]> git.proxmox.com Git - mirror_qemu.git/blob - hw/armv7m_nvic.c
hw/armv7m_nvic: Use MemoryRegions for NVIC specific registers
[mirror_qemu.git] / hw / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "sysbus.h"
14 #include "qemu-timer.h"
15 #include "arm-misc.h"
16 #include "exec-memory.h"
17
18 #define NVIC 1
19
20 static uint32_t nvic_readl(void *opaque, uint32_t offset);
21 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value);
22
23 #include "arm_gic.c"
24
25 typedef struct {
26 gic_state gic;
27 struct {
28 uint32_t control;
29 uint32_t reload;
30 int64_t tick;
31 QEMUTimer *timer;
32 } systick;
33 MemoryRegion sysregmem;
34 MemoryRegion gic_iomem_alias;
35 MemoryRegion container;
36 uint32_t num_irq;
37 } nvic_state;
38
39 static const uint8_t nvic_id[] = {
40 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
41 };
42
43 /* qemu timers run at 1GHz. We want something closer to 1MHz. */
44 #define SYSTICK_SCALE 1000ULL
45
46 #define SYSTICK_ENABLE (1 << 0)
47 #define SYSTICK_TICKINT (1 << 1)
48 #define SYSTICK_CLKSOURCE (1 << 2)
49 #define SYSTICK_COUNTFLAG (1 << 16)
50
51 int system_clock_scale;
52
53 /* Conversion factor from qemu timer to SysTick frequencies. */
54 static inline int64_t systick_scale(nvic_state *s)
55 {
56 if (s->systick.control & SYSTICK_CLKSOURCE)
57 return system_clock_scale;
58 else
59 return 1000;
60 }
61
62 static void systick_reload(nvic_state *s, int reset)
63 {
64 if (reset)
65 s->systick.tick = qemu_get_clock_ns(vm_clock);
66 s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
67 qemu_mod_timer(s->systick.timer, s->systick.tick);
68 }
69
70 static void systick_timer_tick(void * opaque)
71 {
72 nvic_state *s = (nvic_state *)opaque;
73 s->systick.control |= SYSTICK_COUNTFLAG;
74 if (s->systick.control & SYSTICK_TICKINT) {
75 /* Trigger the interrupt. */
76 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
77 }
78 if (s->systick.reload == 0) {
79 s->systick.control &= ~SYSTICK_ENABLE;
80 } else {
81 systick_reload(s, 0);
82 }
83 }
84
85 static void systick_reset(nvic_state *s)
86 {
87 s->systick.control = 0;
88 s->systick.reload = 0;
89 s->systick.tick = 0;
90 qemu_del_timer(s->systick.timer);
91 }
92
93 /* The external routines use the hardware vector numbering, ie. the first
94 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */
95 void armv7m_nvic_set_pending(void *opaque, int irq)
96 {
97 nvic_state *s = (nvic_state *)opaque;
98 if (irq >= 16)
99 irq += 16;
100 gic_set_pending_private(&s->gic, 0, irq);
101 }
102
103 /* Make pending IRQ active. */
104 int armv7m_nvic_acknowledge_irq(void *opaque)
105 {
106 nvic_state *s = (nvic_state *)opaque;
107 uint32_t irq;
108
109 irq = gic_acknowledge_irq(&s->gic, 0);
110 if (irq == 1023)
111 hw_error("Interrupt but no vector\n");
112 if (irq >= 32)
113 irq -= 16;
114 return irq;
115 }
116
117 void armv7m_nvic_complete_irq(void *opaque, int irq)
118 {
119 nvic_state *s = (nvic_state *)opaque;
120 if (irq >= 16)
121 irq += 16;
122 gic_complete_irq(&s->gic, 0, irq);
123 }
124
125 static uint32_t nvic_readl(void *opaque, uint32_t offset)
126 {
127 nvic_state *s = (nvic_state *)opaque;
128 uint32_t val;
129 int irq;
130
131 switch (offset) {
132 case 4: /* Interrupt Control Type. */
133 return (s->num_irq / 32) - 1;
134 case 0x10: /* SysTick Control and Status. */
135 val = s->systick.control;
136 s->systick.control &= ~SYSTICK_COUNTFLAG;
137 return val;
138 case 0x14: /* SysTick Reload Value. */
139 return s->systick.reload;
140 case 0x18: /* SysTick Current Value. */
141 {
142 int64_t t;
143 if ((s->systick.control & SYSTICK_ENABLE) == 0)
144 return 0;
145 t = qemu_get_clock_ns(vm_clock);
146 if (t >= s->systick.tick)
147 return 0;
148 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
149 /* The interrupt in triggered when the timer reaches zero.
150 However the counter is not reloaded until the next clock
151 tick. This is a hack to return zero during the first tick. */
152 if (val > s->systick.reload)
153 val = 0;
154 return val;
155 }
156 case 0x1c: /* SysTick Calibration Value. */
157 return 10000;
158 case 0xd00: /* CPUID Base. */
159 return cpu_single_env->cp15.c0_cpuid;
160 case 0xd04: /* Interrypt Control State. */
161 /* VECTACTIVE */
162 val = s->gic.running_irq[0];
163 if (val == 1023) {
164 val = 0;
165 } else if (val >= 32) {
166 val -= 16;
167 }
168 /* RETTOBASE */
169 if (s->gic.running_irq[0] == 1023
170 || s->gic.last_active[s->gic.running_irq[0]][0] == 1023) {
171 val |= (1 << 11);
172 }
173 /* VECTPENDING */
174 if (s->gic.current_pending[0] != 1023)
175 val |= (s->gic.current_pending[0] << 12);
176 /* ISRPENDING */
177 for (irq = 32; irq < s->num_irq; irq++) {
178 if (s->gic.irq_state[irq].pending) {
179 val |= (1 << 22);
180 break;
181 }
182 }
183 /* PENDSTSET */
184 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
185 val |= (1 << 26);
186 /* PENDSVSET */
187 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
188 val |= (1 << 28);
189 /* NMIPENDSET */
190 if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
191 val |= (1 << 31);
192 return val;
193 case 0xd08: /* Vector Table Offset. */
194 return cpu_single_env->v7m.vecbase;
195 case 0xd0c: /* Application Interrupt/Reset Control. */
196 return 0xfa05000;
197 case 0xd10: /* System Control. */
198 /* TODO: Implement SLEEPONEXIT. */
199 return 0;
200 case 0xd14: /* Configuration Control. */
201 /* TODO: Implement Configuration Control bits. */
202 return 0;
203 case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */
204 irq = offset - 0xd14;
205 val = 0;
206 val |= s->gic.priority1[irq++][0];
207 val |= s->gic.priority1[irq++][0] << 8;
208 val |= s->gic.priority1[irq++][0] << 16;
209 val |= s->gic.priority1[irq][0] << 24;
210 return val;
211 case 0xd24: /* System Handler Status. */
212 val = 0;
213 if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
214 if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
215 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
216 if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
217 if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
218 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
219 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
220 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
221 if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
222 if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
223 if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
224 if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
225 if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
226 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
227 return val;
228 case 0xd28: /* Configurable Fault Status. */
229 /* TODO: Implement Fault Status. */
230 hw_error("Not implemented: Configurable Fault Status.");
231 return 0;
232 case 0xd2c: /* Hard Fault Status. */
233 case 0xd30: /* Debug Fault Status. */
234 case 0xd34: /* Mem Manage Address. */
235 case 0xd38: /* Bus Fault Address. */
236 case 0xd3c: /* Aux Fault Status. */
237 /* TODO: Implement fault status registers. */
238 goto bad_reg;
239 case 0xd40: /* PFR0. */
240 return 0x00000030;
241 case 0xd44: /* PRF1. */
242 return 0x00000200;
243 case 0xd48: /* DFR0. */
244 return 0x00100000;
245 case 0xd4c: /* AFR0. */
246 return 0x00000000;
247 case 0xd50: /* MMFR0. */
248 return 0x00000030;
249 case 0xd54: /* MMFR1. */
250 return 0x00000000;
251 case 0xd58: /* MMFR2. */
252 return 0x00000000;
253 case 0xd5c: /* MMFR3. */
254 return 0x00000000;
255 case 0xd60: /* ISAR0. */
256 return 0x01141110;
257 case 0xd64: /* ISAR1. */
258 return 0x02111000;
259 case 0xd68: /* ISAR2. */
260 return 0x21112231;
261 case 0xd6c: /* ISAR3. */
262 return 0x01111110;
263 case 0xd70: /* ISAR4. */
264 return 0x01310102;
265 /* TODO: Implement debug registers. */
266 default:
267 bad_reg:
268 hw_error("NVIC: Bad read offset 0x%x\n", offset);
269 }
270 }
271
272 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value)
273 {
274 nvic_state *s = (nvic_state *)opaque;
275 uint32_t oldval;
276 switch (offset) {
277 case 0x10: /* SysTick Control and Status. */
278 oldval = s->systick.control;
279 s->systick.control &= 0xfffffff8;
280 s->systick.control |= value & 7;
281 if ((oldval ^ value) & SYSTICK_ENABLE) {
282 int64_t now = qemu_get_clock_ns(vm_clock);
283 if (value & SYSTICK_ENABLE) {
284 if (s->systick.tick) {
285 s->systick.tick += now;
286 qemu_mod_timer(s->systick.timer, s->systick.tick);
287 } else {
288 systick_reload(s, 1);
289 }
290 } else {
291 qemu_del_timer(s->systick.timer);
292 s->systick.tick -= now;
293 if (s->systick.tick < 0)
294 s->systick.tick = 0;
295 }
296 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
297 /* This is a hack. Force the timer to be reloaded
298 when the reference clock is changed. */
299 systick_reload(s, 1);
300 }
301 break;
302 case 0x14: /* SysTick Reload Value. */
303 s->systick.reload = value;
304 break;
305 case 0x18: /* SysTick Current Value. Writes reload the timer. */
306 systick_reload(s, 1);
307 s->systick.control &= ~SYSTICK_COUNTFLAG;
308 break;
309 case 0xd04: /* Interrupt Control State. */
310 if (value & (1 << 31)) {
311 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
312 }
313 if (value & (1 << 28)) {
314 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
315 } else if (value & (1 << 27)) {
316 s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
317 gic_update(&s->gic);
318 }
319 if (value & (1 << 26)) {
320 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
321 } else if (value & (1 << 25)) {
322 s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
323 gic_update(&s->gic);
324 }
325 break;
326 case 0xd08: /* Vector Table Offset. */
327 cpu_single_env->v7m.vecbase = value & 0xffffff80;
328 break;
329 case 0xd0c: /* Application Interrupt/Reset Control. */
330 if ((value >> 16) == 0x05fa) {
331 if (value & 2) {
332 hw_error("VECTCLRACTIVE not implemented");
333 }
334 if (value & 5) {
335 hw_error("System reset");
336 }
337 }
338 break;
339 case 0xd10: /* System Control. */
340 case 0xd14: /* Configuration Control. */
341 /* TODO: Implement control registers. */
342 goto bad_reg;
343 case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */
344 {
345 int irq;
346 irq = offset - 0xd14;
347 s->gic.priority1[irq++][0] = value & 0xff;
348 s->gic.priority1[irq++][0] = (value >> 8) & 0xff;
349 s->gic.priority1[irq++][0] = (value >> 16) & 0xff;
350 s->gic.priority1[irq][0] = (value >> 24) & 0xff;
351 gic_update(&s->gic);
352 }
353 break;
354 case 0xd24: /* System Handler Control. */
355 /* TODO: Real hardware allows you to set/clear the active bits
356 under some circumstances. We don't implement this. */
357 s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
358 s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
359 s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
360 break;
361 case 0xd28: /* Configurable Fault Status. */
362 case 0xd2c: /* Hard Fault Status. */
363 case 0xd30: /* Debug Fault Status. */
364 case 0xd34: /* Mem Manage Address. */
365 case 0xd38: /* Bus Fault Address. */
366 case 0xd3c: /* Aux Fault Status. */
367 goto bad_reg;
368 case 0xf00: /* Software Triggered Interrupt Register */
369 if ((value & 0x1ff) < s->num_irq) {
370 gic_set_pending_private(&s->gic, 0, value & 0x1ff);
371 }
372 break;
373 default:
374 bad_reg:
375 hw_error("NVIC: Bad write offset 0x%x\n", offset);
376 }
377 }
378
379 static uint64_t nvic_sysreg_read(void *opaque, target_phys_addr_t addr,
380 unsigned size)
381 {
382 /* At the moment we only support the ID registers for byte/word access.
383 * This is not strictly correct as a few of the other registers also
384 * allow byte access.
385 */
386 uint32_t offset = addr;
387 if (offset >= 0xfe0) {
388 if (offset & 3) {
389 return 0;
390 }
391 return nvic_id[(offset - 0xfe0) >> 2];
392 }
393 if (size == 4) {
394 return nvic_readl(opaque, offset);
395 }
396 hw_error("NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
397 }
398
399 static void nvic_sysreg_write(void *opaque, target_phys_addr_t addr,
400 uint64_t value, unsigned size)
401 {
402 uint32_t offset = addr;
403 if (size == 4) {
404 nvic_writel(opaque, offset, value);
405 return;
406 }
407 hw_error("NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
408 }
409
410 static const MemoryRegionOps nvic_sysreg_ops = {
411 .read = nvic_sysreg_read,
412 .write = nvic_sysreg_write,
413 .endianness = DEVICE_NATIVE_ENDIAN,
414 };
415
416 static const VMStateDescription vmstate_nvic = {
417 .name = "armv7m_nvic",
418 .version_id = 1,
419 .minimum_version_id = 1,
420 .minimum_version_id_old = 1,
421 .fields = (VMStateField[]) {
422 VMSTATE_UINT32(systick.control, nvic_state),
423 VMSTATE_UINT32(systick.reload, nvic_state),
424 VMSTATE_INT64(systick.tick, nvic_state),
425 VMSTATE_TIMER(systick.timer, nvic_state),
426 VMSTATE_END_OF_LIST()
427 }
428 };
429
430 static void armv7m_nvic_reset(DeviceState *dev)
431 {
432 nvic_state *s = FROM_SYSBUSGIC(nvic_state, sysbus_from_qdev(dev));
433 gic_reset(&s->gic.busdev.qdev);
434 /* Common GIC reset resets to disabled; the NVIC doesn't have
435 * per-CPU interfaces so mark our non-existent CPU interface
436 * as enabled by default.
437 */
438 s->gic.cpu_enabled[0] = 1;
439 /* The NVIC as a whole is always enabled. */
440 s->gic.enabled = 1;
441 systick_reset(s);
442 }
443
444 static int armv7m_nvic_init(SysBusDevice *dev)
445 {
446 nvic_state *s= FROM_SYSBUSGIC(nvic_state, dev);
447
448 /* The NVIC always has only one CPU */
449 s->gic.num_cpu = 1;
450 gic_init(&s->gic, s->num_irq);
451 /* The NVIC and system controller register area looks like this:
452 * 0..0xff : system control registers, including systick
453 * 0x100..0xcff : GIC-like registers
454 * 0xd00..0xfff : system control registers
455 * We use overlaying to put the GIC like registers
456 * over the top of the system control register region.
457 */
458 memory_region_init(&s->container, "nvic", 0x1000);
459 /* The system register region goes at the bottom of the priority
460 * stack as it covers the whole page.
461 */
462 memory_region_init_io(&s->sysregmem, &nvic_sysreg_ops, s,
463 "nvic_sysregs", 0x1000);
464 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
465 /* Alias the GIC region so we can get only the section of it
466 * we need, and layer it on top of the system register region.
467 */
468 memory_region_init_alias(&s->gic_iomem_alias, "nvic-gic", &s->gic.iomem,
469 0x100, 0xc00);
470 memory_region_add_subregion_overlap(&s->container, 0x100, &s->gic.iomem, 1);
471 /* Map the whole thing into system memory at the location required
472 * by the v7M architecture.
473 */
474 memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
475 s->systick.timer = qemu_new_timer_ns(vm_clock, systick_timer_tick, s);
476 return 0;
477 }
478
479 static Property armv7m_nvic_properties[] = {
480 /* The ARM v7m may have anything from 0 to 496 external interrupt
481 * IRQ lines. We default to 64. Other boards may differ and should
482 * set this property appropriately.
483 */
484 DEFINE_PROP_UINT32("num-irq", nvic_state, num_irq, 64),
485 DEFINE_PROP_END_OF_LIST(),
486 };
487
488 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
489 {
490 DeviceClass *dc = DEVICE_CLASS(klass);
491 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
492
493 sdc->init = armv7m_nvic_init;
494 dc->vmsd = &vmstate_nvic;
495 dc->reset = armv7m_nvic_reset;
496 dc->props = armv7m_nvic_properties;
497 }
498
499 static TypeInfo armv7m_nvic_info = {
500 .name = "armv7m_nvic",
501 .parent = TYPE_SYS_BUS_DEVICE,
502 .instance_size = sizeof(nvic_state),
503 .class_init = armv7m_nvic_class_init,
504 };
505
506 static void armv7m_nvic_register_types(void)
507 {
508 type_register_static(&armv7m_nvic_info);
509 }
510
511 type_init(armv7m_nvic_register_types)