]> git.proxmox.com Git - qemu.git/blob - hw/arm_gic.c
66c48fd2d973253db6b21127db724380cdfa2c22
[qemu.git] / hw / arm_gic.c
1 /*
2 * ARM Generic/Distributed Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* This file contains implementation code for the RealView EB interrupt
11 controller, MPCore distributed interrupt controller and ARMv7-M
12 Nested Vectored Interrupt Controller. */
13
14 //#define DEBUG_GIC
15
16 #ifdef DEBUG_GIC
17 #define DPRINTF(fmt, ...) \
18 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
19 #else
20 #define DPRINTF(fmt, ...) do {} while(0)
21 #endif
22
23 #ifdef NVIC
24 static const uint8_t gic_id[] =
25 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
26 /* The NVIC has 16 internal vectors. However these are not exposed
27 through the normal GIC interface. */
28 #define GIC_BASE_IRQ 32
29 #else
30 static const uint8_t gic_id[] =
31 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
32 #define GIC_BASE_IRQ 0
33 #endif
34
35 #define FROM_SYSBUSGIC(type, dev) \
36 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
37
38 typedef struct gic_irq_state
39 {
40 /* The enable bits are only banked for per-cpu interrupts. */
41 unsigned enabled:NCPU;
42 unsigned pending:NCPU;
43 unsigned active:NCPU;
44 unsigned level:NCPU;
45 unsigned model:1; /* 0 = N:N, 1 = 1:N */
46 unsigned trigger:1; /* nonzero = edge triggered. */
47 } gic_irq_state;
48
49 #define ALL_CPU_MASK ((1 << NCPU) - 1)
50 #if NCPU > 1
51 #define NUM_CPU(s) ((s)->num_cpu)
52 #else
53 #define NUM_CPU(s) 1
54 #endif
55
56 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
57 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
58 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
59 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
60 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
61 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
62 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
63 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
64 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
65 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
66 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
67 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
68 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
69 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
70 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
71 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
72 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
73 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
74 #define GIC_GET_PRIORITY(irq, cpu) \
75 (((irq) < 32) ? s->priority1[irq][cpu] : s->priority2[(irq) - 32])
76 #ifdef NVIC
77 #define GIC_TARGET(irq) 1
78 #else
79 #define GIC_TARGET(irq) s->irq_target[irq]
80 #endif
81
82 typedef struct gic_state
83 {
84 SysBusDevice busdev;
85 qemu_irq parent_irq[NCPU];
86 int enabled;
87 int cpu_enabled[NCPU];
88
89 gic_irq_state irq_state[GIC_NIRQ];
90 #ifndef NVIC
91 int irq_target[GIC_NIRQ];
92 #endif
93 int priority1[32][NCPU];
94 int priority2[GIC_NIRQ - 32];
95 int last_active[GIC_NIRQ][NCPU];
96
97 int priority_mask[NCPU];
98 int running_irq[NCPU];
99 int running_priority[NCPU];
100 int current_pending[NCPU];
101
102 #if NCPU > 1
103 int num_cpu;
104 #endif
105
106 MemoryRegion iomem; /* Distributor */
107 #ifndef NVIC
108 /* This is just so we can have an opaque pointer which identifies
109 * both this GIC and which CPU interface we should be accessing.
110 */
111 struct gic_state *backref[NCPU];
112 MemoryRegion cpuiomem[NCPU+1]; /* CPU interfaces */
113 #endif
114 } gic_state;
115
116 /* TODO: Many places that call this routine could be optimized. */
117 /* Update interrupt status after enabled or pending bits have been changed. */
118 static void gic_update(gic_state *s)
119 {
120 int best_irq;
121 int best_prio;
122 int irq;
123 int level;
124 int cpu;
125 int cm;
126
127 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
128 cm = 1 << cpu;
129 s->current_pending[cpu] = 1023;
130 if (!s->enabled || !s->cpu_enabled[cpu]) {
131 qemu_irq_lower(s->parent_irq[cpu]);
132 return;
133 }
134 best_prio = 0x100;
135 best_irq = 1023;
136 for (irq = 0; irq < GIC_NIRQ; irq++) {
137 if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) {
138 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
139 best_prio = GIC_GET_PRIORITY(irq, cpu);
140 best_irq = irq;
141 }
142 }
143 }
144 level = 0;
145 if (best_prio <= s->priority_mask[cpu]) {
146 s->current_pending[cpu] = best_irq;
147 if (best_prio < s->running_priority[cpu]) {
148 DPRINTF("Raised pending IRQ %d\n", best_irq);
149 level = 1;
150 }
151 }
152 qemu_set_irq(s->parent_irq[cpu], level);
153 }
154 }
155
156 static void __attribute__((unused))
157 gic_set_pending_private(gic_state *s, int cpu, int irq)
158 {
159 int cm = 1 << cpu;
160
161 if (GIC_TEST_PENDING(irq, cm))
162 return;
163
164 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
165 GIC_SET_PENDING(irq, cm);
166 gic_update(s);
167 }
168
169 /* Process a change in an external IRQ input. */
170 static void gic_set_irq(void *opaque, int irq, int level)
171 {
172 gic_state *s = (gic_state *)opaque;
173 /* The first external input line is internal interrupt 32. */
174 irq += 32;
175 if (level == GIC_TEST_LEVEL(irq, ALL_CPU_MASK))
176 return;
177
178 if (level) {
179 GIC_SET_LEVEL(irq, ALL_CPU_MASK);
180 if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq, ALL_CPU_MASK)) {
181 DPRINTF("Set %d pending mask %x\n", irq, GIC_TARGET(irq));
182 GIC_SET_PENDING(irq, GIC_TARGET(irq));
183 }
184 } else {
185 GIC_CLEAR_LEVEL(irq, ALL_CPU_MASK);
186 }
187 gic_update(s);
188 }
189
190 static void gic_set_running_irq(gic_state *s, int cpu, int irq)
191 {
192 s->running_irq[cpu] = irq;
193 if (irq == 1023) {
194 s->running_priority[cpu] = 0x100;
195 } else {
196 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
197 }
198 gic_update(s);
199 }
200
201 static uint32_t gic_acknowledge_irq(gic_state *s, int cpu)
202 {
203 int new_irq;
204 int cm = 1 << cpu;
205 new_irq = s->current_pending[cpu];
206 if (new_irq == 1023
207 || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) {
208 DPRINTF("ACK no pending IRQ\n");
209 return 1023;
210 }
211 s->last_active[new_irq][cpu] = s->running_irq[cpu];
212 /* Clear pending flags for both level and edge triggered interrupts.
213 Level triggered IRQs will be reasserted once they become inactive. */
214 GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm);
215 gic_set_running_irq(s, cpu, new_irq);
216 DPRINTF("ACK %d\n", new_irq);
217 return new_irq;
218 }
219
220 static void gic_complete_irq(gic_state * s, int cpu, int irq)
221 {
222 int update = 0;
223 int cm = 1 << cpu;
224 DPRINTF("EOI %d\n", irq);
225 if (irq >= GIC_NIRQ) {
226 /* This handles two cases:
227 * 1. If software writes the ID of a spurious interrupt [ie 1023]
228 * to the GICC_EOIR, the GIC ignores that write.
229 * 2. If software writes the number of a non-existent interrupt
230 * this must be a subcase of "value written does not match the last
231 * valid interrupt value read from the Interrupt Acknowledge
232 * register" and so this is UNPREDICTABLE. We choose to ignore it.
233 */
234 return;
235 }
236 if (s->running_irq[cpu] == 1023)
237 return; /* No active IRQ. */
238 /* Mark level triggered interrupts as pending if they are still
239 raised. */
240 if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
241 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
242 DPRINTF("Set %d pending mask %x\n", irq, cm);
243 GIC_SET_PENDING(irq, cm);
244 update = 1;
245 }
246 if (irq != s->running_irq[cpu]) {
247 /* Complete an IRQ that is not currently running. */
248 int tmp = s->running_irq[cpu];
249 while (s->last_active[tmp][cpu] != 1023) {
250 if (s->last_active[tmp][cpu] == irq) {
251 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
252 break;
253 }
254 tmp = s->last_active[tmp][cpu];
255 }
256 if (update) {
257 gic_update(s);
258 }
259 } else {
260 /* Complete the current running IRQ. */
261 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
262 }
263 }
264
265 static uint32_t gic_dist_readb(void *opaque, target_phys_addr_t offset)
266 {
267 gic_state *s = (gic_state *)opaque;
268 uint32_t res;
269 int irq;
270 int i;
271 int cpu;
272 int cm;
273 int mask;
274
275 cpu = gic_get_current_cpu();
276 cm = 1 << cpu;
277 if (offset < 0x100) {
278 #ifndef NVIC
279 if (offset == 0)
280 return s->enabled;
281 if (offset == 4)
282 return ((GIC_NIRQ / 32) - 1) | ((NUM_CPU(s) - 1) << 5);
283 if (offset < 0x08)
284 return 0;
285 #endif
286 goto bad_reg;
287 } else if (offset < 0x200) {
288 /* Interrupt Set/Clear Enable. */
289 if (offset < 0x180)
290 irq = (offset - 0x100) * 8;
291 else
292 irq = (offset - 0x180) * 8;
293 irq += GIC_BASE_IRQ;
294 if (irq >= GIC_NIRQ)
295 goto bad_reg;
296 res = 0;
297 for (i = 0; i < 8; i++) {
298 if (GIC_TEST_ENABLED(irq + i, cm)) {
299 res |= (1 << i);
300 }
301 }
302 } else if (offset < 0x300) {
303 /* Interrupt Set/Clear Pending. */
304 if (offset < 0x280)
305 irq = (offset - 0x200) * 8;
306 else
307 irq = (offset - 0x280) * 8;
308 irq += GIC_BASE_IRQ;
309 if (irq >= GIC_NIRQ)
310 goto bad_reg;
311 res = 0;
312 mask = (irq < 32) ? cm : ALL_CPU_MASK;
313 for (i = 0; i < 8; i++) {
314 if (GIC_TEST_PENDING(irq + i, mask)) {
315 res |= (1 << i);
316 }
317 }
318 } else if (offset < 0x400) {
319 /* Interrupt Active. */
320 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
321 if (irq >= GIC_NIRQ)
322 goto bad_reg;
323 res = 0;
324 mask = (irq < 32) ? cm : ALL_CPU_MASK;
325 for (i = 0; i < 8; i++) {
326 if (GIC_TEST_ACTIVE(irq + i, mask)) {
327 res |= (1 << i);
328 }
329 }
330 } else if (offset < 0x800) {
331 /* Interrupt Priority. */
332 irq = (offset - 0x400) + GIC_BASE_IRQ;
333 if (irq >= GIC_NIRQ)
334 goto bad_reg;
335 res = GIC_GET_PRIORITY(irq, cpu);
336 #ifndef NVIC
337 } else if (offset < 0xc00) {
338 /* Interrupt CPU Target. */
339 irq = (offset - 0x800) + GIC_BASE_IRQ;
340 if (irq >= GIC_NIRQ)
341 goto bad_reg;
342 if (irq >= 29 && irq <= 31) {
343 res = cm;
344 } else {
345 res = GIC_TARGET(irq);
346 }
347 } else if (offset < 0xf00) {
348 /* Interrupt Configuration. */
349 irq = (offset - 0xc00) * 2 + GIC_BASE_IRQ;
350 if (irq >= GIC_NIRQ)
351 goto bad_reg;
352 res = 0;
353 for (i = 0; i < 4; i++) {
354 if (GIC_TEST_MODEL(irq + i))
355 res |= (1 << (i * 2));
356 if (GIC_TEST_TRIGGER(irq + i))
357 res |= (2 << (i * 2));
358 }
359 #endif
360 } else if (offset < 0xfe0) {
361 goto bad_reg;
362 } else /* offset >= 0xfe0 */ {
363 if (offset & 3) {
364 res = 0;
365 } else {
366 res = gic_id[(offset - 0xfe0) >> 2];
367 }
368 }
369 return res;
370 bad_reg:
371 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset);
372 return 0;
373 }
374
375 static uint32_t gic_dist_readw(void *opaque, target_phys_addr_t offset)
376 {
377 uint32_t val;
378 val = gic_dist_readb(opaque, offset);
379 val |= gic_dist_readb(opaque, offset + 1) << 8;
380 return val;
381 }
382
383 static uint32_t gic_dist_readl(void *opaque, target_phys_addr_t offset)
384 {
385 uint32_t val;
386 #ifdef NVIC
387 gic_state *s = (gic_state *)opaque;
388 uint32_t addr;
389 addr = offset;
390 if (addr < 0x100 || addr > 0xd00)
391 return nvic_readl(s, addr);
392 #endif
393 val = gic_dist_readw(opaque, offset);
394 val |= gic_dist_readw(opaque, offset + 2) << 16;
395 return val;
396 }
397
398 static void gic_dist_writeb(void *opaque, target_phys_addr_t offset,
399 uint32_t value)
400 {
401 gic_state *s = (gic_state *)opaque;
402 int irq;
403 int i;
404 int cpu;
405
406 cpu = gic_get_current_cpu();
407 if (offset < 0x100) {
408 #ifdef NVIC
409 goto bad_reg;
410 #else
411 if (offset == 0) {
412 s->enabled = (value & 1);
413 DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis");
414 } else if (offset < 4) {
415 /* ignored. */
416 } else {
417 goto bad_reg;
418 }
419 #endif
420 } else if (offset < 0x180) {
421 /* Interrupt Set Enable. */
422 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
423 if (irq >= GIC_NIRQ)
424 goto bad_reg;
425 if (irq < 16)
426 value = 0xff;
427 for (i = 0; i < 8; i++) {
428 if (value & (1 << i)) {
429 int mask = (irq < 32) ? (1 << cpu) : GIC_TARGET(irq);
430 int cm = (irq < 32) ? (1 << cpu) : ALL_CPU_MASK;
431
432 if (!GIC_TEST_ENABLED(irq + i, cm)) {
433 DPRINTF("Enabled IRQ %d\n", irq + i);
434 }
435 GIC_SET_ENABLED(irq + i, cm);
436 /* If a raised level triggered IRQ enabled then mark
437 is as pending. */
438 if (GIC_TEST_LEVEL(irq + i, mask)
439 && !GIC_TEST_TRIGGER(irq + i)) {
440 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
441 GIC_SET_PENDING(irq + i, mask);
442 }
443 }
444 }
445 } else if (offset < 0x200) {
446 /* Interrupt Clear Enable. */
447 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
448 if (irq >= GIC_NIRQ)
449 goto bad_reg;
450 if (irq < 16)
451 value = 0;
452 for (i = 0; i < 8; i++) {
453 if (value & (1 << i)) {
454 int cm = (irq < 32) ? (1 << cpu) : ALL_CPU_MASK;
455
456 if (GIC_TEST_ENABLED(irq + i, cm)) {
457 DPRINTF("Disabled IRQ %d\n", irq + i);
458 }
459 GIC_CLEAR_ENABLED(irq + i, cm);
460 }
461 }
462 } else if (offset < 0x280) {
463 /* Interrupt Set Pending. */
464 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
465 if (irq >= GIC_NIRQ)
466 goto bad_reg;
467 if (irq < 16)
468 irq = 0;
469
470 for (i = 0; i < 8; i++) {
471 if (value & (1 << i)) {
472 GIC_SET_PENDING(irq + i, GIC_TARGET(irq));
473 }
474 }
475 } else if (offset < 0x300) {
476 /* Interrupt Clear Pending. */
477 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
478 if (irq >= GIC_NIRQ)
479 goto bad_reg;
480 for (i = 0; i < 8; i++) {
481 /* ??? This currently clears the pending bit for all CPUs, even
482 for per-CPU interrupts. It's unclear whether this is the
483 corect behavior. */
484 if (value & (1 << i)) {
485 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
486 }
487 }
488 } else if (offset < 0x400) {
489 /* Interrupt Active. */
490 goto bad_reg;
491 } else if (offset < 0x800) {
492 /* Interrupt Priority. */
493 irq = (offset - 0x400) + GIC_BASE_IRQ;
494 if (irq >= GIC_NIRQ)
495 goto bad_reg;
496 if (irq < 32) {
497 s->priority1[irq][cpu] = value;
498 } else {
499 s->priority2[irq - 32] = value;
500 }
501 #ifndef NVIC
502 } else if (offset < 0xc00) {
503 /* Interrupt CPU Target. */
504 irq = (offset - 0x800) + GIC_BASE_IRQ;
505 if (irq >= GIC_NIRQ)
506 goto bad_reg;
507 if (irq < 29)
508 value = 0;
509 else if (irq < 32)
510 value = ALL_CPU_MASK;
511 s->irq_target[irq] = value & ALL_CPU_MASK;
512 } else if (offset < 0xf00) {
513 /* Interrupt Configuration. */
514 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
515 if (irq >= GIC_NIRQ)
516 goto bad_reg;
517 if (irq < 32)
518 value |= 0xaa;
519 for (i = 0; i < 4; i++) {
520 if (value & (1 << (i * 2))) {
521 GIC_SET_MODEL(irq + i);
522 } else {
523 GIC_CLEAR_MODEL(irq + i);
524 }
525 if (value & (2 << (i * 2))) {
526 GIC_SET_TRIGGER(irq + i);
527 } else {
528 GIC_CLEAR_TRIGGER(irq + i);
529 }
530 }
531 #endif
532 } else {
533 /* 0xf00 is only handled for 32-bit writes. */
534 goto bad_reg;
535 }
536 gic_update(s);
537 return;
538 bad_reg:
539 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset);
540 }
541
542 static void gic_dist_writew(void *opaque, target_phys_addr_t offset,
543 uint32_t value)
544 {
545 gic_dist_writeb(opaque, offset, value & 0xff);
546 gic_dist_writeb(opaque, offset + 1, value >> 8);
547 }
548
549 static void gic_dist_writel(void *opaque, target_phys_addr_t offset,
550 uint32_t value)
551 {
552 gic_state *s = (gic_state *)opaque;
553 #ifdef NVIC
554 uint32_t addr;
555 addr = offset;
556 if (addr < 0x100 || (addr > 0xd00 && addr != 0xf00)) {
557 nvic_writel(s, addr, value);
558 return;
559 }
560 #endif
561 if (offset == 0xf00) {
562 int cpu;
563 int irq;
564 int mask;
565
566 cpu = gic_get_current_cpu();
567 irq = value & 0x3ff;
568 switch ((value >> 24) & 3) {
569 case 0:
570 mask = (value >> 16) & ALL_CPU_MASK;
571 break;
572 case 1:
573 mask = ALL_CPU_MASK ^ (1 << cpu);
574 break;
575 case 2:
576 mask = 1 << cpu;
577 break;
578 default:
579 DPRINTF("Bad Soft Int target filter\n");
580 mask = ALL_CPU_MASK;
581 break;
582 }
583 GIC_SET_PENDING(irq, mask);
584 gic_update(s);
585 return;
586 }
587 gic_dist_writew(opaque, offset, value & 0xffff);
588 gic_dist_writew(opaque, offset + 2, value >> 16);
589 }
590
591 static const MemoryRegionOps gic_dist_ops = {
592 .old_mmio = {
593 .read = { gic_dist_readb, gic_dist_readw, gic_dist_readl, },
594 .write = { gic_dist_writeb, gic_dist_writew, gic_dist_writel, },
595 },
596 .endianness = DEVICE_NATIVE_ENDIAN,
597 };
598
599 #ifndef NVIC
600 static uint32_t gic_cpu_read(gic_state *s, int cpu, int offset)
601 {
602 switch (offset) {
603 case 0x00: /* Control */
604 return s->cpu_enabled[cpu];
605 case 0x04: /* Priority mask */
606 return s->priority_mask[cpu];
607 case 0x08: /* Binary Point */
608 /* ??? Not implemented. */
609 return 0;
610 case 0x0c: /* Acknowledge */
611 return gic_acknowledge_irq(s, cpu);
612 case 0x14: /* Runing Priority */
613 return s->running_priority[cpu];
614 case 0x18: /* Highest Pending Interrupt */
615 return s->current_pending[cpu];
616 default:
617 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset);
618 return 0;
619 }
620 }
621
622 static void gic_cpu_write(gic_state *s, int cpu, int offset, uint32_t value)
623 {
624 switch (offset) {
625 case 0x00: /* Control */
626 s->cpu_enabled[cpu] = (value & 1);
627 DPRINTF("CPU %d %sabled\n", cpu, s->cpu_enabled ? "En" : "Dis");
628 break;
629 case 0x04: /* Priority mask */
630 s->priority_mask[cpu] = (value & 0xff);
631 break;
632 case 0x08: /* Binary Point */
633 /* ??? Not implemented. */
634 break;
635 case 0x10: /* End Of Interrupt */
636 return gic_complete_irq(s, cpu, value & 0x3ff);
637 default:
638 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset);
639 return;
640 }
641 gic_update(s);
642 }
643
644 /* Wrappers to read/write the GIC CPU interface for the current CPU */
645 static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
646 unsigned size)
647 {
648 gic_state *s = (gic_state *)opaque;
649 return gic_cpu_read(s, gic_get_current_cpu(), addr & 0xff);
650 }
651
652 static void gic_thiscpu_write(void *opaque, target_phys_addr_t addr,
653 uint64_t value, unsigned size)
654 {
655 gic_state *s = (gic_state *)opaque;
656 gic_cpu_write(s, gic_get_current_cpu(), addr & 0xff, value);
657 }
658
659 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
660 * These just decode the opaque pointer into gic_state* + cpu id.
661 */
662 static uint64_t gic_do_cpu_read(void *opaque, target_phys_addr_t addr,
663 unsigned size)
664 {
665 gic_state **backref = (gic_state **)opaque;
666 gic_state *s = *backref;
667 int id = (backref - s->backref);
668 return gic_cpu_read(s, id, addr & 0xff);
669 }
670
671 static void gic_do_cpu_write(void *opaque, target_phys_addr_t addr,
672 uint64_t value, unsigned size)
673 {
674 gic_state **backref = (gic_state **)opaque;
675 gic_state *s = *backref;
676 int id = (backref - s->backref);
677 gic_cpu_write(s, id, addr & 0xff, value);
678 }
679
680 static const MemoryRegionOps gic_thiscpu_ops = {
681 .read = gic_thiscpu_read,
682 .write = gic_thiscpu_write,
683 .endianness = DEVICE_NATIVE_ENDIAN,
684 };
685
686 static const MemoryRegionOps gic_cpu_ops = {
687 .read = gic_do_cpu_read,
688 .write = gic_do_cpu_write,
689 .endianness = DEVICE_NATIVE_ENDIAN,
690 };
691 #endif
692
693 static void gic_reset(gic_state *s)
694 {
695 int i;
696 memset(s->irq_state, 0, GIC_NIRQ * sizeof(gic_irq_state));
697 for (i = 0 ; i < NUM_CPU(s); i++) {
698 s->priority_mask[i] = 0xf0;
699 s->current_pending[i] = 1023;
700 s->running_irq[i] = 1023;
701 s->running_priority[i] = 0x100;
702 #ifdef NVIC
703 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
704 s->cpu_enabled[i] = 1;
705 #else
706 s->cpu_enabled[i] = 0;
707 #endif
708 }
709 for (i = 0; i < 16; i++) {
710 GIC_SET_ENABLED(i, ALL_CPU_MASK);
711 GIC_SET_TRIGGER(i);
712 }
713 #ifdef NVIC
714 /* The NVIC is always enabled. */
715 s->enabled = 1;
716 #else
717 s->enabled = 0;
718 #endif
719 }
720
721 static void gic_save(QEMUFile *f, void *opaque)
722 {
723 gic_state *s = (gic_state *)opaque;
724 int i;
725 int j;
726
727 qemu_put_be32(f, s->enabled);
728 for (i = 0; i < NUM_CPU(s); i++) {
729 qemu_put_be32(f, s->cpu_enabled[i]);
730 for (j = 0; j < 32; j++)
731 qemu_put_be32(f, s->priority1[j][i]);
732 for (j = 0; j < GIC_NIRQ; j++)
733 qemu_put_be32(f, s->last_active[j][i]);
734 qemu_put_be32(f, s->priority_mask[i]);
735 qemu_put_be32(f, s->running_irq[i]);
736 qemu_put_be32(f, s->running_priority[i]);
737 qemu_put_be32(f, s->current_pending[i]);
738 }
739 for (i = 0; i < GIC_NIRQ - 32; i++) {
740 qemu_put_be32(f, s->priority2[i]);
741 }
742 for (i = 0; i < GIC_NIRQ; i++) {
743 #ifndef NVIC
744 qemu_put_be32(f, s->irq_target[i]);
745 #endif
746 qemu_put_byte(f, s->irq_state[i].enabled);
747 qemu_put_byte(f, s->irq_state[i].pending);
748 qemu_put_byte(f, s->irq_state[i].active);
749 qemu_put_byte(f, s->irq_state[i].level);
750 qemu_put_byte(f, s->irq_state[i].model);
751 qemu_put_byte(f, s->irq_state[i].trigger);
752 }
753 }
754
755 static int gic_load(QEMUFile *f, void *opaque, int version_id)
756 {
757 gic_state *s = (gic_state *)opaque;
758 int i;
759 int j;
760
761 if (version_id != 2)
762 return -EINVAL;
763
764 s->enabled = qemu_get_be32(f);
765 for (i = 0; i < NUM_CPU(s); i++) {
766 s->cpu_enabled[i] = qemu_get_be32(f);
767 for (j = 0; j < 32; j++)
768 s->priority1[j][i] = qemu_get_be32(f);
769 for (j = 0; j < GIC_NIRQ; j++)
770 s->last_active[j][i] = qemu_get_be32(f);
771 s->priority_mask[i] = qemu_get_be32(f);
772 s->running_irq[i] = qemu_get_be32(f);
773 s->running_priority[i] = qemu_get_be32(f);
774 s->current_pending[i] = qemu_get_be32(f);
775 }
776 for (i = 0; i < GIC_NIRQ - 32; i++) {
777 s->priority2[i] = qemu_get_be32(f);
778 }
779 for (i = 0; i < GIC_NIRQ; i++) {
780 #ifndef NVIC
781 s->irq_target[i] = qemu_get_be32(f);
782 #endif
783 s->irq_state[i].enabled = qemu_get_byte(f);
784 s->irq_state[i].pending = qemu_get_byte(f);
785 s->irq_state[i].active = qemu_get_byte(f);
786 s->irq_state[i].level = qemu_get_byte(f);
787 s->irq_state[i].model = qemu_get_byte(f);
788 s->irq_state[i].trigger = qemu_get_byte(f);
789 }
790
791 return 0;
792 }
793
794 #if NCPU > 1
795 static void gic_init(gic_state *s, int num_cpu)
796 #else
797 static void gic_init(gic_state *s)
798 #endif
799 {
800 int i;
801
802 #if NCPU > 1
803 s->num_cpu = num_cpu;
804 #endif
805 qdev_init_gpio_in(&s->busdev.qdev, gic_set_irq, GIC_NIRQ - 32);
806 for (i = 0; i < NUM_CPU(s); i++) {
807 sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
808 }
809 memory_region_init_io(&s->iomem, &gic_dist_ops, s, "gic_dist", 0x1000);
810 #ifndef NVIC
811 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
812 * a region for "CPU interface for this core", then a region for
813 * "CPU interface for core 0", "for core 1", ...
814 * NB that the memory region size of 0x100 applies for the 11MPCore
815 * and also cores following the GIC v1 spec (ie A9).
816 * GIC v2 defines a larger memory region (0x1000) so this will need
817 * to be extended when we implement A15.
818 */
819 memory_region_init_io(&s->cpuiomem[0], &gic_thiscpu_ops, s,
820 "gic_cpu", 0x100);
821 for (i = 0; i < NUM_CPU(s); i++) {
822 s->backref[i] = s;
823 memory_region_init_io(&s->cpuiomem[i+1], &gic_cpu_ops, &s->backref[i],
824 "gic_cpu", 0x100);
825 }
826 #endif
827
828 gic_reset(s);
829 register_savevm(NULL, "arm_gic", -1, 2, gic_save, gic_load, s);
830 }