]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/stellaris.c
Merge remote-tracking branch 'remotes/riku/tags/pull-linux-user-20170531' into staging
[mirror_qemu.git] / hw / arm / stellaris.c
1 /*
2 * Luminary Micro Stellaris peripherals
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/arm.h"
15 #include "hw/devices.h"
16 #include "qemu/timer.h"
17 #include "hw/i2c/i2c.h"
18 #include "net/net.h"
19 #include "hw/boards.h"
20 #include "qemu/log.h"
21 #include "exec/address-spaces.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/char/pl011.h"
24 #include "hw/misc/unimp.h"
25
26 #define GPIO_A 0
27 #define GPIO_B 1
28 #define GPIO_C 2
29 #define GPIO_D 3
30 #define GPIO_E 4
31 #define GPIO_F 5
32 #define GPIO_G 6
33
34 #define BP_OLED_I2C 0x01
35 #define BP_OLED_SSI 0x02
36 #define BP_GAMEPAD 0x04
37
38 #define NUM_IRQ_LINES 64
39
40 typedef const struct {
41 const char *name;
42 uint32_t did0;
43 uint32_t did1;
44 uint32_t dc0;
45 uint32_t dc1;
46 uint32_t dc2;
47 uint32_t dc3;
48 uint32_t dc4;
49 uint32_t peripherals;
50 } stellaris_board_info;
51
52 /* General purpose timer module. */
53
54 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
55 #define STELLARIS_GPTM(obj) \
56 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
57
58 typedef struct gptm_state {
59 SysBusDevice parent_obj;
60
61 MemoryRegion iomem;
62 uint32_t config;
63 uint32_t mode[2];
64 uint32_t control;
65 uint32_t state;
66 uint32_t mask;
67 uint32_t load[2];
68 uint32_t match[2];
69 uint32_t prescale[2];
70 uint32_t match_prescale[2];
71 uint32_t rtc;
72 int64_t tick[2];
73 struct gptm_state *opaque[2];
74 QEMUTimer *timer[2];
75 /* The timers have an alternate output used to trigger the ADC. */
76 qemu_irq trigger;
77 qemu_irq irq;
78 } gptm_state;
79
80 static void gptm_update_irq(gptm_state *s)
81 {
82 int level;
83 level = (s->state & s->mask) != 0;
84 qemu_set_irq(s->irq, level);
85 }
86
87 static void gptm_stop(gptm_state *s, int n)
88 {
89 timer_del(s->timer[n]);
90 }
91
92 static void gptm_reload(gptm_state *s, int n, int reset)
93 {
94 int64_t tick;
95 if (reset)
96 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
97 else
98 tick = s->tick[n];
99
100 if (s->config == 0) {
101 /* 32-bit CountDown. */
102 uint32_t count;
103 count = s->load[0] | (s->load[1] << 16);
104 tick += (int64_t)count * system_clock_scale;
105 } else if (s->config == 1) {
106 /* 32-bit RTC. 1Hz tick. */
107 tick += NANOSECONDS_PER_SECOND;
108 } else if (s->mode[n] == 0xa) {
109 /* PWM mode. Not implemented. */
110 } else {
111 qemu_log_mask(LOG_UNIMP,
112 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
113 s->mode[n]);
114 return;
115 }
116 s->tick[n] = tick;
117 timer_mod(s->timer[n], tick);
118 }
119
120 static void gptm_tick(void *opaque)
121 {
122 gptm_state **p = (gptm_state **)opaque;
123 gptm_state *s;
124 int n;
125
126 s = *p;
127 n = p - s->opaque;
128 if (s->config == 0) {
129 s->state |= 1;
130 if ((s->control & 0x20)) {
131 /* Output trigger. */
132 qemu_irq_pulse(s->trigger);
133 }
134 if (s->mode[0] & 1) {
135 /* One-shot. */
136 s->control &= ~1;
137 } else {
138 /* Periodic. */
139 gptm_reload(s, 0, 0);
140 }
141 } else if (s->config == 1) {
142 /* RTC. */
143 uint32_t match;
144 s->rtc++;
145 match = s->match[0] | (s->match[1] << 16);
146 if (s->rtc > match)
147 s->rtc = 0;
148 if (s->rtc == 0) {
149 s->state |= 8;
150 }
151 gptm_reload(s, 0, 0);
152 } else if (s->mode[n] == 0xa) {
153 /* PWM mode. Not implemented. */
154 } else {
155 qemu_log_mask(LOG_UNIMP,
156 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
157 s->mode[n]);
158 }
159 gptm_update_irq(s);
160 }
161
162 static uint64_t gptm_read(void *opaque, hwaddr offset,
163 unsigned size)
164 {
165 gptm_state *s = (gptm_state *)opaque;
166
167 switch (offset) {
168 case 0x00: /* CFG */
169 return s->config;
170 case 0x04: /* TAMR */
171 return s->mode[0];
172 case 0x08: /* TBMR */
173 return s->mode[1];
174 case 0x0c: /* CTL */
175 return s->control;
176 case 0x18: /* IMR */
177 return s->mask;
178 case 0x1c: /* RIS */
179 return s->state;
180 case 0x20: /* MIS */
181 return s->state & s->mask;
182 case 0x24: /* CR */
183 return 0;
184 case 0x28: /* TAILR */
185 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
186 case 0x2c: /* TBILR */
187 return s->load[1];
188 case 0x30: /* TAMARCHR */
189 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
190 case 0x34: /* TBMATCHR */
191 return s->match[1];
192 case 0x38: /* TAPR */
193 return s->prescale[0];
194 case 0x3c: /* TBPR */
195 return s->prescale[1];
196 case 0x40: /* TAPMR */
197 return s->match_prescale[0];
198 case 0x44: /* TBPMR */
199 return s->match_prescale[1];
200 case 0x48: /* TAR */
201 if (s->config == 1) {
202 return s->rtc;
203 }
204 qemu_log_mask(LOG_UNIMP,
205 "GPTM: read of TAR but timer read not supported");
206 return 0;
207 case 0x4c: /* TBR */
208 qemu_log_mask(LOG_UNIMP,
209 "GPTM: read of TBR but timer read not supported");
210 return 0;
211 default:
212 qemu_log_mask(LOG_GUEST_ERROR,
213 "GPTM: read at bad offset 0x%x\n", (int)offset);
214 return 0;
215 }
216 }
217
218 static void gptm_write(void *opaque, hwaddr offset,
219 uint64_t value, unsigned size)
220 {
221 gptm_state *s = (gptm_state *)opaque;
222 uint32_t oldval;
223
224 /* The timers should be disabled before changing the configuration.
225 We take advantage of this and defer everything until the timer
226 is enabled. */
227 switch (offset) {
228 case 0x00: /* CFG */
229 s->config = value;
230 break;
231 case 0x04: /* TAMR */
232 s->mode[0] = value;
233 break;
234 case 0x08: /* TBMR */
235 s->mode[1] = value;
236 break;
237 case 0x0c: /* CTL */
238 oldval = s->control;
239 s->control = value;
240 /* TODO: Implement pause. */
241 if ((oldval ^ value) & 1) {
242 if (value & 1) {
243 gptm_reload(s, 0, 1);
244 } else {
245 gptm_stop(s, 0);
246 }
247 }
248 if (((oldval ^ value) & 0x100) && s->config >= 4) {
249 if (value & 0x100) {
250 gptm_reload(s, 1, 1);
251 } else {
252 gptm_stop(s, 1);
253 }
254 }
255 break;
256 case 0x18: /* IMR */
257 s->mask = value & 0x77;
258 gptm_update_irq(s);
259 break;
260 case 0x24: /* CR */
261 s->state &= ~value;
262 break;
263 case 0x28: /* TAILR */
264 s->load[0] = value & 0xffff;
265 if (s->config < 4) {
266 s->load[1] = value >> 16;
267 }
268 break;
269 case 0x2c: /* TBILR */
270 s->load[1] = value & 0xffff;
271 break;
272 case 0x30: /* TAMARCHR */
273 s->match[0] = value & 0xffff;
274 if (s->config < 4) {
275 s->match[1] = value >> 16;
276 }
277 break;
278 case 0x34: /* TBMATCHR */
279 s->match[1] = value >> 16;
280 break;
281 case 0x38: /* TAPR */
282 s->prescale[0] = value;
283 break;
284 case 0x3c: /* TBPR */
285 s->prescale[1] = value;
286 break;
287 case 0x40: /* TAPMR */
288 s->match_prescale[0] = value;
289 break;
290 case 0x44: /* TBPMR */
291 s->match_prescale[0] = value;
292 break;
293 default:
294 qemu_log_mask(LOG_GUEST_ERROR,
295 "GPTM: read at bad offset 0x%x\n", (int)offset);
296 }
297 gptm_update_irq(s);
298 }
299
300 static const MemoryRegionOps gptm_ops = {
301 .read = gptm_read,
302 .write = gptm_write,
303 .endianness = DEVICE_NATIVE_ENDIAN,
304 };
305
306 static const VMStateDescription vmstate_stellaris_gptm = {
307 .name = "stellaris_gptm",
308 .version_id = 1,
309 .minimum_version_id = 1,
310 .fields = (VMStateField[]) {
311 VMSTATE_UINT32(config, gptm_state),
312 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
313 VMSTATE_UINT32(control, gptm_state),
314 VMSTATE_UINT32(state, gptm_state),
315 VMSTATE_UINT32(mask, gptm_state),
316 VMSTATE_UNUSED(8),
317 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
318 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
319 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
320 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
321 VMSTATE_UINT32(rtc, gptm_state),
322 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
323 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
324 VMSTATE_END_OF_LIST()
325 }
326 };
327
328 static void stellaris_gptm_init(Object *obj)
329 {
330 DeviceState *dev = DEVICE(obj);
331 gptm_state *s = STELLARIS_GPTM(obj);
332 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
333
334 sysbus_init_irq(sbd, &s->irq);
335 qdev_init_gpio_out(dev, &s->trigger, 1);
336
337 memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
338 "gptm", 0x1000);
339 sysbus_init_mmio(sbd, &s->iomem);
340
341 s->opaque[0] = s->opaque[1] = s;
342 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
343 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
344 }
345
346
347 /* System controller. */
348
349 typedef struct {
350 MemoryRegion iomem;
351 uint32_t pborctl;
352 uint32_t ldopctl;
353 uint32_t int_status;
354 uint32_t int_mask;
355 uint32_t resc;
356 uint32_t rcc;
357 uint32_t rcc2;
358 uint32_t rcgc[3];
359 uint32_t scgc[3];
360 uint32_t dcgc[3];
361 uint32_t clkvclr;
362 uint32_t ldoarst;
363 uint32_t user0;
364 uint32_t user1;
365 qemu_irq irq;
366 stellaris_board_info *board;
367 } ssys_state;
368
369 static void ssys_update(ssys_state *s)
370 {
371 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
372 }
373
374 static uint32_t pllcfg_sandstorm[16] = {
375 0x31c0, /* 1 Mhz */
376 0x1ae0, /* 1.8432 Mhz */
377 0x18c0, /* 2 Mhz */
378 0xd573, /* 2.4576 Mhz */
379 0x37a6, /* 3.57954 Mhz */
380 0x1ae2, /* 3.6864 Mhz */
381 0x0c40, /* 4 Mhz */
382 0x98bc, /* 4.906 Mhz */
383 0x935b, /* 4.9152 Mhz */
384 0x09c0, /* 5 Mhz */
385 0x4dee, /* 5.12 Mhz */
386 0x0c41, /* 6 Mhz */
387 0x75db, /* 6.144 Mhz */
388 0x1ae6, /* 7.3728 Mhz */
389 0x0600, /* 8 Mhz */
390 0x585b /* 8.192 Mhz */
391 };
392
393 static uint32_t pllcfg_fury[16] = {
394 0x3200, /* 1 Mhz */
395 0x1b20, /* 1.8432 Mhz */
396 0x1900, /* 2 Mhz */
397 0xf42b, /* 2.4576 Mhz */
398 0x37e3, /* 3.57954 Mhz */
399 0x1b21, /* 3.6864 Mhz */
400 0x0c80, /* 4 Mhz */
401 0x98ee, /* 4.906 Mhz */
402 0xd5b4, /* 4.9152 Mhz */
403 0x0a00, /* 5 Mhz */
404 0x4e27, /* 5.12 Mhz */
405 0x1902, /* 6 Mhz */
406 0xec1c, /* 6.144 Mhz */
407 0x1b23, /* 7.3728 Mhz */
408 0x0640, /* 8 Mhz */
409 0xb11c /* 8.192 Mhz */
410 };
411
412 #define DID0_VER_MASK 0x70000000
413 #define DID0_VER_0 0x00000000
414 #define DID0_VER_1 0x10000000
415
416 #define DID0_CLASS_MASK 0x00FF0000
417 #define DID0_CLASS_SANDSTORM 0x00000000
418 #define DID0_CLASS_FURY 0x00010000
419
420 static int ssys_board_class(const ssys_state *s)
421 {
422 uint32_t did0 = s->board->did0;
423 switch (did0 & DID0_VER_MASK) {
424 case DID0_VER_0:
425 return DID0_CLASS_SANDSTORM;
426 case DID0_VER_1:
427 switch (did0 & DID0_CLASS_MASK) {
428 case DID0_CLASS_SANDSTORM:
429 case DID0_CLASS_FURY:
430 return did0 & DID0_CLASS_MASK;
431 }
432 /* for unknown classes, fall through */
433 default:
434 /* This can only happen if the hardwired constant did0 value
435 * in this board's stellaris_board_info struct is wrong.
436 */
437 g_assert_not_reached();
438 }
439 }
440
441 static uint64_t ssys_read(void *opaque, hwaddr offset,
442 unsigned size)
443 {
444 ssys_state *s = (ssys_state *)opaque;
445
446 switch (offset) {
447 case 0x000: /* DID0 */
448 return s->board->did0;
449 case 0x004: /* DID1 */
450 return s->board->did1;
451 case 0x008: /* DC0 */
452 return s->board->dc0;
453 case 0x010: /* DC1 */
454 return s->board->dc1;
455 case 0x014: /* DC2 */
456 return s->board->dc2;
457 case 0x018: /* DC3 */
458 return s->board->dc3;
459 case 0x01c: /* DC4 */
460 return s->board->dc4;
461 case 0x030: /* PBORCTL */
462 return s->pborctl;
463 case 0x034: /* LDOPCTL */
464 return s->ldopctl;
465 case 0x040: /* SRCR0 */
466 return 0;
467 case 0x044: /* SRCR1 */
468 return 0;
469 case 0x048: /* SRCR2 */
470 return 0;
471 case 0x050: /* RIS */
472 return s->int_status;
473 case 0x054: /* IMC */
474 return s->int_mask;
475 case 0x058: /* MISC */
476 return s->int_status & s->int_mask;
477 case 0x05c: /* RESC */
478 return s->resc;
479 case 0x060: /* RCC */
480 return s->rcc;
481 case 0x064: /* PLLCFG */
482 {
483 int xtal;
484 xtal = (s->rcc >> 6) & 0xf;
485 switch (ssys_board_class(s)) {
486 case DID0_CLASS_FURY:
487 return pllcfg_fury[xtal];
488 case DID0_CLASS_SANDSTORM:
489 return pllcfg_sandstorm[xtal];
490 default:
491 g_assert_not_reached();
492 }
493 }
494 case 0x070: /* RCC2 */
495 return s->rcc2;
496 case 0x100: /* RCGC0 */
497 return s->rcgc[0];
498 case 0x104: /* RCGC1 */
499 return s->rcgc[1];
500 case 0x108: /* RCGC2 */
501 return s->rcgc[2];
502 case 0x110: /* SCGC0 */
503 return s->scgc[0];
504 case 0x114: /* SCGC1 */
505 return s->scgc[1];
506 case 0x118: /* SCGC2 */
507 return s->scgc[2];
508 case 0x120: /* DCGC0 */
509 return s->dcgc[0];
510 case 0x124: /* DCGC1 */
511 return s->dcgc[1];
512 case 0x128: /* DCGC2 */
513 return s->dcgc[2];
514 case 0x150: /* CLKVCLR */
515 return s->clkvclr;
516 case 0x160: /* LDOARST */
517 return s->ldoarst;
518 case 0x1e0: /* USER0 */
519 return s->user0;
520 case 0x1e4: /* USER1 */
521 return s->user1;
522 default:
523 qemu_log_mask(LOG_GUEST_ERROR,
524 "SSYS: read at bad offset 0x%x\n", (int)offset);
525 return 0;
526 }
527 }
528
529 static bool ssys_use_rcc2(ssys_state *s)
530 {
531 return (s->rcc2 >> 31) & 0x1;
532 }
533
534 /*
535 * Caculate the sys. clock period in ms.
536 */
537 static void ssys_calculate_system_clock(ssys_state *s)
538 {
539 if (ssys_use_rcc2(s)) {
540 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
541 } else {
542 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
543 }
544 }
545
546 static void ssys_write(void *opaque, hwaddr offset,
547 uint64_t value, unsigned size)
548 {
549 ssys_state *s = (ssys_state *)opaque;
550
551 switch (offset) {
552 case 0x030: /* PBORCTL */
553 s->pborctl = value & 0xffff;
554 break;
555 case 0x034: /* LDOPCTL */
556 s->ldopctl = value & 0x1f;
557 break;
558 case 0x040: /* SRCR0 */
559 case 0x044: /* SRCR1 */
560 case 0x048: /* SRCR2 */
561 fprintf(stderr, "Peripheral reset not implemented\n");
562 break;
563 case 0x054: /* IMC */
564 s->int_mask = value & 0x7f;
565 break;
566 case 0x058: /* MISC */
567 s->int_status &= ~value;
568 break;
569 case 0x05c: /* RESC */
570 s->resc = value & 0x3f;
571 break;
572 case 0x060: /* RCC */
573 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
574 /* PLL enable. */
575 s->int_status |= (1 << 6);
576 }
577 s->rcc = value;
578 ssys_calculate_system_clock(s);
579 break;
580 case 0x070: /* RCC2 */
581 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
582 break;
583 }
584
585 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
586 /* PLL enable. */
587 s->int_status |= (1 << 6);
588 }
589 s->rcc2 = value;
590 ssys_calculate_system_clock(s);
591 break;
592 case 0x100: /* RCGC0 */
593 s->rcgc[0] = value;
594 break;
595 case 0x104: /* RCGC1 */
596 s->rcgc[1] = value;
597 break;
598 case 0x108: /* RCGC2 */
599 s->rcgc[2] = value;
600 break;
601 case 0x110: /* SCGC0 */
602 s->scgc[0] = value;
603 break;
604 case 0x114: /* SCGC1 */
605 s->scgc[1] = value;
606 break;
607 case 0x118: /* SCGC2 */
608 s->scgc[2] = value;
609 break;
610 case 0x120: /* DCGC0 */
611 s->dcgc[0] = value;
612 break;
613 case 0x124: /* DCGC1 */
614 s->dcgc[1] = value;
615 break;
616 case 0x128: /* DCGC2 */
617 s->dcgc[2] = value;
618 break;
619 case 0x150: /* CLKVCLR */
620 s->clkvclr = value;
621 break;
622 case 0x160: /* LDOARST */
623 s->ldoarst = value;
624 break;
625 default:
626 qemu_log_mask(LOG_GUEST_ERROR,
627 "SSYS: write at bad offset 0x%x\n", (int)offset);
628 }
629 ssys_update(s);
630 }
631
632 static const MemoryRegionOps ssys_ops = {
633 .read = ssys_read,
634 .write = ssys_write,
635 .endianness = DEVICE_NATIVE_ENDIAN,
636 };
637
638 static void ssys_reset(void *opaque)
639 {
640 ssys_state *s = (ssys_state *)opaque;
641
642 s->pborctl = 0x7ffd;
643 s->rcc = 0x078e3ac0;
644
645 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
646 s->rcc2 = 0;
647 } else {
648 s->rcc2 = 0x07802810;
649 }
650 s->rcgc[0] = 1;
651 s->scgc[0] = 1;
652 s->dcgc[0] = 1;
653 ssys_calculate_system_clock(s);
654 }
655
656 static int stellaris_sys_post_load(void *opaque, int version_id)
657 {
658 ssys_state *s = opaque;
659
660 ssys_calculate_system_clock(s);
661
662 return 0;
663 }
664
665 static const VMStateDescription vmstate_stellaris_sys = {
666 .name = "stellaris_sys",
667 .version_id = 2,
668 .minimum_version_id = 1,
669 .post_load = stellaris_sys_post_load,
670 .fields = (VMStateField[]) {
671 VMSTATE_UINT32(pborctl, ssys_state),
672 VMSTATE_UINT32(ldopctl, ssys_state),
673 VMSTATE_UINT32(int_mask, ssys_state),
674 VMSTATE_UINT32(int_status, ssys_state),
675 VMSTATE_UINT32(resc, ssys_state),
676 VMSTATE_UINT32(rcc, ssys_state),
677 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
678 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
679 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
680 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
681 VMSTATE_UINT32(clkvclr, ssys_state),
682 VMSTATE_UINT32(ldoarst, ssys_state),
683 VMSTATE_END_OF_LIST()
684 }
685 };
686
687 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
688 stellaris_board_info * board,
689 uint8_t *macaddr)
690 {
691 ssys_state *s;
692
693 s = g_new0(ssys_state, 1);
694 s->irq = irq;
695 s->board = board;
696 /* Most devices come preprogrammed with a MAC address in the user data. */
697 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
698 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
699
700 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
701 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
702 ssys_reset(s);
703 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
704 return 0;
705 }
706
707
708 /* I2C controller. */
709
710 #define TYPE_STELLARIS_I2C "stellaris-i2c"
711 #define STELLARIS_I2C(obj) \
712 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
713
714 typedef struct {
715 SysBusDevice parent_obj;
716
717 I2CBus *bus;
718 qemu_irq irq;
719 MemoryRegion iomem;
720 uint32_t msa;
721 uint32_t mcs;
722 uint32_t mdr;
723 uint32_t mtpr;
724 uint32_t mimr;
725 uint32_t mris;
726 uint32_t mcr;
727 } stellaris_i2c_state;
728
729 #define STELLARIS_I2C_MCS_BUSY 0x01
730 #define STELLARIS_I2C_MCS_ERROR 0x02
731 #define STELLARIS_I2C_MCS_ADRACK 0x04
732 #define STELLARIS_I2C_MCS_DATACK 0x08
733 #define STELLARIS_I2C_MCS_ARBLST 0x10
734 #define STELLARIS_I2C_MCS_IDLE 0x20
735 #define STELLARIS_I2C_MCS_BUSBSY 0x40
736
737 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
738 unsigned size)
739 {
740 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
741
742 switch (offset) {
743 case 0x00: /* MSA */
744 return s->msa;
745 case 0x04: /* MCS */
746 /* We don't emulate timing, so the controller is never busy. */
747 return s->mcs | STELLARIS_I2C_MCS_IDLE;
748 case 0x08: /* MDR */
749 return s->mdr;
750 case 0x0c: /* MTPR */
751 return s->mtpr;
752 case 0x10: /* MIMR */
753 return s->mimr;
754 case 0x14: /* MRIS */
755 return s->mris;
756 case 0x18: /* MMIS */
757 return s->mris & s->mimr;
758 case 0x20: /* MCR */
759 return s->mcr;
760 default:
761 qemu_log_mask(LOG_GUEST_ERROR,
762 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
763 return 0;
764 }
765 }
766
767 static void stellaris_i2c_update(stellaris_i2c_state *s)
768 {
769 int level;
770
771 level = (s->mris & s->mimr) != 0;
772 qemu_set_irq(s->irq, level);
773 }
774
775 static void stellaris_i2c_write(void *opaque, hwaddr offset,
776 uint64_t value, unsigned size)
777 {
778 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
779
780 switch (offset) {
781 case 0x00: /* MSA */
782 s->msa = value & 0xff;
783 break;
784 case 0x04: /* MCS */
785 if ((s->mcr & 0x10) == 0) {
786 /* Disabled. Do nothing. */
787 break;
788 }
789 /* Grab the bus if this is starting a transfer. */
790 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
791 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
792 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
793 } else {
794 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
795 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
796 }
797 }
798 /* If we don't have the bus then indicate an error. */
799 if (!i2c_bus_busy(s->bus)
800 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
801 s->mcs |= STELLARIS_I2C_MCS_ERROR;
802 break;
803 }
804 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
805 if (value & 1) {
806 /* Transfer a byte. */
807 /* TODO: Handle errors. */
808 if (s->msa & 1) {
809 /* Recv */
810 s->mdr = i2c_recv(s->bus) & 0xff;
811 } else {
812 /* Send */
813 i2c_send(s->bus, s->mdr);
814 }
815 /* Raise an interrupt. */
816 s->mris |= 1;
817 }
818 if (value & 4) {
819 /* Finish transfer. */
820 i2c_end_transfer(s->bus);
821 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
822 }
823 break;
824 case 0x08: /* MDR */
825 s->mdr = value & 0xff;
826 break;
827 case 0x0c: /* MTPR */
828 s->mtpr = value & 0xff;
829 break;
830 case 0x10: /* MIMR */
831 s->mimr = 1;
832 break;
833 case 0x1c: /* MICR */
834 s->mris &= ~value;
835 break;
836 case 0x20: /* MCR */
837 if (value & 1) {
838 qemu_log_mask(LOG_UNIMP, "stellaris_i2c: Loopback not implemented");
839 }
840 if (value & 0x20) {
841 qemu_log_mask(LOG_UNIMP,
842 "stellaris_i2c: Slave mode not implemented");
843 }
844 s->mcr = value & 0x31;
845 break;
846 default:
847 qemu_log_mask(LOG_GUEST_ERROR,
848 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
849 }
850 stellaris_i2c_update(s);
851 }
852
853 static void stellaris_i2c_reset(stellaris_i2c_state *s)
854 {
855 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
856 i2c_end_transfer(s->bus);
857
858 s->msa = 0;
859 s->mcs = 0;
860 s->mdr = 0;
861 s->mtpr = 1;
862 s->mimr = 0;
863 s->mris = 0;
864 s->mcr = 0;
865 stellaris_i2c_update(s);
866 }
867
868 static const MemoryRegionOps stellaris_i2c_ops = {
869 .read = stellaris_i2c_read,
870 .write = stellaris_i2c_write,
871 .endianness = DEVICE_NATIVE_ENDIAN,
872 };
873
874 static const VMStateDescription vmstate_stellaris_i2c = {
875 .name = "stellaris_i2c",
876 .version_id = 1,
877 .minimum_version_id = 1,
878 .fields = (VMStateField[]) {
879 VMSTATE_UINT32(msa, stellaris_i2c_state),
880 VMSTATE_UINT32(mcs, stellaris_i2c_state),
881 VMSTATE_UINT32(mdr, stellaris_i2c_state),
882 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
883 VMSTATE_UINT32(mimr, stellaris_i2c_state),
884 VMSTATE_UINT32(mris, stellaris_i2c_state),
885 VMSTATE_UINT32(mcr, stellaris_i2c_state),
886 VMSTATE_END_OF_LIST()
887 }
888 };
889
890 static void stellaris_i2c_init(Object *obj)
891 {
892 DeviceState *dev = DEVICE(obj);
893 stellaris_i2c_state *s = STELLARIS_I2C(obj);
894 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
895 I2CBus *bus;
896
897 sysbus_init_irq(sbd, &s->irq);
898 bus = i2c_init_bus(dev, "i2c");
899 s->bus = bus;
900
901 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
902 "i2c", 0x1000);
903 sysbus_init_mmio(sbd, &s->iomem);
904 /* ??? For now we only implement the master interface. */
905 stellaris_i2c_reset(s);
906 }
907
908 /* Analogue to Digital Converter. This is only partially implemented,
909 enough for applications that use a combined ADC and timer tick. */
910
911 #define STELLARIS_ADC_EM_CONTROLLER 0
912 #define STELLARIS_ADC_EM_COMP 1
913 #define STELLARIS_ADC_EM_EXTERNAL 4
914 #define STELLARIS_ADC_EM_TIMER 5
915 #define STELLARIS_ADC_EM_PWM0 6
916 #define STELLARIS_ADC_EM_PWM1 7
917 #define STELLARIS_ADC_EM_PWM2 8
918
919 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
920 #define STELLARIS_ADC_FIFO_FULL 0x1000
921
922 #define TYPE_STELLARIS_ADC "stellaris-adc"
923 #define STELLARIS_ADC(obj) \
924 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
925
926 typedef struct StellarisADCState {
927 SysBusDevice parent_obj;
928
929 MemoryRegion iomem;
930 uint32_t actss;
931 uint32_t ris;
932 uint32_t im;
933 uint32_t emux;
934 uint32_t ostat;
935 uint32_t ustat;
936 uint32_t sspri;
937 uint32_t sac;
938 struct {
939 uint32_t state;
940 uint32_t data[16];
941 } fifo[4];
942 uint32_t ssmux[4];
943 uint32_t ssctl[4];
944 uint32_t noise;
945 qemu_irq irq[4];
946 } stellaris_adc_state;
947
948 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
949 {
950 int tail;
951
952 tail = s->fifo[n].state & 0xf;
953 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
954 s->ustat |= 1 << n;
955 } else {
956 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
957 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
958 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
959 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
960 }
961 return s->fifo[n].data[tail];
962 }
963
964 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
965 uint32_t value)
966 {
967 int head;
968
969 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
970 FIFO fir each sequencer. */
971 head = (s->fifo[n].state >> 4) & 0xf;
972 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
973 s->ostat |= 1 << n;
974 return;
975 }
976 s->fifo[n].data[head] = value;
977 head = (head + 1) & 0xf;
978 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
979 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
980 if ((s->fifo[n].state & 0xf) == head)
981 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
982 }
983
984 static void stellaris_adc_update(stellaris_adc_state *s)
985 {
986 int level;
987 int n;
988
989 for (n = 0; n < 4; n++) {
990 level = (s->ris & s->im & (1 << n)) != 0;
991 qemu_set_irq(s->irq[n], level);
992 }
993 }
994
995 static void stellaris_adc_trigger(void *opaque, int irq, int level)
996 {
997 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
998 int n;
999
1000 for (n = 0; n < 4; n++) {
1001 if ((s->actss & (1 << n)) == 0) {
1002 continue;
1003 }
1004
1005 if (((s->emux >> (n * 4)) & 0xff) != 5) {
1006 continue;
1007 }
1008
1009 /* Some applications use the ADC as a random number source, so introduce
1010 some variation into the signal. */
1011 s->noise = s->noise * 314159 + 1;
1012 /* ??? actual inputs not implemented. Return an arbitrary value. */
1013 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1014 s->ris |= (1 << n);
1015 stellaris_adc_update(s);
1016 }
1017 }
1018
1019 static void stellaris_adc_reset(stellaris_adc_state *s)
1020 {
1021 int n;
1022
1023 for (n = 0; n < 4; n++) {
1024 s->ssmux[n] = 0;
1025 s->ssctl[n] = 0;
1026 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1027 }
1028 }
1029
1030 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1031 unsigned size)
1032 {
1033 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1034
1035 /* TODO: Implement this. */
1036 if (offset >= 0x40 && offset < 0xc0) {
1037 int n;
1038 n = (offset - 0x40) >> 5;
1039 switch (offset & 0x1f) {
1040 case 0x00: /* SSMUX */
1041 return s->ssmux[n];
1042 case 0x04: /* SSCTL */
1043 return s->ssctl[n];
1044 case 0x08: /* SSFIFO */
1045 return stellaris_adc_fifo_read(s, n);
1046 case 0x0c: /* SSFSTAT */
1047 return s->fifo[n].state;
1048 default:
1049 break;
1050 }
1051 }
1052 switch (offset) {
1053 case 0x00: /* ACTSS */
1054 return s->actss;
1055 case 0x04: /* RIS */
1056 return s->ris;
1057 case 0x08: /* IM */
1058 return s->im;
1059 case 0x0c: /* ISC */
1060 return s->ris & s->im;
1061 case 0x10: /* OSTAT */
1062 return s->ostat;
1063 case 0x14: /* EMUX */
1064 return s->emux;
1065 case 0x18: /* USTAT */
1066 return s->ustat;
1067 case 0x20: /* SSPRI */
1068 return s->sspri;
1069 case 0x30: /* SAC */
1070 return s->sac;
1071 default:
1072 qemu_log_mask(LOG_GUEST_ERROR,
1073 "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1074 return 0;
1075 }
1076 }
1077
1078 static void stellaris_adc_write(void *opaque, hwaddr offset,
1079 uint64_t value, unsigned size)
1080 {
1081 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1082
1083 /* TODO: Implement this. */
1084 if (offset >= 0x40 && offset < 0xc0) {
1085 int n;
1086 n = (offset - 0x40) >> 5;
1087 switch (offset & 0x1f) {
1088 case 0x00: /* SSMUX */
1089 s->ssmux[n] = value & 0x33333333;
1090 return;
1091 case 0x04: /* SSCTL */
1092 if (value != 6) {
1093 qemu_log_mask(LOG_UNIMP,
1094 "ADC: Unimplemented sequence %" PRIx64 "\n",
1095 value);
1096 }
1097 s->ssctl[n] = value;
1098 return;
1099 default:
1100 break;
1101 }
1102 }
1103 switch (offset) {
1104 case 0x00: /* ACTSS */
1105 s->actss = value & 0xf;
1106 break;
1107 case 0x08: /* IM */
1108 s->im = value;
1109 break;
1110 case 0x0c: /* ISC */
1111 s->ris &= ~value;
1112 break;
1113 case 0x10: /* OSTAT */
1114 s->ostat &= ~value;
1115 break;
1116 case 0x14: /* EMUX */
1117 s->emux = value;
1118 break;
1119 case 0x18: /* USTAT */
1120 s->ustat &= ~value;
1121 break;
1122 case 0x20: /* SSPRI */
1123 s->sspri = value;
1124 break;
1125 case 0x28: /* PSSI */
1126 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented");
1127 break;
1128 case 0x30: /* SAC */
1129 s->sac = value;
1130 break;
1131 default:
1132 qemu_log_mask(LOG_GUEST_ERROR,
1133 "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1134 }
1135 stellaris_adc_update(s);
1136 }
1137
1138 static const MemoryRegionOps stellaris_adc_ops = {
1139 .read = stellaris_adc_read,
1140 .write = stellaris_adc_write,
1141 .endianness = DEVICE_NATIVE_ENDIAN,
1142 };
1143
1144 static const VMStateDescription vmstate_stellaris_adc = {
1145 .name = "stellaris_adc",
1146 .version_id = 1,
1147 .minimum_version_id = 1,
1148 .fields = (VMStateField[]) {
1149 VMSTATE_UINT32(actss, stellaris_adc_state),
1150 VMSTATE_UINT32(ris, stellaris_adc_state),
1151 VMSTATE_UINT32(im, stellaris_adc_state),
1152 VMSTATE_UINT32(emux, stellaris_adc_state),
1153 VMSTATE_UINT32(ostat, stellaris_adc_state),
1154 VMSTATE_UINT32(ustat, stellaris_adc_state),
1155 VMSTATE_UINT32(sspri, stellaris_adc_state),
1156 VMSTATE_UINT32(sac, stellaris_adc_state),
1157 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1158 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1159 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1160 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1161 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1162 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1163 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1164 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1165 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1166 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1167 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1168 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1169 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1170 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1171 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1172 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1173 VMSTATE_UINT32(noise, stellaris_adc_state),
1174 VMSTATE_END_OF_LIST()
1175 }
1176 };
1177
1178 static void stellaris_adc_init(Object *obj)
1179 {
1180 DeviceState *dev = DEVICE(obj);
1181 stellaris_adc_state *s = STELLARIS_ADC(obj);
1182 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1183 int n;
1184
1185 for (n = 0; n < 4; n++) {
1186 sysbus_init_irq(sbd, &s->irq[n]);
1187 }
1188
1189 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1190 "adc", 0x1000);
1191 sysbus_init_mmio(sbd, &s->iomem);
1192 stellaris_adc_reset(s);
1193 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1194 }
1195
1196 static
1197 void do_sys_reset(void *opaque, int n, int level)
1198 {
1199 if (level) {
1200 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1201 }
1202 }
1203
1204 /* Board init. */
1205 static stellaris_board_info stellaris_boards[] = {
1206 { "LM3S811EVB",
1207 0,
1208 0x0032000e,
1209 0x001f001f, /* dc0 */
1210 0x001132bf,
1211 0x01071013,
1212 0x3f0f01ff,
1213 0x0000001f,
1214 BP_OLED_I2C
1215 },
1216 { "LM3S6965EVB",
1217 0x10010002,
1218 0x1073402e,
1219 0x00ff007f, /* dc0 */
1220 0x001133ff,
1221 0x030f5317,
1222 0x0f0f87ff,
1223 0x5000007f,
1224 BP_OLED_SSI | BP_GAMEPAD
1225 }
1226 };
1227
1228 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1229 stellaris_board_info *board)
1230 {
1231 static const int uart_irq[] = {5, 6, 33, 34};
1232 static const int timer_irq[] = {19, 21, 23, 35};
1233 static const uint32_t gpio_addr[7] =
1234 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1235 0x40024000, 0x40025000, 0x40026000};
1236 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1237
1238 /* Memory map of SoC devices, from
1239 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1240 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1241 *
1242 * 40000000 wdtimer (unimplemented)
1243 * 40002000 i2c (unimplemented)
1244 * 40004000 GPIO
1245 * 40005000 GPIO
1246 * 40006000 GPIO
1247 * 40007000 GPIO
1248 * 40008000 SSI
1249 * 4000c000 UART
1250 * 4000d000 UART
1251 * 4000e000 UART
1252 * 40020000 i2c
1253 * 40021000 i2c (unimplemented)
1254 * 40024000 GPIO
1255 * 40025000 GPIO
1256 * 40026000 GPIO
1257 * 40028000 PWM (unimplemented)
1258 * 4002c000 QEI (unimplemented)
1259 * 4002d000 QEI (unimplemented)
1260 * 40030000 gptimer
1261 * 40031000 gptimer
1262 * 40032000 gptimer
1263 * 40033000 gptimer
1264 * 40038000 ADC
1265 * 4003c000 analogue comparator (unimplemented)
1266 * 40048000 ethernet
1267 * 400fc000 hibernation module (unimplemented)
1268 * 400fd000 flash memory control (unimplemented)
1269 * 400fe000 system control
1270 */
1271
1272 DeviceState *gpio_dev[7], *nvic;
1273 qemu_irq gpio_in[7][8];
1274 qemu_irq gpio_out[7][8];
1275 qemu_irq adc;
1276 int sram_size;
1277 int flash_size;
1278 I2CBus *i2c;
1279 DeviceState *dev;
1280 int i;
1281 int j;
1282
1283 MemoryRegion *sram = g_new(MemoryRegion, 1);
1284 MemoryRegion *flash = g_new(MemoryRegion, 1);
1285 MemoryRegion *system_memory = get_system_memory();
1286
1287 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1288 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1289
1290 /* Flash programming is done via the SCU, so pretend it is ROM. */
1291 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1292 &error_fatal);
1293 vmstate_register_ram_global(flash);
1294 memory_region_set_readonly(flash, true);
1295 memory_region_add_subregion(system_memory, 0, flash);
1296
1297 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1298 &error_fatal);
1299 vmstate_register_ram_global(sram);
1300 memory_region_add_subregion(system_memory, 0x20000000, sram);
1301
1302 nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES,
1303 kernel_filename, cpu_model);
1304
1305 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1306 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1307
1308 if (board->dc1 & (1 << 16)) {
1309 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1310 qdev_get_gpio_in(nvic, 14),
1311 qdev_get_gpio_in(nvic, 15),
1312 qdev_get_gpio_in(nvic, 16),
1313 qdev_get_gpio_in(nvic, 17),
1314 NULL);
1315 adc = qdev_get_gpio_in(dev, 0);
1316 } else {
1317 adc = NULL;
1318 }
1319 for (i = 0; i < 4; i++) {
1320 if (board->dc2 & (0x10000 << i)) {
1321 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1322 0x40030000 + i * 0x1000,
1323 qdev_get_gpio_in(nvic, timer_irq[i]));
1324 /* TODO: This is incorrect, but we get away with it because
1325 the ADC output is only ever pulsed. */
1326 qdev_connect_gpio_out(dev, 0, adc);
1327 }
1328 }
1329
1330 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1331 board, nd_table[0].macaddr.a);
1332
1333 for (i = 0; i < 7; i++) {
1334 if (board->dc4 & (1 << i)) {
1335 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1336 qdev_get_gpio_in(nvic,
1337 gpio_irq[i]));
1338 for (j = 0; j < 8; j++) {
1339 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1340 gpio_out[i][j] = NULL;
1341 }
1342 }
1343 }
1344
1345 if (board->dc2 & (1 << 12)) {
1346 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1347 qdev_get_gpio_in(nvic, 8));
1348 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1349 if (board->peripherals & BP_OLED_I2C) {
1350 i2c_create_slave(i2c, "ssd0303", 0x3d);
1351 }
1352 }
1353
1354 for (i = 0; i < 4; i++) {
1355 if (board->dc2 & (1 << i)) {
1356 pl011_luminary_create(0x4000c000 + i * 0x1000,
1357 qdev_get_gpio_in(nvic, uart_irq[i]),
1358 serial_hds[i]);
1359 }
1360 }
1361 if (board->dc2 & (1 << 4)) {
1362 dev = sysbus_create_simple("pl022", 0x40008000,
1363 qdev_get_gpio_in(nvic, 7));
1364 if (board->peripherals & BP_OLED_SSI) {
1365 void *bus;
1366 DeviceState *sddev;
1367 DeviceState *ssddev;
1368
1369 /* Some boards have both an OLED controller and SD card connected to
1370 * the same SSI port, with the SD card chip select connected to a
1371 * GPIO pin. Technically the OLED chip select is connected to the
1372 * SSI Fss pin. We do not bother emulating that as both devices
1373 * should never be selected simultaneously, and our OLED controller
1374 * ignores stray 0xff commands that occur when deselecting the SD
1375 * card.
1376 */
1377 bus = qdev_get_child_bus(dev, "ssi");
1378
1379 sddev = ssi_create_slave(bus, "ssi-sd");
1380 ssddev = ssi_create_slave(bus, "ssd0323");
1381 gpio_out[GPIO_D][0] = qemu_irq_split(
1382 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1383 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1384 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1385
1386 /* Make sure the select pin is high. */
1387 qemu_irq_raise(gpio_out[GPIO_D][0]);
1388 }
1389 }
1390 if (board->dc4 & (1 << 28)) {
1391 DeviceState *enet;
1392
1393 qemu_check_nic_model(&nd_table[0], "stellaris");
1394
1395 enet = qdev_create(NULL, "stellaris_enet");
1396 qdev_set_nic_properties(enet, &nd_table[0]);
1397 qdev_init_nofail(enet);
1398 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1399 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1400 }
1401 if (board->peripherals & BP_GAMEPAD) {
1402 qemu_irq gpad_irq[5];
1403 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1404
1405 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1406 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1407 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1408 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1409 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1410
1411 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1412 }
1413 for (i = 0; i < 7; i++) {
1414 if (board->dc4 & (1 << i)) {
1415 for (j = 0; j < 8; j++) {
1416 if (gpio_out[i][j]) {
1417 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1418 }
1419 }
1420 }
1421 }
1422
1423 /* Add dummy regions for the devices we don't implement yet,
1424 * so guest accesses don't cause unlogged crashes.
1425 */
1426 create_unimplemented_device("wdtimer", 0x40000000, 0x1000);
1427 create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1428 create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1429 create_unimplemented_device("PWM", 0x40028000, 0x1000);
1430 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1431 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1432 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1433 create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1434 create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1435 }
1436
1437 /* FIXME: Figure out how to generate these from stellaris_boards. */
1438 static void lm3s811evb_init(MachineState *machine)
1439 {
1440 const char *cpu_model = machine->cpu_model;
1441 const char *kernel_filename = machine->kernel_filename;
1442 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1443 }
1444
1445 static void lm3s6965evb_init(MachineState *machine)
1446 {
1447 const char *cpu_model = machine->cpu_model;
1448 const char *kernel_filename = machine->kernel_filename;
1449 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1450 }
1451
1452 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1453 {
1454 MachineClass *mc = MACHINE_CLASS(oc);
1455
1456 mc->desc = "Stellaris LM3S811EVB";
1457 mc->init = lm3s811evb_init;
1458 }
1459
1460 static const TypeInfo lm3s811evb_type = {
1461 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1462 .parent = TYPE_MACHINE,
1463 .class_init = lm3s811evb_class_init,
1464 };
1465
1466 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1467 {
1468 MachineClass *mc = MACHINE_CLASS(oc);
1469
1470 mc->desc = "Stellaris LM3S6965EVB";
1471 mc->init = lm3s6965evb_init;
1472 }
1473
1474 static const TypeInfo lm3s6965evb_type = {
1475 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1476 .parent = TYPE_MACHINE,
1477 .class_init = lm3s6965evb_class_init,
1478 };
1479
1480 static void stellaris_machine_init(void)
1481 {
1482 type_register_static(&lm3s811evb_type);
1483 type_register_static(&lm3s6965evb_type);
1484 }
1485
1486 type_init(stellaris_machine_init)
1487
1488 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1489 {
1490 DeviceClass *dc = DEVICE_CLASS(klass);
1491
1492 dc->vmsd = &vmstate_stellaris_i2c;
1493 }
1494
1495 static const TypeInfo stellaris_i2c_info = {
1496 .name = TYPE_STELLARIS_I2C,
1497 .parent = TYPE_SYS_BUS_DEVICE,
1498 .instance_size = sizeof(stellaris_i2c_state),
1499 .instance_init = stellaris_i2c_init,
1500 .class_init = stellaris_i2c_class_init,
1501 };
1502
1503 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1504 {
1505 DeviceClass *dc = DEVICE_CLASS(klass);
1506
1507 dc->vmsd = &vmstate_stellaris_gptm;
1508 }
1509
1510 static const TypeInfo stellaris_gptm_info = {
1511 .name = TYPE_STELLARIS_GPTM,
1512 .parent = TYPE_SYS_BUS_DEVICE,
1513 .instance_size = sizeof(gptm_state),
1514 .instance_init = stellaris_gptm_init,
1515 .class_init = stellaris_gptm_class_init,
1516 };
1517
1518 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1519 {
1520 DeviceClass *dc = DEVICE_CLASS(klass);
1521
1522 dc->vmsd = &vmstate_stellaris_adc;
1523 }
1524
1525 static const TypeInfo stellaris_adc_info = {
1526 .name = TYPE_STELLARIS_ADC,
1527 .parent = TYPE_SYS_BUS_DEVICE,
1528 .instance_size = sizeof(stellaris_adc_state),
1529 .instance_init = stellaris_adc_init,
1530 .class_init = stellaris_adc_class_init,
1531 };
1532
1533 static void stellaris_register_types(void)
1534 {
1535 type_register_static(&stellaris_i2c_info);
1536 type_register_static(&stellaris_gptm_info);
1537 type_register_static(&stellaris_adc_info);
1538 }
1539
1540 type_init(stellaris_register_types)