]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt-acpi-build.c
hw/mips: Express dependencies of the r4k platform with Kconfig
[mirror_qemu.git] / hw / arm / virt-acpi-build.c
1 /* Support for generating ACPI tables and passing them to Guests
2 *
3 * ARM virt ACPI generation
4 *
5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
6 * Copyright (C) 2006 Fabrice Bellard
7 * Copyright (C) 2013 Red Hat Inc
8 *
9 * Author: Michael S. Tsirkin <mst@redhat.com>
10 *
11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12 *
13 * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, see <http://www.gnu.org/licenses/>.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu/bitmap.h"
32 #include "trace.h"
33 #include "qom/cpu.h"
34 #include "target/arm/cpu.h"
35 #include "hw/acpi/acpi-defs.h"
36 #include "hw/acpi/acpi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/acpi/bios-linker-loader.h"
39 #include "hw/hw.h"
40 #include "hw/acpi/aml-build.h"
41 #include "hw/acpi/utils.h"
42 #include "hw/acpi/pci.h"
43 #include "hw/pci/pcie_host.h"
44 #include "hw/pci/pci.h"
45 #include "hw/arm/virt.h"
46 #include "sysemu/numa.h"
47 #include "kvm_arm.h"
48
49 #define ARM_SPI_BASE 32
50 #define ACPI_POWER_BUTTON_DEVICE "PWRB"
51
52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
53 {
54 uint16_t i;
55
56 for (i = 0; i < smp_cpus; i++) {
57 Aml *dev = aml_device("C%.03X", i);
58 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
59 aml_append(dev, aml_name_decl("_UID", aml_int(i)));
60 aml_append(scope, dev);
61 }
62 }
63
64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
65 uint32_t uart_irq)
66 {
67 Aml *dev = aml_device("COM0");
68 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
69 aml_append(dev, aml_name_decl("_UID", aml_int(0)));
70
71 Aml *crs = aml_resource_template();
72 aml_append(crs, aml_memory32_fixed(uart_memmap->base,
73 uart_memmap->size, AML_READ_WRITE));
74 aml_append(crs,
75 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
76 AML_EXCLUSIVE, &uart_irq, 1));
77 aml_append(dev, aml_name_decl("_CRS", crs));
78
79 /* The _ADR entry is used to link this device to the UART described
80 * in the SPCR table, i.e. SPCR.base_address.address == _ADR.
81 */
82 aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
83
84 aml_append(scope, dev);
85 }
86
87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
88 {
89 Aml *dev = aml_device("FWCF");
90 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
91 /* device present, functioning, decoding, not shown in UI */
92 aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
93 aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
94
95 Aml *crs = aml_resource_template();
96 aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
97 fw_cfg_memmap->size, AML_READ_WRITE));
98 aml_append(dev, aml_name_decl("_CRS", crs));
99 aml_append(scope, dev);
100 }
101
102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
103 {
104 Aml *dev, *crs;
105 hwaddr base = flash_memmap->base;
106 hwaddr size = flash_memmap->size / 2;
107
108 dev = aml_device("FLS0");
109 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
110 aml_append(dev, aml_name_decl("_UID", aml_int(0)));
111
112 crs = aml_resource_template();
113 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
114 aml_append(dev, aml_name_decl("_CRS", crs));
115 aml_append(scope, dev);
116
117 dev = aml_device("FLS1");
118 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
119 aml_append(dev, aml_name_decl("_UID", aml_int(1)));
120 crs = aml_resource_template();
121 aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
122 aml_append(dev, aml_name_decl("_CRS", crs));
123 aml_append(scope, dev);
124 }
125
126 static void acpi_dsdt_add_virtio(Aml *scope,
127 const MemMapEntry *virtio_mmio_memmap,
128 uint32_t mmio_irq, int num)
129 {
130 hwaddr base = virtio_mmio_memmap->base;
131 hwaddr size = virtio_mmio_memmap->size;
132 int i;
133
134 for (i = 0; i < num; i++) {
135 uint32_t irq = mmio_irq + i;
136 Aml *dev = aml_device("VR%02u", i);
137 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
138 aml_append(dev, aml_name_decl("_UID", aml_int(i)));
139 aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
140
141 Aml *crs = aml_resource_template();
142 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
143 aml_append(crs,
144 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
145 AML_EXCLUSIVE, &irq, 1));
146 aml_append(dev, aml_name_decl("_CRS", crs));
147 aml_append(scope, dev);
148 base += size;
149 }
150 }
151
152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
153 uint32_t irq, bool use_highmem, bool highmem_ecam)
154 {
155 int ecam_id = VIRT_ECAM_ID(highmem_ecam);
156 Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
157 int i, bus_no;
158 hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
159 hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
160 hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
161 hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
162 hwaddr base_ecam = memmap[ecam_id].base;
163 hwaddr size_ecam = memmap[ecam_id].size;
164 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
165
166 Aml *dev = aml_device("%s", "PCI0");
167 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
168 aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
169 aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
170 aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
171 aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
172 aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
173 aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
174 aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
175
176 /* Declare the PCI Routing Table. */
177 Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS);
178 for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
179 for (i = 0; i < PCI_NUM_PINS; i++) {
180 int gsi = (i + bus_no) % PCI_NUM_PINS;
181 Aml *pkg = aml_package(4);
182 aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
183 aml_append(pkg, aml_int(i));
184 aml_append(pkg, aml_name("GSI%d", gsi));
185 aml_append(pkg, aml_int(0));
186 aml_append(rt_pkg, pkg);
187 }
188 }
189 aml_append(dev, aml_name_decl("_PRT", rt_pkg));
190
191 /* Create GSI link device */
192 for (i = 0; i < PCI_NUM_PINS; i++) {
193 uint32_t irqs = irq + i;
194 Aml *dev_gsi = aml_device("GSI%d", i);
195 aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
196 aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
197 crs = aml_resource_template();
198 aml_append(crs,
199 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
200 AML_EXCLUSIVE, &irqs, 1));
201 aml_append(dev_gsi, aml_name_decl("_PRS", crs));
202 crs = aml_resource_template();
203 aml_append(crs,
204 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
205 AML_EXCLUSIVE, &irqs, 1));
206 aml_append(dev_gsi, aml_name_decl("_CRS", crs));
207 method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
208 aml_append(dev_gsi, method);
209 aml_append(dev, dev_gsi);
210 }
211
212 method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
213 aml_append(method, aml_return(aml_int(base_ecam)));
214 aml_append(dev, method);
215
216 method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
217 Aml *rbuf = aml_resource_template();
218 aml_append(rbuf,
219 aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
220 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
221 nr_pcie_buses));
222 aml_append(rbuf,
223 aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
224 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
225 base_mmio + size_mmio - 1, 0x0000, size_mmio));
226 aml_append(rbuf,
227 aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
228 AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
229 size_pio));
230
231 if (use_highmem) {
232 hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base;
233 hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size;
234
235 aml_append(rbuf,
236 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
237 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
238 base_mmio_high,
239 base_mmio_high + size_mmio_high - 1, 0x0000,
240 size_mmio_high));
241 }
242
243 aml_append(method, aml_name_decl("RBUF", rbuf));
244 aml_append(method, aml_return(rbuf));
245 aml_append(dev, method);
246
247 /* Declare an _OSC (OS Control Handoff) method */
248 aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
249 aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
250 method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
251 aml_append(method,
252 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
253
254 /* PCI Firmware Specification 3.0
255 * 4.5.1. _OSC Interface for PCI Host Bridge Devices
256 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
257 * identified by the Universal Unique IDentifier (UUID)
258 * 33DB4D5B-1FF7-401C-9657-7441C03DD766
259 */
260 UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
261 ifctx = aml_if(aml_equal(aml_arg(0), UUID));
262 aml_append(ifctx,
263 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
264 aml_append(ifctx,
265 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
266 aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
267 aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
268 aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
269 aml_name("CTRL")));
270
271 ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
272 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
273 aml_name("CDW1")));
274 aml_append(ifctx, ifctx1);
275
276 ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
277 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
278 aml_name("CDW1")));
279 aml_append(ifctx, ifctx1);
280
281 aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
282 aml_append(ifctx, aml_return(aml_arg(3)));
283 aml_append(method, ifctx);
284
285 elsectx = aml_else();
286 aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
287 aml_name("CDW1")));
288 aml_append(elsectx, aml_return(aml_arg(3)));
289 aml_append(method, elsectx);
290 aml_append(dev, method);
291
292 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
293
294 /* PCI Firmware Specification 3.0
295 * 4.6.1. _DSM for PCI Express Slot Information
296 * The UUID in _DSM in this context is
297 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
298 */
299 UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
300 ifctx = aml_if(aml_equal(aml_arg(0), UUID));
301 ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
302 uint8_t byte_list[1] = {1};
303 buf = aml_buffer(1, byte_list);
304 aml_append(ifctx1, aml_return(buf));
305 aml_append(ifctx, ifctx1);
306 aml_append(method, ifctx);
307
308 byte_list[0] = 0;
309 buf = aml_buffer(1, byte_list);
310 aml_append(method, aml_return(buf));
311 aml_append(dev, method);
312
313 Aml *dev_rp0 = aml_device("%s", "RP0");
314 aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
315 aml_append(dev, dev_rp0);
316
317 Aml *dev_res0 = aml_device("%s", "RES0");
318 aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
319 crs = aml_resource_template();
320 aml_append(crs,
321 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
322 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
323 base_ecam + size_ecam - 1, 0x0000, size_ecam));
324 aml_append(dev_res0, aml_name_decl("_CRS", crs));
325 aml_append(dev, dev_res0);
326 aml_append(scope, dev);
327 }
328
329 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
330 uint32_t gpio_irq)
331 {
332 Aml *dev = aml_device("GPO0");
333 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
334 aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
335 aml_append(dev, aml_name_decl("_UID", aml_int(0)));
336
337 Aml *crs = aml_resource_template();
338 aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
339 AML_READ_WRITE));
340 aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
341 AML_EXCLUSIVE, &gpio_irq, 1));
342 aml_append(dev, aml_name_decl("_CRS", crs));
343
344 Aml *aei = aml_resource_template();
345 /* Pin 3 for power button */
346 const uint32_t pin_list[1] = {3};
347 aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
348 AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
349 "GPO0", NULL, 0));
350 aml_append(dev, aml_name_decl("_AEI", aei));
351
352 /* _E03 is handle for power button */
353 Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
354 aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
355 aml_int(0x80)));
356 aml_append(dev, method);
357 aml_append(scope, dev);
358 }
359
360 static void acpi_dsdt_add_power_button(Aml *scope)
361 {
362 Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
363 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
364 aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
365 aml_append(dev, aml_name_decl("_UID", aml_int(0)));
366 aml_append(scope, dev);
367 }
368
369 static void
370 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
371 {
372 int nb_nodes, iort_start = table_data->len;
373 AcpiIortIdMapping *idmap;
374 AcpiIortItsGroup *its;
375 AcpiIortTable *iort;
376 AcpiIortSmmu3 *smmu;
377 size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
378 AcpiIortRC *rc;
379
380 iort = acpi_data_push(table_data, sizeof(*iort));
381
382 if (vms->iommu == VIRT_IOMMU_SMMUV3) {
383 nb_nodes = 3; /* RC, ITS, SMMUv3 */
384 } else {
385 nb_nodes = 2; /* RC, ITS */
386 }
387
388 iort_length = sizeof(*iort);
389 iort->node_count = cpu_to_le32(nb_nodes);
390 /*
391 * Use a copy in case table_data->data moves during acpi_data_push
392 * operations.
393 */
394 iort_node_offset = sizeof(*iort);
395 iort->node_offset = cpu_to_le32(iort_node_offset);
396
397 /* ITS group node */
398 node_size = sizeof(*its) + sizeof(uint32_t);
399 iort_length += node_size;
400 its = acpi_data_push(table_data, node_size);
401
402 its->type = ACPI_IORT_NODE_ITS_GROUP;
403 its->length = cpu_to_le16(node_size);
404 its->its_count = cpu_to_le32(1);
405 its->identifiers[0] = 0; /* MADT translation_id */
406
407 if (vms->iommu == VIRT_IOMMU_SMMUV3) {
408 int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
409
410 /* SMMUv3 node */
411 smmu_offset = iort_node_offset + node_size;
412 node_size = sizeof(*smmu) + sizeof(*idmap);
413 iort_length += node_size;
414 smmu = acpi_data_push(table_data, node_size);
415
416 smmu->type = ACPI_IORT_NODE_SMMU_V3;
417 smmu->length = cpu_to_le16(node_size);
418 smmu->mapping_count = cpu_to_le32(1);
419 smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
420 smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
421 smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
422 smmu->event_gsiv = cpu_to_le32(irq);
423 smmu->pri_gsiv = cpu_to_le32(irq + 1);
424 smmu->gerr_gsiv = cpu_to_le32(irq + 2);
425 smmu->sync_gsiv = cpu_to_le32(irq + 3);
426
427 /* Identity RID mapping covering the whole input RID range */
428 idmap = &smmu->id_mapping_array[0];
429 idmap->input_base = 0;
430 idmap->id_count = cpu_to_le32(0xFFFF);
431 idmap->output_base = 0;
432 /* output IORT node is the ITS group node (the first node) */
433 idmap->output_reference = cpu_to_le32(iort_node_offset);
434 }
435
436 /* Root Complex Node */
437 node_size = sizeof(*rc) + sizeof(*idmap);
438 iort_length += node_size;
439 rc = acpi_data_push(table_data, node_size);
440
441 rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
442 rc->length = cpu_to_le16(node_size);
443 rc->mapping_count = cpu_to_le32(1);
444 rc->mapping_offset = cpu_to_le32(sizeof(*rc));
445
446 /* fully coherent device */
447 rc->memory_properties.cache_coherency = cpu_to_le32(1);
448 rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
449 rc->pci_segment_number = 0; /* MCFG pci_segment */
450
451 /* Identity RID mapping covering the whole input RID range */
452 idmap = &rc->id_mapping_array[0];
453 idmap->input_base = 0;
454 idmap->id_count = cpu_to_le32(0xFFFF);
455 idmap->output_base = 0;
456
457 if (vms->iommu == VIRT_IOMMU_SMMUV3) {
458 /* output IORT node is the smmuv3 node */
459 idmap->output_reference = cpu_to_le32(smmu_offset);
460 } else {
461 /* output IORT node is the ITS group node (the first node) */
462 idmap->output_reference = cpu_to_le32(iort_node_offset);
463 }
464
465 /*
466 * Update the pointer address in case table_data->data moves during above
467 * acpi_data_push operations.
468 */
469 iort = (AcpiIortTable *)(table_data->data + iort_start);
470 iort->length = cpu_to_le32(iort_length);
471
472 build_header(linker, table_data, (void *)(table_data->data + iort_start),
473 "IORT", table_data->len - iort_start, 0, NULL, NULL);
474 }
475
476 static void
477 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
478 {
479 AcpiSerialPortConsoleRedirection *spcr;
480 const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
481 int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
482 int spcr_start = table_data->len;
483
484 spcr = acpi_data_push(table_data, sizeof(*spcr));
485
486 spcr->interface_type = 0x3; /* ARM PL011 UART */
487
488 spcr->base_address.space_id = AML_SYSTEM_MEMORY;
489 spcr->base_address.bit_width = 8;
490 spcr->base_address.bit_offset = 0;
491 spcr->base_address.access_width = 1;
492 spcr->base_address.address = cpu_to_le64(uart_memmap->base);
493
494 spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
495 spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */
496
497 spcr->baud = 3; /* Baud Rate: 3 = 9600 */
498 spcr->parity = 0; /* No Parity */
499 spcr->stopbits = 1; /* 1 Stop bit */
500 spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
501 spcr->term_type = 0; /* Terminal Type: 0 = VT100 */
502
503 spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */
504 spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */
505
506 build_header(linker, table_data, (void *)(table_data->data + spcr_start),
507 "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
508 }
509
510 static void
511 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
512 {
513 AcpiSystemResourceAffinityTable *srat;
514 AcpiSratProcessorGiccAffinity *core;
515 AcpiSratMemoryAffinity *numamem;
516 int i, srat_start;
517 uint64_t mem_base;
518 MachineClass *mc = MACHINE_GET_CLASS(vms);
519 const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms));
520
521 srat_start = table_data->len;
522 srat = acpi_data_push(table_data, sizeof(*srat));
523 srat->reserved1 = cpu_to_le32(1);
524
525 for (i = 0; i < cpu_list->len; ++i) {
526 core = acpi_data_push(table_data, sizeof(*core));
527 core->type = ACPI_SRAT_PROCESSOR_GICC;
528 core->length = sizeof(*core);
529 core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
530 core->acpi_processor_uid = cpu_to_le32(i);
531 core->flags = cpu_to_le32(1);
532 }
533
534 mem_base = vms->memmap[VIRT_MEM].base;
535 for (i = 0; i < nb_numa_nodes; ++i) {
536 if (numa_info[i].node_mem > 0) {
537 numamem = acpi_data_push(table_data, sizeof(*numamem));
538 build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i,
539 MEM_AFFINITY_ENABLED);
540 mem_base += numa_info[i].node_mem;
541 }
542 }
543
544 build_header(linker, table_data, (void *)(table_data->data + srat_start),
545 "SRAT", table_data->len - srat_start, 3, NULL, NULL);
546 }
547
548 /* GTDT */
549 static void
550 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
551 {
552 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
553 int gtdt_start = table_data->len;
554 AcpiGenericTimerTable *gtdt;
555 uint32_t irqflags;
556
557 if (vmc->claim_edge_triggered_timers) {
558 irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
559 } else {
560 irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
561 }
562
563 gtdt = acpi_data_push(table_data, sizeof *gtdt);
564 /* The interrupt values are the same with the device tree when adding 16 */
565 gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
566 gtdt->secure_el1_flags = cpu_to_le32(irqflags);
567
568 gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
569 gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
570 ACPI_GTDT_CAP_ALWAYS_ON);
571
572 gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
573 gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
574
575 gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
576 gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
577
578 build_header(linker, table_data,
579 (void *)(table_data->data + gtdt_start), "GTDT",
580 table_data->len - gtdt_start, 2, NULL, NULL);
581 }
582
583 /* MADT */
584 static void
585 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
586 {
587 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
588 int madt_start = table_data->len;
589 const MemMapEntry *memmap = vms->memmap;
590 const int *irqmap = vms->irqmap;
591 AcpiMultipleApicTable *madt;
592 AcpiMadtGenericDistributor *gicd;
593 AcpiMadtGenericMsiFrame *gic_msi;
594 int i;
595
596 madt = acpi_data_push(table_data, sizeof *madt);
597
598 gicd = acpi_data_push(table_data, sizeof *gicd);
599 gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
600 gicd->length = sizeof(*gicd);
601 gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
602 gicd->version = vms->gic_version;
603
604 for (i = 0; i < vms->smp_cpus; i++) {
605 AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
606 sizeof(*gicc));
607 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
608
609 gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
610 gicc->length = sizeof(*gicc);
611 if (vms->gic_version == 2) {
612 gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
613 gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
614 gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
615 }
616 gicc->cpu_interface_number = cpu_to_le32(i);
617 gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
618 gicc->uid = cpu_to_le32(i);
619 gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
620
621 if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
622 gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
623 }
624 if (vms->virt) {
625 gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
626 }
627 }
628
629 if (vms->gic_version == 3) {
630 AcpiMadtGenericTranslator *gic_its;
631 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
632 AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
633 sizeof *gicr);
634
635 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
636 gicr->length = sizeof(*gicr);
637 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
638 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
639
640 if (nb_redist_regions == 2) {
641 gicr = acpi_data_push(table_data, sizeof(*gicr));
642 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
643 gicr->length = sizeof(*gicr);
644 gicr->base_address =
645 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
646 gicr->range_length =
647 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
648 }
649
650 if (its_class_name() && !vmc->no_its) {
651 gic_its = acpi_data_push(table_data, sizeof *gic_its);
652 gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
653 gic_its->length = sizeof(*gic_its);
654 gic_its->translation_id = 0;
655 gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
656 }
657 } else {
658 gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
659 gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
660 gic_msi->length = sizeof(*gic_msi);
661 gic_msi->gic_msi_frame_id = 0;
662 gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
663 gic_msi->flags = cpu_to_le32(1);
664 gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
665 gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
666 }
667
668 build_header(linker, table_data,
669 (void *)(table_data->data + madt_start), "APIC",
670 table_data->len - madt_start, 3, NULL, NULL);
671 }
672
673 /* FADT */
674 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
675 VirtMachineState *vms, unsigned dsdt_tbl_offset)
676 {
677 /* ACPI v5.1 */
678 AcpiFadtData fadt = {
679 .rev = 5,
680 .minor_ver = 1,
681 .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
682 .xdsdt_tbl_offset = &dsdt_tbl_offset,
683 };
684
685 switch (vms->psci_conduit) {
686 case QEMU_PSCI_CONDUIT_DISABLED:
687 fadt.arm_boot_arch = 0;
688 break;
689 case QEMU_PSCI_CONDUIT_HVC:
690 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
691 ACPI_FADT_ARM_PSCI_USE_HVC;
692 break;
693 case QEMU_PSCI_CONDUIT_SMC:
694 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
695 break;
696 default:
697 g_assert_not_reached();
698 }
699
700 build_fadt(table_data, linker, &fadt, NULL, NULL);
701 }
702
703 /* DSDT */
704 static void
705 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
706 {
707 Aml *scope, *dsdt;
708 const MemMapEntry *memmap = vms->memmap;
709 const int *irqmap = vms->irqmap;
710
711 dsdt = init_aml_allocator();
712 /* Reserve space for header */
713 acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
714
715 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
716 * While UEFI can use libfdt to disable the RTC device node in the DTB that
717 * it passes to the OS, it cannot modify AML. Therefore, we won't generate
718 * the RTC ACPI device at all when using UEFI.
719 */
720 scope = aml_scope("\\_SB");
721 acpi_dsdt_add_cpus(scope, vms->smp_cpus);
722 acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
723 (irqmap[VIRT_UART] + ARM_SPI_BASE));
724 acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
725 acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
726 acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
727 (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
728 acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
729 vms->highmem, vms->highmem_ecam);
730 acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
731 (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
732 acpi_dsdt_add_power_button(scope);
733
734 aml_append(dsdt, scope);
735
736 /* copy AML table into ACPI tables blob and patch header there */
737 g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
738 build_header(linker, table_data,
739 (void *)(table_data->data + table_data->len - dsdt->buf->len),
740 "DSDT", dsdt->buf->len, 2, NULL, NULL);
741 free_aml_allocator();
742 }
743
744 typedef
745 struct AcpiBuildState {
746 /* Copy of table in RAM (for patching). */
747 MemoryRegion *table_mr;
748 MemoryRegion *rsdp_mr;
749 MemoryRegion *linker_mr;
750 /* Is table patched? */
751 bool patched;
752 } AcpiBuildState;
753
754 static
755 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
756 {
757 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
758 GArray *table_offsets;
759 unsigned dsdt, xsdt;
760 GArray *tables_blob = tables->table_data;
761
762 table_offsets = g_array_new(false, true /* clear */,
763 sizeof(uint32_t));
764
765 bios_linker_loader_alloc(tables->linker,
766 ACPI_BUILD_TABLE_FILE, tables_blob,
767 64, false /* high memory */);
768
769 /* DSDT is pointed to by FADT */
770 dsdt = tables_blob->len;
771 build_dsdt(tables_blob, tables->linker, vms);
772
773 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
774 acpi_add_table(table_offsets, tables_blob);
775 build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
776
777 acpi_add_table(table_offsets, tables_blob);
778 build_madt(tables_blob, tables->linker, vms);
779
780 acpi_add_table(table_offsets, tables_blob);
781 build_gtdt(tables_blob, tables->linker, vms);
782
783 acpi_add_table(table_offsets, tables_blob);
784 {
785 AcpiMcfgInfo mcfg = {
786 .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
787 .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
788 };
789 build_mcfg(tables_blob, tables->linker, &mcfg);
790 }
791
792 acpi_add_table(table_offsets, tables_blob);
793 build_spcr(tables_blob, tables->linker, vms);
794
795 if (nb_numa_nodes > 0) {
796 acpi_add_table(table_offsets, tables_blob);
797 build_srat(tables_blob, tables->linker, vms);
798 if (have_numa_distance) {
799 acpi_add_table(table_offsets, tables_blob);
800 build_slit(tables_blob, tables->linker);
801 }
802 }
803
804 if (its_class_name() && !vmc->no_its) {
805 acpi_add_table(table_offsets, tables_blob);
806 build_iort(tables_blob, tables->linker, vms);
807 }
808
809 /* XSDT is pointed to by RSDP */
810 xsdt = tables_blob->len;
811 build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
812
813 /* RSDP is in FSEG memory, so allocate it separately */
814 {
815 AcpiRsdpData rsdp_data = {
816 .revision = 2,
817 .oem_id = ACPI_BUILD_APPNAME6,
818 .xsdt_tbl_offset = &xsdt,
819 .rsdt_tbl_offset = NULL,
820 };
821 build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
822 }
823
824 /* Cleanup memory that's no longer used. */
825 g_array_free(table_offsets, true);
826 }
827
828 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
829 {
830 uint32_t size = acpi_data_len(data);
831
832 /* Make sure RAM size is correct - in case it got changed
833 * e.g. by migration */
834 memory_region_ram_resize(mr, size, &error_abort);
835
836 memcpy(memory_region_get_ram_ptr(mr), data->data, size);
837 memory_region_set_dirty(mr, 0, size);
838 }
839
840 static void virt_acpi_build_update(void *build_opaque)
841 {
842 AcpiBuildState *build_state = build_opaque;
843 AcpiBuildTables tables;
844
845 /* No state to update or already patched? Nothing to do. */
846 if (!build_state || build_state->patched) {
847 return;
848 }
849 build_state->patched = true;
850
851 acpi_build_tables_init(&tables);
852
853 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
854
855 acpi_ram_update(build_state->table_mr, tables.table_data);
856 acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
857 acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
858
859 acpi_build_tables_cleanup(&tables, true);
860 }
861
862 static void virt_acpi_build_reset(void *build_opaque)
863 {
864 AcpiBuildState *build_state = build_opaque;
865 build_state->patched = false;
866 }
867
868 static const VMStateDescription vmstate_virt_acpi_build = {
869 .name = "virt_acpi_build",
870 .version_id = 1,
871 .minimum_version_id = 1,
872 .fields = (VMStateField[]) {
873 VMSTATE_BOOL(patched, AcpiBuildState),
874 VMSTATE_END_OF_LIST()
875 },
876 };
877
878 void virt_acpi_setup(VirtMachineState *vms)
879 {
880 AcpiBuildTables tables;
881 AcpiBuildState *build_state;
882
883 if (!vms->fw_cfg) {
884 trace_virt_acpi_setup();
885 return;
886 }
887
888 if (!acpi_enabled) {
889 trace_virt_acpi_setup();
890 return;
891 }
892
893 build_state = g_malloc0(sizeof *build_state);
894
895 acpi_build_tables_init(&tables);
896 virt_acpi_build(vms, &tables);
897
898 /* Now expose it all to Guest */
899 build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
900 build_state, tables.table_data,
901 ACPI_BUILD_TABLE_FILE,
902 ACPI_BUILD_TABLE_MAX_SIZE);
903 assert(build_state->table_mr != NULL);
904
905 build_state->linker_mr =
906 acpi_add_rom_blob(virt_acpi_build_update, build_state,
907 tables.linker->cmd_blob, "etc/table-loader", 0);
908
909 fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
910 acpi_data_len(tables.tcpalog));
911
912 build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
913 build_state, tables.rsdp,
914 ACPI_BUILD_RSDP_FILE, 0);
915
916 qemu_register_reset(virt_acpi_build_reset, build_state);
917 virt_acpi_build_reset(build_state);
918 vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
919
920 /* Cleanup tables but don't free the memory: we track it
921 * in build_state.
922 */
923 acpi_build_tables_cleanup(&tables, false);
924 }