19, 21, 23, 35};
1238 static const uint32_t gpio_addr[7] =
1239 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1240 0x40024000, 0x40025000, 0x40026000};
1241 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1242
1243 /* Memory map of SoC devices, from
1244 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1245 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1246 *
1247 * 40000000 wdtimer
1248 * 40002000 i2c (unimplemented)
1249 * 40004000 GPIO
1250 * 40005000 GPIO
1251 * 40006000 GPIO
1252 * 40007000 GPIO
1253 * 40008000 SSI
1254 * 4000c000 UART
1255 * 4000d000 UART
1256 * 4000e000 UART
1257 * 40020000 i2c
1258 * 40021000 i2c (unimplemented)
1259 * 40024000 GPIO
1260 * 40025000 GPIO
1261 * 40026000 GPIO
1262 * 40028000 PWM (unimplemented)
1263 * 4002c000 QEI (unimplemented)
1264 * 4002d000 QEI (unimplemented)
1265 * 40030000 gptimer
1266 * 40031000 gptimer
1267 * 40032000 gptimer
1268 * 40033000 gptimer
1269 * 40038000 ADC
1270 * 4003c000 analogue comparator (unimplemented)
1271 * 40048000 ethernet
1272 * 400fc000 hibernation module (unimplemented)
1273 * 400fd000 flash memory control (unimplemented)
1274 * 400fe000 system control
1275 */
1276
1277 DeviceState *gpio_dev[7], *nvic;
1278 qemu_irq gpio_in[7][8];
1279 qemu_irq gpio_out[7][8];
1280 qemu_irq adc;
1281 int sram_size;
1282 int flash_size;
1283 I2CBus *i2c;
1284 DeviceState *dev;
1285 int i;
1286 int j;
1287
1288 MemoryRegion *sram = g_new(MemoryRegion, 1);
1289 MemoryRegion *flash = g_new(MemoryRegion, 1);
1290 MemoryRegion *system_memory = get_system_memory();
1291
1292 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1293 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1294
1295 /* Flash programming is done via the SCU, so pretend it is ROM. */
1296 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1297 &error_fatal);
1298 memory_region_set_readonly(flash, true);
1299 memory_region_add_subregion(system_memory, 0, flash);
1300
1301 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1302 &error_fatal);
1303 memory_region_add_subregion(system_memory, 0x20000000, sram);
1304
1305 nvic = qdev_create(NULL, TYPE_ARMV7M);
1306 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1307 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1308 qdev_prop_set_bit(nvic, "enable-bitband", true);
1309 object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1310 "memory", &error_abort);
1311 /* This will exit with an error if the user passed us a bad cpu_type */
1312 qdev_init_nofail(nvic);
1313
1314 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1315 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1316
1317 if (board->dc1 & (1 << 16)) {
1318 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1319 qdev_get_gpio_in(nvic, 14),
1320 qdev_get_gpio_in(nvic, 15),
1321 qdev_get_gpio_in(nvic, 16),
1322 qdev_get_gpio_in(nvic, 17),
1323 NULL);
1324 adc = qdev_get_gpio_in(dev, 0);
1325 } else {
1326 adc = NULL;
1327 }
1328 for (i = 0; i < 4; i++) {
1329 if (board->dc2 & (0x10000 << i)) {
1330 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1331 0x40030000 + i * 0x1000,
1332 qdev_get_gpio_in(nvic, timer_irq[i]));
1333 /* TODO: This is incorrect, but we get away with it because
1334 the ADC output is only ever pulsed. */
1335 qdev_connect_gpio_out(dev, 0, adc);
1336 }
1337 }
1338
1339 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1340 board, nd_table[0].macaddr.a);
1341
1342
1343 if (board->dc1 & (1 << 3)) { /* watchdog present */
1344 dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1345
1346 /* system_clock_scale is valid now */
1347 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1348 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1349
1350 qdev_init_nofail(dev);
1351 sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1352 0,
1353 0x40000000u);
1354 sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1355 0,
1356 qdev_get_gpio_in(nvic, 18));
1357 }
1358
1359
1360 for (i = 0; i < 7; i++) {
1361 if (board->dc4 & (1 << i)) {
1362 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1363 qdev_get_gpio_in(nvic,
1364 gpio_irq[i]));
1365 for (j = 0; j < 8; j++) {
1366 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1367 gpio_out[i][j] = NULL;
1368 }
1369 }
1370 }
1371
1372 if (board->dc2 & (1 << 12)) {
1373 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1374 qdev_get_gpio_in(nvic, 8));
1375 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1376 if (board->peripherals & BP_OLED_I2C) {
1377 i2c_create_slave(i2c, "ssd0303", 0x3d);
1378 }
1379 }
1380
1381 for (i = 0; i < 4; i++) {
1382 if (board->dc2 & (1 << i)) {
1383 pl011_luminary_create(0x4000c000 + i * 0x1000,
1384 qdev_get_gpio_in(nvic, uart_irq[i]),
1385 serial_hd(i));
1386 }
1387 }
1388 if (board->dc2 & (1 << 4)) {
1389 dev = sysbus_create_simple("pl022", 0x40008000,
1390 qdev_get_gpio_in(nvic, 7));
1391 if (board->peripherals & BP_OLED_SSI) {
1392 void *bus;
1393 DeviceState *sddev;
1394 DeviceState *ssddev;
1395
1396 /* Some boards have both an OLED controller and SD card connected to
1397 * the same SSI port, with the SD card chip select connected to a
1398 * GPIO pin. Technically the OLED chip select is connected to the
1399 * SSI Fss pin. We do not bother emulating that as both devices
1400 * should never be selected simultaneously, and our OLED controller
1401 * ignores stray 0xff commands that occur when deselecting the SD
1402 * card.
1403 */
1404 bus = qdev_get_child_bus(dev, "ssi");
1405
1406 sddev = ssi_create_slave(bus, "ssi-sd");
1407 ssddev = ssi_create_slave(bus, "ssd0323");
1408 gpio_out[GPIO_D][0] = qemu_irq_split(
1409 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1410 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1411 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1412
1413 /* Make sure the select pin is high. */
1414 qemu_irq_raise(gpio_out[GPIO_D][0]);
1415 }
1416 }
1417 if (board->dc4 & (1 << 28)) {
1418 DeviceState *enet;
1419
1420 qemu_check_nic_model(&nd_table[0], "stellaris");
1421
1422 enet = qdev_create(NULL, "stellaris_enet");
1423 qdev_set_nic_properties(enet, &nd_table[0]);
1424 qdev_init_nofail(enet);
1425 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1426 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1427 }
1428 if (board->peripherals & BP_GAMEPAD) {
1429 qemu_irq gpad_irq[5];
1430 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1431
1432 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1433 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1434 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1435 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1436 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1437
1438 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1439 }
1440 for (i = 0; i < 7; i++) {
1441 if (board->dc4 & (1 << i)) {
1442 for (j = 0; j < 8; j++) {
1443 if (gpio_out[i][j]) {
1444 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1445 }
1446 }
1447 }
1448 }
1449
1450 /* Add dummy regions for the devices we don't implement yet,
1451 * so guest accesses don't cause unlogged crashes.
1452 */
1453 create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1454 create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1455 create_unimplemented_device("PWM", 0x40028000, 0x1000);
1456 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1457 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1458 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1459 create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1460 create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1461
1462 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1463 }
1464
1465 /* FIXME: Figure out how to generate these from stellaris_boards. */
1466 static void lm3s811evb_init(MachineState *machine)
1467 {
1468 stellaris_init(machine, &stellaris_boards[0]);
1469 }
1470
1471 static void lm3s6965evb_init(MachineState *machine)
1472 {
1473 stellaris_init(machine, &stellaris_boards[1]);
1474 }
1475
1476 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1477 {
1478 MachineClass *mc = MACHINE_CLASS(oc);
1479
1480 mc->desc = "Stellaris LM3S811EVB";
1481 mc->init = lm3s811evb_init;
1482 mc->ignore_memory_transaction_failures = true;
1483 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1484 }
1485
1486 static const TypeInfo lm3s811evb_type = {
1487 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1488 .parent = TYPE_MACHINE,
1489 .class_init = lm3s811evb_class_init,
1490 };
1491
1492 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1493 {
1494 MachineClass *mc = MACHINE_CLASS(oc);
1495
1496 mc->desc = "Stellaris LM3S6965EVB";
1497 mc->init = lm3s6965evb_init;
1498 mc->ignore_memory_transaction_failures = true;
1499 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1500 }
1501
1502 static const TypeInfo lm3s6965evb_type = {
1503 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1504 .parent = TYPE_MACHINE,
1505 .class_init = lm3s6965evb_class_init,
1506 };
1507
1508 static void stellaris_machine_init(void)
1509 {
1510 type_register_static(&lm3s811evb_type);
1511 type_register_static(&lm3s6965evb_type);
1512 }
1513
1514 type_init(stellaris_machine_init)
1515
1516 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1517 {
1518 DeviceClass *dc = DEVICE_CLASS(klass);
1519
1520 dc->vmsd = &vmstate_stellaris_i2c;
1521 }
1522
1523 static const TypeInfo stellaris_i2c_info = {
1524 .name = TYPE_STELLARIS_I2C,
1525 .parent = TYPE_SYS_BUS_DEVICE,
1526 .instance_size = sizeof(stellaris_i2c_state),
1527 .instance_init = stellaris_i2c_init,
1528 .class_init = stellaris_i2c_class_init,
1529 };
1530
1531 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1532 {
1533 DeviceClass *dc = DEVICE_CLASS(klass);
1534
1535 dc->vmsd = &vmstate_stellaris_gptm;
1536 }
1537
1538 static const TypeInfo stellaris_gptm_info = {
1539 .name = TYPE_STELLARIS_GPTM,
1540 .parent = TYPE_SYS_BUS_DEVICE,
1541 .instance_size = sizeof(gptm_state),
1542 .instance_init = stellaris_gptm_init,
1543 .class_init = stellaris_gptm_class_init,
1544 };
1545
1546 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1547 {
1548 DeviceClass *dc = DEVICE_CLASS(klass);
1549
1550 dc->vmsd = &vmstate_stellaris_adc;
1551 }
1552
1553 static const TypeInfo stellaris_adc_info = {
1554 .name = TYPE_STELLARIS_ADC,
1555 .parent = TYPE_SYS_BUS_DEVICE,
1556 .instance_size = sizeof(stellaris_adc_state),
1557 .instance_init = stellaris_adc_init,
1558 .class_init = stellaris_adc_class_init,
1559 };
1560
1561 static void stellaris_register_types(void)
1562 {
1563 type_register_static(&stellaris_i2c_info);
1564 type_register_static(&stellaris_gptm_info);
1565 type_register_static(&stellaris_adc_info);
1566 }
1567
1568 type_init(stellaris_register_types)