]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm_timer.c
vmstate: port arm sp804
[mirror_qemu.git] / hw / arm_timer.c
1 /*
2 * ARM PrimeCell Timer modules.
3 *
4 * Copyright (c) 2005-2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GPL.
8 */
9
10 #include "sysbus.h"
11 #include "qemu-timer.h"
12
13 /* Common timer implementation. */
14
15 #define TIMER_CTRL_ONESHOT (1 << 0)
16 #define TIMER_CTRL_32BIT (1 << 1)
17 #define TIMER_CTRL_DIV1 (0 << 2)
18 #define TIMER_CTRL_DIV16 (1 << 2)
19 #define TIMER_CTRL_DIV256 (2 << 2)
20 #define TIMER_CTRL_IE (1 << 5)
21 #define TIMER_CTRL_PERIODIC (1 << 6)
22 #define TIMER_CTRL_ENABLE (1 << 7)
23
24 typedef struct {
25 ptimer_state *timer;
26 uint32_t control;
27 uint32_t limit;
28 int freq;
29 int int_level;
30 qemu_irq irq;
31 } arm_timer_state;
32
33 /* Check all active timers, and schedule the next timer interrupt. */
34
35 static void arm_timer_update(arm_timer_state *s)
36 {
37 /* Update interrupts. */
38 if (s->int_level && (s->control & TIMER_CTRL_IE)) {
39 qemu_irq_raise(s->irq);
40 } else {
41 qemu_irq_lower(s->irq);
42 }
43 }
44
45 static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
46 {
47 arm_timer_state *s = (arm_timer_state *)opaque;
48
49 switch (offset >> 2) {
50 case 0: /* TimerLoad */
51 case 6: /* TimerBGLoad */
52 return s->limit;
53 case 1: /* TimerValue */
54 return ptimer_get_count(s->timer);
55 case 2: /* TimerControl */
56 return s->control;
57 case 4: /* TimerRIS */
58 return s->int_level;
59 case 5: /* TimerMIS */
60 if ((s->control & TIMER_CTRL_IE) == 0)
61 return 0;
62 return s->int_level;
63 default:
64 hw_error("arm_timer_read: Bad offset %x\n", (int)offset);
65 return 0;
66 }
67 }
68
69 /* Reset the timer limit after settings have changed. */
70 static void arm_timer_recalibrate(arm_timer_state *s, int reload)
71 {
72 uint32_t limit;
73
74 if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) {
75 /* Free running. */
76 if (s->control & TIMER_CTRL_32BIT)
77 limit = 0xffffffff;
78 else
79 limit = 0xffff;
80 } else {
81 /* Periodic. */
82 limit = s->limit;
83 }
84 ptimer_set_limit(s->timer, limit, reload);
85 }
86
87 static void arm_timer_write(void *opaque, target_phys_addr_t offset,
88 uint32_t value)
89 {
90 arm_timer_state *s = (arm_timer_state *)opaque;
91 int freq;
92
93 switch (offset >> 2) {
94 case 0: /* TimerLoad */
95 s->limit = value;
96 arm_timer_recalibrate(s, 1);
97 break;
98 case 1: /* TimerValue */
99 /* ??? Linux seems to want to write to this readonly register.
100 Ignore it. */
101 break;
102 case 2: /* TimerControl */
103 if (s->control & TIMER_CTRL_ENABLE) {
104 /* Pause the timer if it is running. This may cause some
105 inaccuracy dure to rounding, but avoids a whole lot of other
106 messyness. */
107 ptimer_stop(s->timer);
108 }
109 s->control = value;
110 freq = s->freq;
111 /* ??? Need to recalculate expiry time after changing divisor. */
112 switch ((value >> 2) & 3) {
113 case 1: freq >>= 4; break;
114 case 2: freq >>= 8; break;
115 }
116 arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE);
117 ptimer_set_freq(s->timer, freq);
118 if (s->control & TIMER_CTRL_ENABLE) {
119 /* Restart the timer if still enabled. */
120 ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
121 }
122 break;
123 case 3: /* TimerIntClr */
124 s->int_level = 0;
125 break;
126 case 6: /* TimerBGLoad */
127 s->limit = value;
128 arm_timer_recalibrate(s, 0);
129 break;
130 default:
131 hw_error("arm_timer_write: Bad offset %x\n", (int)offset);
132 }
133 arm_timer_update(s);
134 }
135
136 static void arm_timer_tick(void *opaque)
137 {
138 arm_timer_state *s = (arm_timer_state *)opaque;
139 s->int_level = 1;
140 arm_timer_update(s);
141 }
142
143 static void arm_timer_save(QEMUFile *f, void *opaque)
144 {
145 arm_timer_state *s = (arm_timer_state *)opaque;
146 qemu_put_be32(f, s->control);
147 qemu_put_be32(f, s->limit);
148 qemu_put_be32(f, s->int_level);
149 qemu_put_ptimer(f, s->timer);
150 }
151
152 static int arm_timer_load(QEMUFile *f, void *opaque, int version_id)
153 {
154 arm_timer_state *s = (arm_timer_state *)opaque;
155
156 if (version_id != 1)
157 return -EINVAL;
158
159 s->control = qemu_get_be32(f);
160 s->limit = qemu_get_be32(f);
161 s->int_level = qemu_get_be32(f);
162 qemu_get_ptimer(f, s->timer);
163 return 0;
164 }
165
166 static arm_timer_state *arm_timer_init(uint32_t freq)
167 {
168 arm_timer_state *s;
169 QEMUBH *bh;
170
171 s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
172 s->freq = freq;
173 s->control = TIMER_CTRL_IE;
174
175 bh = qemu_bh_new(arm_timer_tick, s);
176 s->timer = ptimer_init(bh);
177 register_savevm(NULL, "arm_timer", -1, 1, arm_timer_save, arm_timer_load, s);
178 return s;
179 }
180
181 /* ARM PrimeCell SP804 dual timer module.
182 Docs for this device don't seem to be publicly available. This
183 implementation is based on guesswork, the linux kernel sources and the
184 Integrator/CP timer modules. */
185
186 typedef struct {
187 SysBusDevice busdev;
188 arm_timer_state *timer[2];
189 int level[2];
190 qemu_irq irq;
191 } sp804_state;
192
193 /* Merge the IRQs from the two component devices. */
194 static void sp804_set_irq(void *opaque, int irq, int level)
195 {
196 sp804_state *s = (sp804_state *)opaque;
197
198 s->level[irq] = level;
199 qemu_set_irq(s->irq, s->level[0] || s->level[1]);
200 }
201
202 static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
203 {
204 sp804_state *s = (sp804_state *)opaque;
205
206 /* ??? Don't know the PrimeCell ID for this device. */
207 if (offset < 0x20) {
208 return arm_timer_read(s->timer[0], offset);
209 } else {
210 return arm_timer_read(s->timer[1], offset - 0x20);
211 }
212 }
213
214 static void sp804_write(void *opaque, target_phys_addr_t offset,
215 uint32_t value)
216 {
217 sp804_state *s = (sp804_state *)opaque;
218
219 if (offset < 0x20) {
220 arm_timer_write(s->timer[0], offset, value);
221 } else {
222 arm_timer_write(s->timer[1], offset - 0x20, value);
223 }
224 }
225
226 static CPUReadMemoryFunc * const sp804_readfn[] = {
227 sp804_read,
228 sp804_read,
229 sp804_read
230 };
231
232 static CPUWriteMemoryFunc * const sp804_writefn[] = {
233 sp804_write,
234 sp804_write,
235 sp804_write
236 };
237
238
239 static const VMStateDescription vmstate_sp804 = {
240 .name = "sp804",
241 .version_id = 1,
242 .minimum_version_id = 1,
243 .minimum_version_id_old = 1,
244 .fields = (VMStateField[]) {
245 VMSTATE_INT32_ARRAY(level, sp804_state, 2),
246 VMSTATE_END_OF_LIST()
247 }
248 };
249
250 static int sp804_init(SysBusDevice *dev)
251 {
252 int iomemtype;
253 sp804_state *s = FROM_SYSBUS(sp804_state, dev);
254 qemu_irq *qi;
255
256 qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
257 sysbus_init_irq(dev, &s->irq);
258 /* ??? The timers are actually configurable between 32kHz and 1MHz, but
259 we don't implement that. */
260 s->timer[0] = arm_timer_init(1000000);
261 s->timer[1] = arm_timer_init(1000000);
262 s->timer[0]->irq = qi[0];
263 s->timer[1]->irq = qi[1];
264 iomemtype = cpu_register_io_memory(sp804_readfn,
265 sp804_writefn, s, DEVICE_NATIVE_ENDIAN);
266 sysbus_init_mmio(dev, 0x1000, iomemtype);
267 vmstate_register(&dev->qdev, -1, &vmstate_sp804, s);
268 return 0;
269 }
270
271
272 /* Integrator/CP timer module. */
273
274 typedef struct {
275 SysBusDevice busdev;
276 arm_timer_state *timer[3];
277 } icp_pit_state;
278
279 static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
280 {
281 icp_pit_state *s = (icp_pit_state *)opaque;
282 int n;
283
284 /* ??? Don't know the PrimeCell ID for this device. */
285 n = offset >> 8;
286 if (n > 3) {
287 hw_error("sp804_read: Bad timer %d\n", n);
288 }
289
290 return arm_timer_read(s->timer[n], offset & 0xff);
291 }
292
293 static void icp_pit_write(void *opaque, target_phys_addr_t offset,
294 uint32_t value)
295 {
296 icp_pit_state *s = (icp_pit_state *)opaque;
297 int n;
298
299 n = offset >> 8;
300 if (n > 3) {
301 hw_error("sp804_write: Bad timer %d\n", n);
302 }
303
304 arm_timer_write(s->timer[n], offset & 0xff, value);
305 }
306
307
308 static CPUReadMemoryFunc * const icp_pit_readfn[] = {
309 icp_pit_read,
310 icp_pit_read,
311 icp_pit_read
312 };
313
314 static CPUWriteMemoryFunc * const icp_pit_writefn[] = {
315 icp_pit_write,
316 icp_pit_write,
317 icp_pit_write
318 };
319
320 static int icp_pit_init(SysBusDevice *dev)
321 {
322 int iomemtype;
323 icp_pit_state *s = FROM_SYSBUS(icp_pit_state, dev);
324
325 /* Timer 0 runs at the system clock speed (40MHz). */
326 s->timer[0] = arm_timer_init(40000000);
327 /* The other two timers run at 1MHz. */
328 s->timer[1] = arm_timer_init(1000000);
329 s->timer[2] = arm_timer_init(1000000);
330
331 sysbus_init_irq(dev, &s->timer[0]->irq);
332 sysbus_init_irq(dev, &s->timer[1]->irq);
333 sysbus_init_irq(dev, &s->timer[2]->irq);
334
335 iomemtype = cpu_register_io_memory(icp_pit_readfn,
336 icp_pit_writefn, s,
337 DEVICE_NATIVE_ENDIAN);
338 sysbus_init_mmio(dev, 0x1000, iomemtype);
339 /* This device has no state to save/restore. The component timers will
340 save themselves. */
341 return 0;
342 }
343
344 static void arm_timer_register_devices(void)
345 {
346 sysbus_register_dev("integrator_pit", sizeof(icp_pit_state), icp_pit_init);
347 sysbus_register_dev("sp804", sizeof(sp804_state), sp804_init);
348 }
349
350 device_init(arm_timer_register_devices)