]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/fdc.c
linux-user/alpha: Set FPE_FLTUNK for gentrap ROPRAND
[mirror_qemu.git] / hw / block / fdc.c
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
3 *
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 /*
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
28 */
29
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/irq.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/qdev-properties-system.h"
39 #include "migration/vmstate.h"
40 #include "hw/block/block.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/blockdev.h"
43 #include "sysemu/sysemu.h"
44 #include "qemu/log.h"
45 #include "qemu/main-loop.h"
46 #include "qemu/module.h"
47 #include "trace.h"
48 #include "qom/object.h"
49 #include "fdc-internal.h"
50
51 /********************************************************/
52 /* debug Floppy devices */
53
54 #define DEBUG_FLOPPY 0
55
56 #define FLOPPY_DPRINTF(fmt, ...) \
57 do { \
58 if (DEBUG_FLOPPY) { \
59 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
60 } \
61 } while (0)
62
63
64 /* Anonymous BlockBackend for empty drive */
65 static BlockBackend *blk_create_empty_drive(void)
66 {
67 return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
68 }
69
70 /********************************************************/
71 /* qdev floppy bus */
72
73 #define TYPE_FLOPPY_BUS "floppy-bus"
74 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
75
76 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
77
78 static const TypeInfo floppy_bus_info = {
79 .name = TYPE_FLOPPY_BUS,
80 .parent = TYPE_BUS,
81 .instance_size = sizeof(FloppyBus),
82 };
83
84 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
85 {
86 qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
87 bus->fdc = fdc;
88 }
89
90
91 /********************************************************/
92 /* Floppy drive emulation */
93
94 /* In many cases, the total sector size of a format is enough to uniquely
95 * identify it. However, there are some total sector collisions between
96 * formats of different physical size, and these are noted below by
97 * highlighting the total sector size for entries with collisions. */
98 const FDFormat fd_formats[] = {
99 /* First entry is default format */
100 /* 1.44 MB 3"1/2 floppy disks */
101 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
102 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
103 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
104 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
105 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
106 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
107 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
108 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
109 /* 2.88 MB 3"1/2 floppy disks */
110 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
111 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
112 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
113 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
114 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
115 /* 720 kB 3"1/2 floppy disks */
116 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
117 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
118 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
119 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
120 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
121 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
122 /* 1.2 MB 5"1/4 floppy disks */
123 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
124 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
125 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
126 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
127 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
128 /* 720 kB 5"1/4 floppy disks */
129 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
130 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
131 /* 360 kB 5"1/4 floppy disks */
132 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
133 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
134 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
135 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
136 /* 320 kB 5"1/4 floppy disks */
137 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
138 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
139 /* 360 kB must match 5"1/4 better than 3"1/2... */
140 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
141 /* end */
142 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
143 };
144
145 static FDriveSize drive_size(FloppyDriveType drive)
146 {
147 switch (drive) {
148 case FLOPPY_DRIVE_TYPE_120:
149 return FDRIVE_SIZE_525;
150 case FLOPPY_DRIVE_TYPE_144:
151 case FLOPPY_DRIVE_TYPE_288:
152 return FDRIVE_SIZE_350;
153 default:
154 return FDRIVE_SIZE_UNKNOWN;
155 }
156 }
157
158 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
159 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
160
161 /* Will always be a fixed parameter for us */
162 #define FD_SECTOR_LEN 512
163 #define FD_SECTOR_SC 2 /* Sector size code */
164 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
165
166
167 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
168
169 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
170 * currently goes through some pains to keep seeks within the bounds
171 * established by last_sect and max_track. Correcting this is difficult,
172 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
173 *
174 * For now: allow empty drives to have large bounds so we can seek around,
175 * with the understanding that when a diskette is inserted, the bounds will
176 * properly tighten to match the geometry of that inserted medium.
177 */
178 static void fd_empty_seek_hack(FDrive *drv)
179 {
180 drv->last_sect = 0xFF;
181 drv->max_track = 0xFF;
182 }
183
184 static void fd_init(FDrive *drv)
185 {
186 /* Drive */
187 drv->perpendicular = 0;
188 /* Disk */
189 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
190 drv->last_sect = 0;
191 drv->max_track = 0;
192 drv->ro = true;
193 drv->media_changed = 1;
194 }
195
196 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
197
198 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
199 uint8_t last_sect, uint8_t num_sides)
200 {
201 return (((track * num_sides) + head) * last_sect) + sect - 1;
202 }
203
204 /* Returns current position, in sectors, for given drive */
205 static int fd_sector(FDrive *drv)
206 {
207 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
208 NUM_SIDES(drv));
209 }
210
211 /* Returns current position, in bytes, for given drive */
212 static int fd_offset(FDrive *drv)
213 {
214 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
215 return fd_sector(drv) << BDRV_SECTOR_BITS;
216 }
217
218 /* Seek to a new position:
219 * returns 0 if already on right track
220 * returns 1 if track changed
221 * returns 2 if track is invalid
222 * returns 3 if sector is invalid
223 * returns 4 if seek is disabled
224 */
225 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
226 int enable_seek)
227 {
228 uint32_t sector;
229 int ret;
230
231 if (track > drv->max_track ||
232 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
233 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
234 head, track, sect, 1,
235 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
236 drv->max_track, drv->last_sect);
237 return 2;
238 }
239 if (sect > drv->last_sect) {
240 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
241 head, track, sect, 1,
242 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
243 drv->max_track, drv->last_sect);
244 return 3;
245 }
246 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
247 ret = 0;
248 if (sector != fd_sector(drv)) {
249 #if 0
250 if (!enable_seek) {
251 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
252 " (max=%d %02x %02x)\n",
253 head, track, sect, 1, drv->max_track,
254 drv->last_sect);
255 return 4;
256 }
257 #endif
258 drv->head = head;
259 if (drv->track != track) {
260 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
261 drv->media_changed = 0;
262 }
263 ret = 1;
264 }
265 drv->track = track;
266 drv->sect = sect;
267 }
268
269 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
270 ret = 2;
271 }
272
273 return ret;
274 }
275
276 /* Set drive back to track 0 */
277 static void fd_recalibrate(FDrive *drv)
278 {
279 FLOPPY_DPRINTF("recalibrate\n");
280 fd_seek(drv, 0, 0, 1, 1);
281 }
282
283 /**
284 * Determine geometry based on inserted diskette.
285 * Will not operate on an empty drive.
286 *
287 * @return: 0 on success, -1 if the drive is empty.
288 */
289 static int pick_geometry(FDrive *drv)
290 {
291 BlockBackend *blk = drv->blk;
292 const FDFormat *parse;
293 uint64_t nb_sectors, size;
294 int i;
295 int match, size_match, type_match;
296 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
297
298 /* We can only pick a geometry if we have a diskette. */
299 if (!drv->blk || !blk_is_inserted(drv->blk) ||
300 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
301 {
302 return -1;
303 }
304
305 /* We need to determine the likely geometry of the inserted medium.
306 * In order of preference, we look for:
307 * (1) The same drive type and number of sectors,
308 * (2) The same diskette size and number of sectors,
309 * (3) The same drive type.
310 *
311 * In all cases, matches that occur higher in the drive table will take
312 * precedence over matches that occur later in the table.
313 */
314 blk_get_geometry(blk, &nb_sectors);
315 match = size_match = type_match = -1;
316 for (i = 0; ; i++) {
317 parse = &fd_formats[i];
318 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
319 break;
320 }
321 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
322 if (nb_sectors == size) {
323 if (magic || parse->drive == drv->drive) {
324 /* (1) perfect match -- nb_sectors and drive type */
325 goto out;
326 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
327 /* (2) size match -- nb_sectors and physical medium size */
328 match = (match == -1) ? i : match;
329 } else {
330 /* This is suspicious -- Did the user misconfigure? */
331 size_match = (size_match == -1) ? i : size_match;
332 }
333 } else if (type_match == -1) {
334 if ((parse->drive == drv->drive) ||
335 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
336 /* (3) type match -- nb_sectors mismatch, but matches the type
337 * specified explicitly by the user, or matches the fallback
338 * default type when using the drive autodetect mechanism */
339 type_match = i;
340 }
341 }
342 }
343
344 /* No exact match found */
345 if (match == -1) {
346 if (size_match != -1) {
347 parse = &fd_formats[size_match];
348 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
349 "but inserted medium appears to be a "
350 "%"PRId64" sector '%s' type\n",
351 FloppyDriveType_str(drv->drive),
352 nb_sectors,
353 FloppyDriveType_str(parse->drive));
354 }
355 assert(type_match != -1 && "misconfigured fd_format");
356 match = type_match;
357 }
358 parse = &(fd_formats[match]);
359
360 out:
361 if (parse->max_head == 0) {
362 drv->flags &= ~FDISK_DBL_SIDES;
363 } else {
364 drv->flags |= FDISK_DBL_SIDES;
365 }
366 drv->max_track = parse->max_track;
367 drv->last_sect = parse->last_sect;
368 drv->disk = parse->drive;
369 drv->media_rate = parse->rate;
370 return 0;
371 }
372
373 static void pick_drive_type(FDrive *drv)
374 {
375 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
376 return;
377 }
378
379 if (pick_geometry(drv) == 0) {
380 drv->drive = drv->disk;
381 } else {
382 drv->drive = get_fallback_drive_type(drv);
383 }
384
385 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
386 }
387
388 /* Revalidate a disk drive after a disk change */
389 static void fd_revalidate(FDrive *drv)
390 {
391 int rc;
392
393 FLOPPY_DPRINTF("revalidate\n");
394 if (drv->blk != NULL) {
395 drv->ro = !blk_is_writable(drv->blk);
396 if (!blk_is_inserted(drv->blk)) {
397 FLOPPY_DPRINTF("No disk in drive\n");
398 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
399 fd_empty_seek_hack(drv);
400 } else if (!drv->media_validated) {
401 rc = pick_geometry(drv);
402 if (rc) {
403 FLOPPY_DPRINTF("Could not validate floppy drive media");
404 } else {
405 drv->media_validated = true;
406 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
407 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
408 drv->max_track, drv->last_sect,
409 drv->ro ? "ro" : "rw");
410 }
411 }
412 } else {
413 FLOPPY_DPRINTF("No drive connected\n");
414 drv->last_sect = 0;
415 drv->max_track = 0;
416 drv->flags &= ~FDISK_DBL_SIDES;
417 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
418 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
419 }
420 }
421
422 static void fd_change_cb(void *opaque, bool load, Error **errp)
423 {
424 FDrive *drive = opaque;
425
426 if (!load) {
427 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
428 } else {
429 if (!blkconf_apply_backend_options(drive->conf,
430 !blk_supports_write_perm(drive->blk),
431 false, errp)) {
432 return;
433 }
434 }
435
436 drive->media_changed = 1;
437 drive->media_validated = false;
438 fd_revalidate(drive);
439 }
440
441 static const BlockDevOps fd_block_ops = {
442 .change_media_cb = fd_change_cb,
443 };
444
445
446 #define TYPE_FLOPPY_DRIVE "floppy"
447 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
448
449 struct FloppyDrive {
450 DeviceState qdev;
451 uint32_t unit;
452 BlockConf conf;
453 FloppyDriveType type;
454 };
455
456 static Property floppy_drive_properties[] = {
457 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
458 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
459 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
460 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
461 FloppyDriveType),
462 DEFINE_PROP_END_OF_LIST(),
463 };
464
465 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
466 {
467 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
468 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
469 FDrive *drive;
470 bool read_only;
471 int ret;
472
473 if (dev->unit == -1) {
474 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
475 drive = get_drv(bus->fdc, dev->unit);
476 if (!drive->blk) {
477 break;
478 }
479 }
480 }
481
482 if (dev->unit >= MAX_FD) {
483 error_setg(errp, "Can't create floppy unit %d, bus supports "
484 "only %d units", dev->unit, MAX_FD);
485 return;
486 }
487
488 drive = get_drv(bus->fdc, dev->unit);
489 if (drive->blk) {
490 error_setg(errp, "Floppy unit %d is in use", dev->unit);
491 return;
492 }
493
494 if (!dev->conf.blk) {
495 dev->conf.blk = blk_create_empty_drive();
496 ret = blk_attach_dev(dev->conf.blk, qdev);
497 assert(ret == 0);
498
499 /* Don't take write permissions on an empty drive to allow attaching a
500 * read-only node later */
501 read_only = true;
502 } else {
503 read_only = !blk_bs(dev->conf.blk) ||
504 !blk_supports_write_perm(dev->conf.blk);
505 }
506
507 if (!blkconf_blocksizes(&dev->conf, errp)) {
508 return;
509 }
510
511 if (dev->conf.logical_block_size != 512 ||
512 dev->conf.physical_block_size != 512)
513 {
514 error_setg(errp, "Physical and logical block size must "
515 "be 512 for floppy");
516 return;
517 }
518
519 /* rerror/werror aren't supported by fdc and therefore not even registered
520 * with qdev. So set the defaults manually before they are used in
521 * blkconf_apply_backend_options(). */
522 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
523 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
524
525 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
526 return;
527 }
528
529 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
530 * for empty drives. */
531 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
532 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
533 error_setg(errp, "fdc doesn't support drive option werror");
534 return;
535 }
536 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
537 error_setg(errp, "fdc doesn't support drive option rerror");
538 return;
539 }
540
541 drive->conf = &dev->conf;
542 drive->blk = dev->conf.blk;
543 drive->fdctrl = bus->fdc;
544
545 fd_init(drive);
546 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
547
548 /* Keep 'type' qdev property and FDrive->drive in sync */
549 drive->drive = dev->type;
550 pick_drive_type(drive);
551 dev->type = drive->drive;
552
553 fd_revalidate(drive);
554 }
555
556 static void floppy_drive_class_init(ObjectClass *klass, void *data)
557 {
558 DeviceClass *k = DEVICE_CLASS(klass);
559 k->realize = floppy_drive_realize;
560 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
561 k->bus_type = TYPE_FLOPPY_BUS;
562 device_class_set_props(k, floppy_drive_properties);
563 k->desc = "virtual floppy drive";
564 }
565
566 static const TypeInfo floppy_drive_info = {
567 .name = TYPE_FLOPPY_DRIVE,
568 .parent = TYPE_DEVICE,
569 .instance_size = sizeof(FloppyDrive),
570 .class_init = floppy_drive_class_init,
571 };
572
573 /********************************************************/
574 /* Intel 82078 floppy disk controller emulation */
575
576 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
577 static void fdctrl_raise_irq(FDCtrl *fdctrl);
578 static FDrive *get_cur_drv(FDCtrl *fdctrl);
579
580 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
581 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
582 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
583 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
584 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
585 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
586 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
587 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
588 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
589 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
590 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
591 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
592
593 enum {
594 FD_DIR_WRITE = 0,
595 FD_DIR_READ = 1,
596 FD_DIR_SCANE = 2,
597 FD_DIR_SCANL = 3,
598 FD_DIR_SCANH = 4,
599 FD_DIR_VERIFY = 5,
600 };
601
602 enum {
603 FD_STATE_MULTI = 0x01, /* multi track flag */
604 FD_STATE_FORMAT = 0x02, /* format flag */
605 };
606
607 enum {
608 FD_REG_SRA = 0x00,
609 FD_REG_SRB = 0x01,
610 FD_REG_DOR = 0x02,
611 FD_REG_TDR = 0x03,
612 FD_REG_MSR = 0x04,
613 FD_REG_DSR = 0x04,
614 FD_REG_FIFO = 0x05,
615 FD_REG_DIR = 0x07,
616 FD_REG_CCR = 0x07,
617 };
618
619 enum {
620 FD_CMD_READ_TRACK = 0x02,
621 FD_CMD_SPECIFY = 0x03,
622 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
623 FD_CMD_WRITE = 0x05,
624 FD_CMD_READ = 0x06,
625 FD_CMD_RECALIBRATE = 0x07,
626 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
627 FD_CMD_WRITE_DELETED = 0x09,
628 FD_CMD_READ_ID = 0x0a,
629 FD_CMD_READ_DELETED = 0x0c,
630 FD_CMD_FORMAT_TRACK = 0x0d,
631 FD_CMD_DUMPREG = 0x0e,
632 FD_CMD_SEEK = 0x0f,
633 FD_CMD_VERSION = 0x10,
634 FD_CMD_SCAN_EQUAL = 0x11,
635 FD_CMD_PERPENDICULAR_MODE = 0x12,
636 FD_CMD_CONFIGURE = 0x13,
637 FD_CMD_LOCK = 0x14,
638 FD_CMD_VERIFY = 0x16,
639 FD_CMD_POWERDOWN_MODE = 0x17,
640 FD_CMD_PART_ID = 0x18,
641 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
642 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
643 FD_CMD_SAVE = 0x2e,
644 FD_CMD_OPTION = 0x33,
645 FD_CMD_RESTORE = 0x4e,
646 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
647 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
648 FD_CMD_FORMAT_AND_WRITE = 0xcd,
649 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
650 };
651
652 enum {
653 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
654 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
655 FD_CONFIG_POLL = 0x10, /* Poll enabled */
656 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
657 FD_CONFIG_EIS = 0x40, /* No implied seeks */
658 };
659
660 enum {
661 FD_SR0_DS0 = 0x01,
662 FD_SR0_DS1 = 0x02,
663 FD_SR0_HEAD = 0x04,
664 FD_SR0_EQPMT = 0x10,
665 FD_SR0_SEEK = 0x20,
666 FD_SR0_ABNTERM = 0x40,
667 FD_SR0_INVCMD = 0x80,
668 FD_SR0_RDYCHG = 0xc0,
669 };
670
671 enum {
672 FD_SR1_MA = 0x01, /* Missing address mark */
673 FD_SR1_NW = 0x02, /* Not writable */
674 FD_SR1_EC = 0x80, /* End of cylinder */
675 };
676
677 enum {
678 FD_SR2_SNS = 0x04, /* Scan not satisfied */
679 FD_SR2_SEH = 0x08, /* Scan equal hit */
680 };
681
682 enum {
683 FD_SRA_DIR = 0x01,
684 FD_SRA_nWP = 0x02,
685 FD_SRA_nINDX = 0x04,
686 FD_SRA_HDSEL = 0x08,
687 FD_SRA_nTRK0 = 0x10,
688 FD_SRA_STEP = 0x20,
689 FD_SRA_nDRV2 = 0x40,
690 FD_SRA_INTPEND = 0x80,
691 };
692
693 enum {
694 FD_SRB_MTR0 = 0x01,
695 FD_SRB_MTR1 = 0x02,
696 FD_SRB_WGATE = 0x04,
697 FD_SRB_RDATA = 0x08,
698 FD_SRB_WDATA = 0x10,
699 FD_SRB_DR0 = 0x20,
700 };
701
702 enum {
703 #if MAX_FD == 4
704 FD_DOR_SELMASK = 0x03,
705 #else
706 FD_DOR_SELMASK = 0x01,
707 #endif
708 FD_DOR_nRESET = 0x04,
709 FD_DOR_DMAEN = 0x08,
710 FD_DOR_MOTEN0 = 0x10,
711 FD_DOR_MOTEN1 = 0x20,
712 FD_DOR_MOTEN2 = 0x40,
713 FD_DOR_MOTEN3 = 0x80,
714 };
715
716 enum {
717 #if MAX_FD == 4
718 FD_TDR_BOOTSEL = 0x0c,
719 #else
720 FD_TDR_BOOTSEL = 0x04,
721 #endif
722 };
723
724 enum {
725 FD_DSR_DRATEMASK= 0x03,
726 FD_DSR_PWRDOWN = 0x40,
727 FD_DSR_SWRESET = 0x80,
728 };
729
730 enum {
731 FD_MSR_DRV0BUSY = 0x01,
732 FD_MSR_DRV1BUSY = 0x02,
733 FD_MSR_DRV2BUSY = 0x04,
734 FD_MSR_DRV3BUSY = 0x08,
735 FD_MSR_CMDBUSY = 0x10,
736 FD_MSR_NONDMA = 0x20,
737 FD_MSR_DIO = 0x40,
738 FD_MSR_RQM = 0x80,
739 };
740
741 enum {
742 FD_DIR_DSKCHG = 0x80,
743 };
744
745 /*
746 * See chapter 5.0 "Controller phases" of the spec:
747 *
748 * Command phase:
749 * The host writes a command and its parameters into the FIFO. The command
750 * phase is completed when all parameters for the command have been supplied,
751 * and execution phase is entered.
752 *
753 * Execution phase:
754 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
755 * contains the payload now, otherwise it's unused. When all bytes of the
756 * required data have been transferred, the state is switched to either result
757 * phase (if the command produces status bytes) or directly back into the
758 * command phase for the next command.
759 *
760 * Result phase:
761 * The host reads out the FIFO, which contains one or more result bytes now.
762 */
763 enum {
764 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
765 FD_PHASE_RECONSTRUCT = 0,
766
767 FD_PHASE_COMMAND = 1,
768 FD_PHASE_EXECUTION = 2,
769 FD_PHASE_RESULT = 3,
770 };
771
772 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
773 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
774
775 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
776 {
777 return drv->fdctrl->fallback;
778 }
779
780 uint32_t fdctrl_read(void *opaque, uint32_t reg)
781 {
782 FDCtrl *fdctrl = opaque;
783 uint32_t retval;
784
785 reg &= 7;
786 switch (reg) {
787 case FD_REG_SRA:
788 retval = fdctrl_read_statusA(fdctrl);
789 break;
790 case FD_REG_SRB:
791 retval = fdctrl_read_statusB(fdctrl);
792 break;
793 case FD_REG_DOR:
794 retval = fdctrl_read_dor(fdctrl);
795 break;
796 case FD_REG_TDR:
797 retval = fdctrl_read_tape(fdctrl);
798 break;
799 case FD_REG_MSR:
800 retval = fdctrl_read_main_status(fdctrl);
801 break;
802 case FD_REG_FIFO:
803 retval = fdctrl_read_data(fdctrl);
804 break;
805 case FD_REG_DIR:
806 retval = fdctrl_read_dir(fdctrl);
807 break;
808 default:
809 retval = (uint32_t)(-1);
810 break;
811 }
812 trace_fdc_ioport_read(reg, retval);
813
814 return retval;
815 }
816
817 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
818 {
819 FDCtrl *fdctrl = opaque;
820
821 reg &= 7;
822 trace_fdc_ioport_write(reg, value);
823 switch (reg) {
824 case FD_REG_DOR:
825 fdctrl_write_dor(fdctrl, value);
826 break;
827 case FD_REG_TDR:
828 fdctrl_write_tape(fdctrl, value);
829 break;
830 case FD_REG_DSR:
831 fdctrl_write_rate(fdctrl, value);
832 break;
833 case FD_REG_FIFO:
834 fdctrl_write_data(fdctrl, value);
835 break;
836 case FD_REG_CCR:
837 fdctrl_write_ccr(fdctrl, value);
838 break;
839 default:
840 break;
841 }
842 }
843
844 static bool fdrive_media_changed_needed(void *opaque)
845 {
846 FDrive *drive = opaque;
847
848 return (drive->blk != NULL && drive->media_changed != 1);
849 }
850
851 static const VMStateDescription vmstate_fdrive_media_changed = {
852 .name = "fdrive/media_changed",
853 .version_id = 1,
854 .minimum_version_id = 1,
855 .needed = fdrive_media_changed_needed,
856 .fields = (VMStateField[]) {
857 VMSTATE_UINT8(media_changed, FDrive),
858 VMSTATE_END_OF_LIST()
859 }
860 };
861
862 static const VMStateDescription vmstate_fdrive_media_rate = {
863 .name = "fdrive/media_rate",
864 .version_id = 1,
865 .minimum_version_id = 1,
866 .fields = (VMStateField[]) {
867 VMSTATE_UINT8(media_rate, FDrive),
868 VMSTATE_END_OF_LIST()
869 }
870 };
871
872 static bool fdrive_perpendicular_needed(void *opaque)
873 {
874 FDrive *drive = opaque;
875
876 return drive->perpendicular != 0;
877 }
878
879 static const VMStateDescription vmstate_fdrive_perpendicular = {
880 .name = "fdrive/perpendicular",
881 .version_id = 1,
882 .minimum_version_id = 1,
883 .needed = fdrive_perpendicular_needed,
884 .fields = (VMStateField[]) {
885 VMSTATE_UINT8(perpendicular, FDrive),
886 VMSTATE_END_OF_LIST()
887 }
888 };
889
890 static int fdrive_post_load(void *opaque, int version_id)
891 {
892 fd_revalidate(opaque);
893 return 0;
894 }
895
896 static const VMStateDescription vmstate_fdrive = {
897 .name = "fdrive",
898 .version_id = 1,
899 .minimum_version_id = 1,
900 .post_load = fdrive_post_load,
901 .fields = (VMStateField[]) {
902 VMSTATE_UINT8(head, FDrive),
903 VMSTATE_UINT8(track, FDrive),
904 VMSTATE_UINT8(sect, FDrive),
905 VMSTATE_END_OF_LIST()
906 },
907 .subsections = (const VMStateDescription*[]) {
908 &vmstate_fdrive_media_changed,
909 &vmstate_fdrive_media_rate,
910 &vmstate_fdrive_perpendicular,
911 NULL
912 }
913 };
914
915 /*
916 * Reconstructs the phase from register values according to the logic that was
917 * implemented in qemu 2.3. This is the default value that is used if the phase
918 * subsection is not present on migration.
919 *
920 * Don't change this function to reflect newer qemu versions, it is part of
921 * the migration ABI.
922 */
923 static int reconstruct_phase(FDCtrl *fdctrl)
924 {
925 if (fdctrl->msr & FD_MSR_NONDMA) {
926 return FD_PHASE_EXECUTION;
927 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
928 /* qemu 2.3 disabled RQM only during DMA transfers */
929 return FD_PHASE_EXECUTION;
930 } else if (fdctrl->msr & FD_MSR_DIO) {
931 return FD_PHASE_RESULT;
932 } else {
933 return FD_PHASE_COMMAND;
934 }
935 }
936
937 static int fdc_pre_save(void *opaque)
938 {
939 FDCtrl *s = opaque;
940
941 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
942
943 return 0;
944 }
945
946 static int fdc_pre_load(void *opaque)
947 {
948 FDCtrl *s = opaque;
949 s->phase = FD_PHASE_RECONSTRUCT;
950 return 0;
951 }
952
953 static int fdc_post_load(void *opaque, int version_id)
954 {
955 FDCtrl *s = opaque;
956
957 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
958 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
959
960 if (s->phase == FD_PHASE_RECONSTRUCT) {
961 s->phase = reconstruct_phase(s);
962 }
963
964 return 0;
965 }
966
967 static bool fdc_reset_sensei_needed(void *opaque)
968 {
969 FDCtrl *s = opaque;
970
971 return s->reset_sensei != 0;
972 }
973
974 static const VMStateDescription vmstate_fdc_reset_sensei = {
975 .name = "fdc/reset_sensei",
976 .version_id = 1,
977 .minimum_version_id = 1,
978 .needed = fdc_reset_sensei_needed,
979 .fields = (VMStateField[]) {
980 VMSTATE_INT32(reset_sensei, FDCtrl),
981 VMSTATE_END_OF_LIST()
982 }
983 };
984
985 static bool fdc_result_timer_needed(void *opaque)
986 {
987 FDCtrl *s = opaque;
988
989 return timer_pending(s->result_timer);
990 }
991
992 static const VMStateDescription vmstate_fdc_result_timer = {
993 .name = "fdc/result_timer",
994 .version_id = 1,
995 .minimum_version_id = 1,
996 .needed = fdc_result_timer_needed,
997 .fields = (VMStateField[]) {
998 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
999 VMSTATE_END_OF_LIST()
1000 }
1001 };
1002
1003 static bool fdc_phase_needed(void *opaque)
1004 {
1005 FDCtrl *fdctrl = opaque;
1006
1007 return reconstruct_phase(fdctrl) != fdctrl->phase;
1008 }
1009
1010 static const VMStateDescription vmstate_fdc_phase = {
1011 .name = "fdc/phase",
1012 .version_id = 1,
1013 .minimum_version_id = 1,
1014 .needed = fdc_phase_needed,
1015 .fields = (VMStateField[]) {
1016 VMSTATE_UINT8(phase, FDCtrl),
1017 VMSTATE_END_OF_LIST()
1018 }
1019 };
1020
1021 const VMStateDescription vmstate_fdc = {
1022 .name = "fdc",
1023 .version_id = 2,
1024 .minimum_version_id = 2,
1025 .pre_save = fdc_pre_save,
1026 .pre_load = fdc_pre_load,
1027 .post_load = fdc_post_load,
1028 .fields = (VMStateField[]) {
1029 /* Controller State */
1030 VMSTATE_UINT8(sra, FDCtrl),
1031 VMSTATE_UINT8(srb, FDCtrl),
1032 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1033 VMSTATE_UINT8(tdr, FDCtrl),
1034 VMSTATE_UINT8(dsr, FDCtrl),
1035 VMSTATE_UINT8(msr, FDCtrl),
1036 VMSTATE_UINT8(status0, FDCtrl),
1037 VMSTATE_UINT8(status1, FDCtrl),
1038 VMSTATE_UINT8(status2, FDCtrl),
1039 /* Command FIFO */
1040 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1041 uint8_t),
1042 VMSTATE_UINT32(data_pos, FDCtrl),
1043 VMSTATE_UINT32(data_len, FDCtrl),
1044 VMSTATE_UINT8(data_state, FDCtrl),
1045 VMSTATE_UINT8(data_dir, FDCtrl),
1046 VMSTATE_UINT8(eot, FDCtrl),
1047 /* States kept only to be returned back */
1048 VMSTATE_UINT8(timer0, FDCtrl),
1049 VMSTATE_UINT8(timer1, FDCtrl),
1050 VMSTATE_UINT8(precomp_trk, FDCtrl),
1051 VMSTATE_UINT8(config, FDCtrl),
1052 VMSTATE_UINT8(lock, FDCtrl),
1053 VMSTATE_UINT8(pwrd, FDCtrl),
1054 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1055 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1056 vmstate_fdrive, FDrive),
1057 VMSTATE_END_OF_LIST()
1058 },
1059 .subsections = (const VMStateDescription*[]) {
1060 &vmstate_fdc_reset_sensei,
1061 &vmstate_fdc_result_timer,
1062 &vmstate_fdc_phase,
1063 NULL
1064 }
1065 };
1066
1067 /* Change IRQ state */
1068 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1069 {
1070 fdctrl->status0 = 0;
1071 if (!(fdctrl->sra & FD_SRA_INTPEND))
1072 return;
1073 FLOPPY_DPRINTF("Reset interrupt\n");
1074 qemu_set_irq(fdctrl->irq, 0);
1075 fdctrl->sra &= ~FD_SRA_INTPEND;
1076 }
1077
1078 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1079 {
1080 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1081 qemu_set_irq(fdctrl->irq, 1);
1082 fdctrl->sra |= FD_SRA_INTPEND;
1083 }
1084
1085 fdctrl->reset_sensei = 0;
1086 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1087 }
1088
1089 /* Reset controller */
1090 void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1091 {
1092 int i;
1093
1094 FLOPPY_DPRINTF("reset controller\n");
1095 fdctrl_reset_irq(fdctrl);
1096 /* Initialise controller */
1097 fdctrl->sra = 0;
1098 fdctrl->srb = 0xc0;
1099 if (!fdctrl->drives[1].blk) {
1100 fdctrl->sra |= FD_SRA_nDRV2;
1101 }
1102 fdctrl->cur_drv = 0;
1103 fdctrl->dor = FD_DOR_nRESET;
1104 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1105 fdctrl->msr = FD_MSR_RQM;
1106 fdctrl->reset_sensei = 0;
1107 timer_del(fdctrl->result_timer);
1108 /* FIFO state */
1109 fdctrl->data_pos = 0;
1110 fdctrl->data_len = 0;
1111 fdctrl->data_state = 0;
1112 fdctrl->data_dir = FD_DIR_WRITE;
1113 for (i = 0; i < MAX_FD; i++)
1114 fd_recalibrate(&fdctrl->drives[i]);
1115 fdctrl_to_command_phase(fdctrl);
1116 if (do_irq) {
1117 fdctrl->status0 |= FD_SR0_RDYCHG;
1118 fdctrl_raise_irq(fdctrl);
1119 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1120 }
1121 }
1122
1123 static inline FDrive *drv0(FDCtrl *fdctrl)
1124 {
1125 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1126 }
1127
1128 static inline FDrive *drv1(FDCtrl *fdctrl)
1129 {
1130 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1131 return &fdctrl->drives[1];
1132 else
1133 return &fdctrl->drives[0];
1134 }
1135
1136 #if MAX_FD == 4
1137 static inline FDrive *drv2(FDCtrl *fdctrl)
1138 {
1139 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1140 return &fdctrl->drives[2];
1141 else
1142 return &fdctrl->drives[1];
1143 }
1144
1145 static inline FDrive *drv3(FDCtrl *fdctrl)
1146 {
1147 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1148 return &fdctrl->drives[3];
1149 else
1150 return &fdctrl->drives[2];
1151 }
1152 #endif
1153
1154 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1155 {
1156 switch (unit) {
1157 case 0: return drv0(fdctrl);
1158 case 1: return drv1(fdctrl);
1159 #if MAX_FD == 4
1160 case 2: return drv2(fdctrl);
1161 case 3: return drv3(fdctrl);
1162 #endif
1163 default: return NULL;
1164 }
1165 }
1166
1167 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1168 {
1169 FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv);
1170
1171 if (!cur_drv->blk) {
1172 /*
1173 * Kludge: empty drive line selected. Create an anonymous
1174 * BlockBackend to avoid NULL deref with various BlockBackend
1175 * API calls within this model (CVE-2021-20196).
1176 * Due to the controller QOM model limitations, we don't
1177 * attach the created to the controller device.
1178 */
1179 cur_drv->blk = blk_create_empty_drive();
1180 }
1181 return cur_drv;
1182 }
1183
1184 /* Status A register : 0x00 (read-only) */
1185 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1186 {
1187 uint32_t retval = fdctrl->sra;
1188
1189 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1190
1191 return retval;
1192 }
1193
1194 /* Status B register : 0x01 (read-only) */
1195 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1196 {
1197 uint32_t retval = fdctrl->srb;
1198
1199 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1200
1201 return retval;
1202 }
1203
1204 /* Digital output register : 0x02 */
1205 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1206 {
1207 uint32_t retval = fdctrl->dor;
1208
1209 /* Selected drive */
1210 retval |= fdctrl->cur_drv;
1211 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1212
1213 return retval;
1214 }
1215
1216 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1217 {
1218 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1219
1220 /* Motors */
1221 if (value & FD_DOR_MOTEN0)
1222 fdctrl->srb |= FD_SRB_MTR0;
1223 else
1224 fdctrl->srb &= ~FD_SRB_MTR0;
1225 if (value & FD_DOR_MOTEN1)
1226 fdctrl->srb |= FD_SRB_MTR1;
1227 else
1228 fdctrl->srb &= ~FD_SRB_MTR1;
1229
1230 /* Drive */
1231 if (value & 1)
1232 fdctrl->srb |= FD_SRB_DR0;
1233 else
1234 fdctrl->srb &= ~FD_SRB_DR0;
1235
1236 /* Reset */
1237 if (!(value & FD_DOR_nRESET)) {
1238 if (fdctrl->dor & FD_DOR_nRESET) {
1239 FLOPPY_DPRINTF("controller enter RESET state\n");
1240 }
1241 } else {
1242 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1243 FLOPPY_DPRINTF("controller out of RESET state\n");
1244 fdctrl_reset(fdctrl, 1);
1245 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1246 }
1247 }
1248 /* Selected drive */
1249 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1250
1251 fdctrl->dor = value;
1252 }
1253
1254 /* Tape drive register : 0x03 */
1255 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1256 {
1257 uint32_t retval = fdctrl->tdr;
1258
1259 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1260
1261 return retval;
1262 }
1263
1264 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1265 {
1266 /* Reset mode */
1267 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1268 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1269 return;
1270 }
1271 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1272 /* Disk boot selection indicator */
1273 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1274 /* Tape indicators: never allow */
1275 }
1276
1277 /* Main status register : 0x04 (read) */
1278 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1279 {
1280 uint32_t retval = fdctrl->msr;
1281
1282 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1283 fdctrl->dor |= FD_DOR_nRESET;
1284
1285 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1286
1287 return retval;
1288 }
1289
1290 /* Data select rate register : 0x04 (write) */
1291 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1292 {
1293 /* Reset mode */
1294 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1295 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1296 return;
1297 }
1298 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1299 /* Reset: autoclear */
1300 if (value & FD_DSR_SWRESET) {
1301 fdctrl->dor &= ~FD_DOR_nRESET;
1302 fdctrl_reset(fdctrl, 1);
1303 fdctrl->dor |= FD_DOR_nRESET;
1304 }
1305 if (value & FD_DSR_PWRDOWN) {
1306 fdctrl_reset(fdctrl, 1);
1307 }
1308 fdctrl->dsr = value;
1309 }
1310
1311 /* Configuration control register: 0x07 (write) */
1312 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1313 {
1314 /* Reset mode */
1315 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1316 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1317 return;
1318 }
1319 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1320
1321 /* Only the rate selection bits used in AT mode, and we
1322 * store those in the DSR.
1323 */
1324 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1325 (value & FD_DSR_DRATEMASK);
1326 }
1327
1328 static int fdctrl_media_changed(FDrive *drv)
1329 {
1330 return drv->media_changed;
1331 }
1332
1333 /* Digital input register : 0x07 (read-only) */
1334 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1335 {
1336 uint32_t retval = 0;
1337
1338 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1339 retval |= FD_DIR_DSKCHG;
1340 }
1341 if (retval != 0) {
1342 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1343 }
1344
1345 return retval;
1346 }
1347
1348 /* Clear the FIFO and update the state for receiving the next command */
1349 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1350 {
1351 fdctrl->phase = FD_PHASE_COMMAND;
1352 fdctrl->data_dir = FD_DIR_WRITE;
1353 fdctrl->data_pos = 0;
1354 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1355 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1356 fdctrl->msr |= FD_MSR_RQM;
1357 }
1358
1359 /* Update the state to allow the guest to read out the command status.
1360 * @fifo_len is the number of result bytes to be read out. */
1361 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1362 {
1363 fdctrl->phase = FD_PHASE_RESULT;
1364 fdctrl->data_dir = FD_DIR_READ;
1365 fdctrl->data_len = fifo_len;
1366 fdctrl->data_pos = 0;
1367 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1368 }
1369
1370 /* Set an error: unimplemented/unknown command */
1371 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1372 {
1373 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1374 fdctrl->fifo[0]);
1375 fdctrl->fifo[0] = FD_SR0_INVCMD;
1376 fdctrl_to_result_phase(fdctrl, 1);
1377 }
1378
1379 /* Seek to next sector
1380 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1381 * otherwise returns 1
1382 */
1383 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1384 {
1385 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1386 cur_drv->head, cur_drv->track, cur_drv->sect,
1387 fd_sector(cur_drv));
1388 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1389 error in fact */
1390 uint8_t new_head = cur_drv->head;
1391 uint8_t new_track = cur_drv->track;
1392 uint8_t new_sect = cur_drv->sect;
1393
1394 int ret = 1;
1395
1396 if (new_sect >= cur_drv->last_sect ||
1397 new_sect == fdctrl->eot) {
1398 new_sect = 1;
1399 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1400 if (new_head == 0 &&
1401 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1402 new_head = 1;
1403 } else {
1404 new_head = 0;
1405 new_track++;
1406 fdctrl->status0 |= FD_SR0_SEEK;
1407 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1408 ret = 0;
1409 }
1410 }
1411 } else {
1412 fdctrl->status0 |= FD_SR0_SEEK;
1413 new_track++;
1414 ret = 0;
1415 }
1416 if (ret == 1) {
1417 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1418 new_head, new_track, new_sect, fd_sector(cur_drv));
1419 }
1420 } else {
1421 new_sect++;
1422 }
1423 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1424 return ret;
1425 }
1426
1427 /* Callback for transfer end (stop or abort) */
1428 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1429 uint8_t status1, uint8_t status2)
1430 {
1431 FDrive *cur_drv;
1432 cur_drv = get_cur_drv(fdctrl);
1433
1434 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1435 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1436 if (cur_drv->head) {
1437 fdctrl->status0 |= FD_SR0_HEAD;
1438 }
1439 fdctrl->status0 |= status0;
1440
1441 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1442 status0, status1, status2, fdctrl->status0);
1443 fdctrl->fifo[0] = fdctrl->status0;
1444 fdctrl->fifo[1] = status1;
1445 fdctrl->fifo[2] = status2;
1446 fdctrl->fifo[3] = cur_drv->track;
1447 fdctrl->fifo[4] = cur_drv->head;
1448 fdctrl->fifo[5] = cur_drv->sect;
1449 fdctrl->fifo[6] = FD_SECTOR_SC;
1450 fdctrl->data_dir = FD_DIR_READ;
1451 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1452 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1453 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1454 }
1455 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1456 fdctrl->msr &= ~FD_MSR_NONDMA;
1457
1458 fdctrl_to_result_phase(fdctrl, 7);
1459 fdctrl_raise_irq(fdctrl);
1460 }
1461
1462 /* Prepare a data transfer (either DMA or FIFO) */
1463 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1464 {
1465 FDrive *cur_drv;
1466 uint8_t kh, kt, ks;
1467
1468 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1469 cur_drv = get_cur_drv(fdctrl);
1470 kt = fdctrl->fifo[2];
1471 kh = fdctrl->fifo[3];
1472 ks = fdctrl->fifo[4];
1473 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1474 GET_CUR_DRV(fdctrl), kh, kt, ks,
1475 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1476 NUM_SIDES(cur_drv)));
1477 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1478 case 2:
1479 /* sect too big */
1480 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1481 fdctrl->fifo[3] = kt;
1482 fdctrl->fifo[4] = kh;
1483 fdctrl->fifo[5] = ks;
1484 return;
1485 case 3:
1486 /* track too big */
1487 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1488 fdctrl->fifo[3] = kt;
1489 fdctrl->fifo[4] = kh;
1490 fdctrl->fifo[5] = ks;
1491 return;
1492 case 4:
1493 /* No seek enabled */
1494 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1495 fdctrl->fifo[3] = kt;
1496 fdctrl->fifo[4] = kh;
1497 fdctrl->fifo[5] = ks;
1498 return;
1499 case 1:
1500 fdctrl->status0 |= FD_SR0_SEEK;
1501 break;
1502 default:
1503 break;
1504 }
1505
1506 /* Check the data rate. If the programmed data rate does not match
1507 * the currently inserted medium, the operation has to fail. */
1508 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1509 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1510 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1511 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1512 fdctrl->fifo[3] = kt;
1513 fdctrl->fifo[4] = kh;
1514 fdctrl->fifo[5] = ks;
1515 return;
1516 }
1517
1518 /* Set the FIFO state */
1519 fdctrl->data_dir = direction;
1520 fdctrl->data_pos = 0;
1521 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1522 if (fdctrl->fifo[0] & 0x80)
1523 fdctrl->data_state |= FD_STATE_MULTI;
1524 else
1525 fdctrl->data_state &= ~FD_STATE_MULTI;
1526 if (fdctrl->fifo[5] == 0) {
1527 fdctrl->data_len = fdctrl->fifo[8];
1528 } else {
1529 int tmp;
1530 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1531 tmp = (fdctrl->fifo[6] - ks + 1);
1532 if (fdctrl->fifo[0] & 0x80)
1533 tmp += fdctrl->fifo[6];
1534 fdctrl->data_len *= tmp;
1535 }
1536 fdctrl->eot = fdctrl->fifo[6];
1537 if (fdctrl->dor & FD_DOR_DMAEN) {
1538 /* DMA transfer is enabled. */
1539 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1540
1541 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1542 direction, (128 << fdctrl->fifo[5]) *
1543 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1544
1545 /* No access is allowed until DMA transfer has completed */
1546 fdctrl->msr &= ~FD_MSR_RQM;
1547 if (direction != FD_DIR_VERIFY) {
1548 /*
1549 * Now, we just have to wait for the DMA controller to
1550 * recall us...
1551 */
1552 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1553 k->schedule(fdctrl->dma);
1554 } else {
1555 /* Start transfer */
1556 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1557 fdctrl->data_len);
1558 }
1559 return;
1560 }
1561 FLOPPY_DPRINTF("start non-DMA transfer\n");
1562 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1563 if (direction != FD_DIR_WRITE)
1564 fdctrl->msr |= FD_MSR_DIO;
1565 /* IO based transfer: calculate len */
1566 fdctrl_raise_irq(fdctrl);
1567 }
1568
1569 /* Prepare a transfer of deleted data */
1570 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1571 {
1572 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1573
1574 /* We don't handle deleted data,
1575 * so we don't return *ANYTHING*
1576 */
1577 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1578 }
1579
1580 /* handlers for DMA transfers */
1581 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
1582 {
1583 FDCtrl *fdctrl;
1584 FDrive *cur_drv;
1585 int len, start_pos, rel_pos;
1586 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1587 IsaDmaClass *k;
1588
1589 fdctrl = opaque;
1590 if (fdctrl->msr & FD_MSR_RQM) {
1591 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1592 return 0;
1593 }
1594 k = ISADMA_GET_CLASS(fdctrl->dma);
1595 cur_drv = get_cur_drv(fdctrl);
1596 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1597 fdctrl->data_dir == FD_DIR_SCANH)
1598 status2 = FD_SR2_SNS;
1599 if (dma_len > fdctrl->data_len)
1600 dma_len = fdctrl->data_len;
1601 if (cur_drv->blk == NULL) {
1602 if (fdctrl->data_dir == FD_DIR_WRITE)
1603 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1604 else
1605 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1606 len = 0;
1607 goto transfer_error;
1608 }
1609 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1610 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1611 len = dma_len - fdctrl->data_pos;
1612 if (len + rel_pos > FD_SECTOR_LEN)
1613 len = FD_SECTOR_LEN - rel_pos;
1614 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1615 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1616 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1617 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1618 fd_sector(cur_drv) * FD_SECTOR_LEN);
1619 if (fdctrl->data_dir != FD_DIR_WRITE ||
1620 len < FD_SECTOR_LEN || rel_pos != 0) {
1621 /* READ & SCAN commands and realign to a sector for WRITE */
1622 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1623 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1624 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1625 fd_sector(cur_drv));
1626 /* Sure, image size is too small... */
1627 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1628 }
1629 }
1630 switch (fdctrl->data_dir) {
1631 case FD_DIR_READ:
1632 /* READ commands */
1633 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1634 fdctrl->data_pos, len);
1635 break;
1636 case FD_DIR_WRITE:
1637 /* WRITE commands */
1638 if (cur_drv->ro) {
1639 /* Handle readonly medium early, no need to do DMA, touch the
1640 * LED or attempt any writes. A real floppy doesn't attempt
1641 * to write to readonly media either. */
1642 fdctrl_stop_transfer(fdctrl,
1643 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1644 0x00);
1645 goto transfer_error;
1646 }
1647
1648 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1649 fdctrl->data_pos, len);
1650 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1651 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1652 FLOPPY_DPRINTF("error writing sector %d\n",
1653 fd_sector(cur_drv));
1654 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1655 goto transfer_error;
1656 }
1657 break;
1658 case FD_DIR_VERIFY:
1659 /* VERIFY commands */
1660 break;
1661 default:
1662 /* SCAN commands */
1663 {
1664 uint8_t tmpbuf[FD_SECTOR_LEN];
1665 int ret;
1666 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1667 len);
1668 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1669 if (ret == 0) {
1670 status2 = FD_SR2_SEH;
1671 goto end_transfer;
1672 }
1673 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1674 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1675 status2 = 0x00;
1676 goto end_transfer;
1677 }
1678 }
1679 break;
1680 }
1681 fdctrl->data_pos += len;
1682 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1683 if (rel_pos == 0) {
1684 /* Seek to next sector */
1685 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1686 break;
1687 }
1688 }
1689 end_transfer:
1690 len = fdctrl->data_pos - start_pos;
1691 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1692 fdctrl->data_pos, len, fdctrl->data_len);
1693 if (fdctrl->data_dir == FD_DIR_SCANE ||
1694 fdctrl->data_dir == FD_DIR_SCANL ||
1695 fdctrl->data_dir == FD_DIR_SCANH)
1696 status2 = FD_SR2_SEH;
1697 fdctrl->data_len -= len;
1698 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1699 transfer_error:
1700
1701 return len;
1702 }
1703
1704 /* Data register : 0x05 */
1705 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1706 {
1707 FDrive *cur_drv;
1708 uint32_t retval = 0;
1709 uint32_t pos;
1710
1711 cur_drv = get_cur_drv(fdctrl);
1712 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1713 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1714 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1715 return 0;
1716 }
1717
1718 /* If data_len spans multiple sectors, the current position in the FIFO
1719 * wraps around while fdctrl->data_pos is the real position in the whole
1720 * request. */
1721 pos = fdctrl->data_pos;
1722 pos %= FD_SECTOR_LEN;
1723
1724 switch (fdctrl->phase) {
1725 case FD_PHASE_EXECUTION:
1726 assert(fdctrl->msr & FD_MSR_NONDMA);
1727 if (pos == 0) {
1728 if (fdctrl->data_pos != 0)
1729 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1730 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1731 fd_sector(cur_drv));
1732 return 0;
1733 }
1734 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1735 BDRV_SECTOR_SIZE)
1736 < 0) {
1737 FLOPPY_DPRINTF("error getting sector %d\n",
1738 fd_sector(cur_drv));
1739 /* Sure, image size is too small... */
1740 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1741 }
1742 }
1743
1744 if (++fdctrl->data_pos == fdctrl->data_len) {
1745 fdctrl->msr &= ~FD_MSR_RQM;
1746 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1747 }
1748 break;
1749
1750 case FD_PHASE_RESULT:
1751 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1752 if (++fdctrl->data_pos == fdctrl->data_len) {
1753 fdctrl->msr &= ~FD_MSR_RQM;
1754 fdctrl_to_command_phase(fdctrl);
1755 fdctrl_reset_irq(fdctrl);
1756 }
1757 break;
1758
1759 case FD_PHASE_COMMAND:
1760 default:
1761 abort();
1762 }
1763
1764 retval = fdctrl->fifo[pos];
1765 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1766
1767 return retval;
1768 }
1769
1770 static void fdctrl_format_sector(FDCtrl *fdctrl)
1771 {
1772 FDrive *cur_drv;
1773 uint8_t kh, kt, ks;
1774
1775 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1776 cur_drv = get_cur_drv(fdctrl);
1777 kt = fdctrl->fifo[6];
1778 kh = fdctrl->fifo[7];
1779 ks = fdctrl->fifo[8];
1780 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1781 GET_CUR_DRV(fdctrl), kh, kt, ks,
1782 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1783 NUM_SIDES(cur_drv)));
1784 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1785 case 2:
1786 /* sect too big */
1787 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1788 fdctrl->fifo[3] = kt;
1789 fdctrl->fifo[4] = kh;
1790 fdctrl->fifo[5] = ks;
1791 return;
1792 case 3:
1793 /* track too big */
1794 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1795 fdctrl->fifo[3] = kt;
1796 fdctrl->fifo[4] = kh;
1797 fdctrl->fifo[5] = ks;
1798 return;
1799 case 4:
1800 /* No seek enabled */
1801 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1802 fdctrl->fifo[3] = kt;
1803 fdctrl->fifo[4] = kh;
1804 fdctrl->fifo[5] = ks;
1805 return;
1806 case 1:
1807 fdctrl->status0 |= FD_SR0_SEEK;
1808 break;
1809 default:
1810 break;
1811 }
1812 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1813 if (cur_drv->blk == NULL ||
1814 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1815 BDRV_SECTOR_SIZE, 0) < 0) {
1816 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1817 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1818 } else {
1819 if (cur_drv->sect == cur_drv->last_sect) {
1820 fdctrl->data_state &= ~FD_STATE_FORMAT;
1821 /* Last sector done */
1822 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1823 } else {
1824 /* More to do */
1825 fdctrl->data_pos = 0;
1826 fdctrl->data_len = 4;
1827 }
1828 }
1829 }
1830
1831 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1832 {
1833 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1834 fdctrl->fifo[0] = fdctrl->lock << 4;
1835 fdctrl_to_result_phase(fdctrl, 1);
1836 }
1837
1838 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1839 {
1840 FDrive *cur_drv = get_cur_drv(fdctrl);
1841
1842 /* Drives position */
1843 fdctrl->fifo[0] = drv0(fdctrl)->track;
1844 fdctrl->fifo[1] = drv1(fdctrl)->track;
1845 #if MAX_FD == 4
1846 fdctrl->fifo[2] = drv2(fdctrl)->track;
1847 fdctrl->fifo[3] = drv3(fdctrl)->track;
1848 #else
1849 fdctrl->fifo[2] = 0;
1850 fdctrl->fifo[3] = 0;
1851 #endif
1852 /* timers */
1853 fdctrl->fifo[4] = fdctrl->timer0;
1854 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1855 fdctrl->fifo[6] = cur_drv->last_sect;
1856 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1857 (cur_drv->perpendicular << 2);
1858 fdctrl->fifo[8] = fdctrl->config;
1859 fdctrl->fifo[9] = fdctrl->precomp_trk;
1860 fdctrl_to_result_phase(fdctrl, 10);
1861 }
1862
1863 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1864 {
1865 /* Controller's version */
1866 fdctrl->fifo[0] = fdctrl->version;
1867 fdctrl_to_result_phase(fdctrl, 1);
1868 }
1869
1870 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1871 {
1872 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1873 fdctrl_to_result_phase(fdctrl, 1);
1874 }
1875
1876 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1877 {
1878 FDrive *cur_drv = get_cur_drv(fdctrl);
1879
1880 /* Drives position */
1881 drv0(fdctrl)->track = fdctrl->fifo[3];
1882 drv1(fdctrl)->track = fdctrl->fifo[4];
1883 #if MAX_FD == 4
1884 drv2(fdctrl)->track = fdctrl->fifo[5];
1885 drv3(fdctrl)->track = fdctrl->fifo[6];
1886 #endif
1887 /* timers */
1888 fdctrl->timer0 = fdctrl->fifo[7];
1889 fdctrl->timer1 = fdctrl->fifo[8];
1890 cur_drv->last_sect = fdctrl->fifo[9];
1891 fdctrl->lock = fdctrl->fifo[10] >> 7;
1892 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1893 fdctrl->config = fdctrl->fifo[11];
1894 fdctrl->precomp_trk = fdctrl->fifo[12];
1895 fdctrl->pwrd = fdctrl->fifo[13];
1896 fdctrl_to_command_phase(fdctrl);
1897 }
1898
1899 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1900 {
1901 FDrive *cur_drv = get_cur_drv(fdctrl);
1902
1903 fdctrl->fifo[0] = 0;
1904 fdctrl->fifo[1] = 0;
1905 /* Drives position */
1906 fdctrl->fifo[2] = drv0(fdctrl)->track;
1907 fdctrl->fifo[3] = drv1(fdctrl)->track;
1908 #if MAX_FD == 4
1909 fdctrl->fifo[4] = drv2(fdctrl)->track;
1910 fdctrl->fifo[5] = drv3(fdctrl)->track;
1911 #else
1912 fdctrl->fifo[4] = 0;
1913 fdctrl->fifo[5] = 0;
1914 #endif
1915 /* timers */
1916 fdctrl->fifo[6] = fdctrl->timer0;
1917 fdctrl->fifo[7] = fdctrl->timer1;
1918 fdctrl->fifo[8] = cur_drv->last_sect;
1919 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1920 (cur_drv->perpendicular << 2);
1921 fdctrl->fifo[10] = fdctrl->config;
1922 fdctrl->fifo[11] = fdctrl->precomp_trk;
1923 fdctrl->fifo[12] = fdctrl->pwrd;
1924 fdctrl->fifo[13] = 0;
1925 fdctrl->fifo[14] = 0;
1926 fdctrl_to_result_phase(fdctrl, 15);
1927 }
1928
1929 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1930 {
1931 FDrive *cur_drv = get_cur_drv(fdctrl);
1932
1933 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1934 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1935 (NANOSECONDS_PER_SECOND / 50));
1936 }
1937
1938 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1939 {
1940 FDrive *cur_drv;
1941
1942 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1943 cur_drv = get_cur_drv(fdctrl);
1944 fdctrl->data_state |= FD_STATE_FORMAT;
1945 if (fdctrl->fifo[0] & 0x80)
1946 fdctrl->data_state |= FD_STATE_MULTI;
1947 else
1948 fdctrl->data_state &= ~FD_STATE_MULTI;
1949 cur_drv->bps =
1950 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1951 #if 0
1952 cur_drv->last_sect =
1953 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1954 fdctrl->fifo[3] / 2;
1955 #else
1956 cur_drv->last_sect = fdctrl->fifo[3];
1957 #endif
1958 /* TODO: implement format using DMA expected by the Bochs BIOS
1959 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1960 * the sector with the specified fill byte
1961 */
1962 fdctrl->data_state &= ~FD_STATE_FORMAT;
1963 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1964 }
1965
1966 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1967 {
1968 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1969 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1970 if (fdctrl->fifo[2] & 1)
1971 fdctrl->dor &= ~FD_DOR_DMAEN;
1972 else
1973 fdctrl->dor |= FD_DOR_DMAEN;
1974 /* No result back */
1975 fdctrl_to_command_phase(fdctrl);
1976 }
1977
1978 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1979 {
1980 FDrive *cur_drv;
1981
1982 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1983 cur_drv = get_cur_drv(fdctrl);
1984 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1985 /* 1 Byte status back */
1986 fdctrl->fifo[0] = (cur_drv->ro << 6) |
1987 (cur_drv->track == 0 ? 0x10 : 0x00) |
1988 (cur_drv->head << 2) |
1989 GET_CUR_DRV(fdctrl) |
1990 0x28;
1991 fdctrl_to_result_phase(fdctrl, 1);
1992 }
1993
1994 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1995 {
1996 FDrive *cur_drv;
1997
1998 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1999 cur_drv = get_cur_drv(fdctrl);
2000 fd_recalibrate(cur_drv);
2001 fdctrl_to_command_phase(fdctrl);
2002 /* Raise Interrupt */
2003 fdctrl->status0 |= FD_SR0_SEEK;
2004 fdctrl_raise_irq(fdctrl);
2005 }
2006
2007 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2008 {
2009 FDrive *cur_drv = get_cur_drv(fdctrl);
2010
2011 if (fdctrl->reset_sensei > 0) {
2012 fdctrl->fifo[0] =
2013 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2014 fdctrl->reset_sensei--;
2015 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2016 fdctrl->fifo[0] = FD_SR0_INVCMD;
2017 fdctrl_to_result_phase(fdctrl, 1);
2018 return;
2019 } else {
2020 fdctrl->fifo[0] =
2021 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2022 | GET_CUR_DRV(fdctrl);
2023 }
2024
2025 fdctrl->fifo[1] = cur_drv->track;
2026 fdctrl_to_result_phase(fdctrl, 2);
2027 fdctrl_reset_irq(fdctrl);
2028 fdctrl->status0 = FD_SR0_RDYCHG;
2029 }
2030
2031 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2032 {
2033 FDrive *cur_drv;
2034
2035 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2036 cur_drv = get_cur_drv(fdctrl);
2037 fdctrl_to_command_phase(fdctrl);
2038 /* The seek command just sends step pulses to the drive and doesn't care if
2039 * there is a medium inserted of if it's banging the head against the drive.
2040 */
2041 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2042 /* Raise Interrupt */
2043 fdctrl->status0 |= FD_SR0_SEEK;
2044 fdctrl_raise_irq(fdctrl);
2045 }
2046
2047 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2048 {
2049 FDrive *cur_drv = get_cur_drv(fdctrl);
2050
2051 if (fdctrl->fifo[1] & 0x80)
2052 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2053 /* No result back */
2054 fdctrl_to_command_phase(fdctrl);
2055 }
2056
2057 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2058 {
2059 fdctrl->config = fdctrl->fifo[2];
2060 fdctrl->precomp_trk = fdctrl->fifo[3];
2061 /* No result back */
2062 fdctrl_to_command_phase(fdctrl);
2063 }
2064
2065 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2066 {
2067 fdctrl->pwrd = fdctrl->fifo[1];
2068 fdctrl->fifo[0] = fdctrl->fifo[1];
2069 fdctrl_to_result_phase(fdctrl, 1);
2070 }
2071
2072 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2073 {
2074 /* No result back */
2075 fdctrl_to_command_phase(fdctrl);
2076 }
2077
2078 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2079 {
2080 FDrive *cur_drv = get_cur_drv(fdctrl);
2081 uint32_t pos;
2082
2083 pos = fdctrl->data_pos - 1;
2084 pos %= FD_SECTOR_LEN;
2085 if (fdctrl->fifo[pos] & 0x80) {
2086 /* Command parameters done */
2087 if (fdctrl->fifo[pos] & 0x40) {
2088 fdctrl->fifo[0] = fdctrl->fifo[1];
2089 fdctrl->fifo[2] = 0;
2090 fdctrl->fifo[3] = 0;
2091 fdctrl_to_result_phase(fdctrl, 4);
2092 } else {
2093 fdctrl_to_command_phase(fdctrl);
2094 }
2095 } else if (fdctrl->data_len > 7) {
2096 /* ERROR */
2097 fdctrl->fifo[0] = 0x80 |
2098 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2099 fdctrl_to_result_phase(fdctrl, 1);
2100 }
2101 }
2102
2103 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2104 {
2105 FDrive *cur_drv;
2106
2107 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2108 cur_drv = get_cur_drv(fdctrl);
2109 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2110 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2111 cur_drv->sect, 1);
2112 } else {
2113 fd_seek(cur_drv, cur_drv->head,
2114 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2115 }
2116 fdctrl_to_command_phase(fdctrl);
2117 /* Raise Interrupt */
2118 fdctrl->status0 |= FD_SR0_SEEK;
2119 fdctrl_raise_irq(fdctrl);
2120 }
2121
2122 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2123 {
2124 FDrive *cur_drv;
2125
2126 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2127 cur_drv = get_cur_drv(fdctrl);
2128 if (fdctrl->fifo[2] > cur_drv->track) {
2129 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2130 } else {
2131 fd_seek(cur_drv, cur_drv->head,
2132 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2133 }
2134 fdctrl_to_command_phase(fdctrl);
2135 /* Raise Interrupt */
2136 fdctrl->status0 |= FD_SR0_SEEK;
2137 fdctrl_raise_irq(fdctrl);
2138 }
2139
2140 /*
2141 * Handlers for the execution phase of each command
2142 */
2143 typedef struct FDCtrlCommand {
2144 uint8_t value;
2145 uint8_t mask;
2146 const char* name;
2147 int parameters;
2148 void (*handler)(FDCtrl *fdctrl, int direction);
2149 int direction;
2150 } FDCtrlCommand;
2151
2152 static const FDCtrlCommand handlers[] = {
2153 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2154 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2155 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2156 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2157 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2158 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2159 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2160 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2161 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2162 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2163 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2164 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2165 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2166 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2167 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2168 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2169 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2170 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2171 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2172 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2173 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2174 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2175 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2176 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2177 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2178 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2179 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2180 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2181 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2182 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2183 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2184 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2185 };
2186 /* Associate command to an index in the 'handlers' array */
2187 static uint8_t command_to_handler[256];
2188
2189 static const FDCtrlCommand *get_command(uint8_t cmd)
2190 {
2191 int idx;
2192
2193 idx = command_to_handler[cmd];
2194 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2195 return &handlers[idx];
2196 }
2197
2198 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2199 {
2200 FDrive *cur_drv;
2201 const FDCtrlCommand *cmd;
2202 uint32_t pos;
2203
2204 /* Reset mode */
2205 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2206 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2207 return;
2208 }
2209 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2210 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2211 return;
2212 }
2213 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2214
2215 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2216
2217 /* If data_len spans multiple sectors, the current position in the FIFO
2218 * wraps around while fdctrl->data_pos is the real position in the whole
2219 * request. */
2220 pos = fdctrl->data_pos++;
2221 pos %= FD_SECTOR_LEN;
2222 fdctrl->fifo[pos] = value;
2223
2224 if (fdctrl->data_pos == fdctrl->data_len) {
2225 fdctrl->msr &= ~FD_MSR_RQM;
2226 }
2227
2228 switch (fdctrl->phase) {
2229 case FD_PHASE_EXECUTION:
2230 /* For DMA requests, RQM should be cleared during execution phase, so
2231 * we would have errored out above. */
2232 assert(fdctrl->msr & FD_MSR_NONDMA);
2233
2234 /* FIFO data write */
2235 if (pos == FD_SECTOR_LEN - 1 ||
2236 fdctrl->data_pos == fdctrl->data_len) {
2237 cur_drv = get_cur_drv(fdctrl);
2238 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2239 BDRV_SECTOR_SIZE, 0) < 0) {
2240 FLOPPY_DPRINTF("error writing sector %d\n",
2241 fd_sector(cur_drv));
2242 break;
2243 }
2244 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2245 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2246 fd_sector(cur_drv));
2247 break;
2248 }
2249 }
2250
2251 /* Switch to result phase when done with the transfer */
2252 if (fdctrl->data_pos == fdctrl->data_len) {
2253 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2254 }
2255 break;
2256
2257 case FD_PHASE_COMMAND:
2258 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2259 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2260
2261 if (pos == 0) {
2262 /* The first byte specifies the command. Now we start reading
2263 * as many parameters as this command requires. */
2264 cmd = get_command(value);
2265 fdctrl->data_len = cmd->parameters + 1;
2266 if (cmd->parameters) {
2267 fdctrl->msr |= FD_MSR_RQM;
2268 }
2269 fdctrl->msr |= FD_MSR_CMDBUSY;
2270 }
2271
2272 if (fdctrl->data_pos == fdctrl->data_len) {
2273 /* We have all parameters now, execute the command */
2274 fdctrl->phase = FD_PHASE_EXECUTION;
2275
2276 if (fdctrl->data_state & FD_STATE_FORMAT) {
2277 fdctrl_format_sector(fdctrl);
2278 break;
2279 }
2280
2281 cmd = get_command(fdctrl->fifo[0]);
2282 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2283 cmd->handler(fdctrl, cmd->direction);
2284 }
2285 break;
2286
2287 case FD_PHASE_RESULT:
2288 default:
2289 abort();
2290 }
2291 }
2292
2293 static void fdctrl_result_timer(void *opaque)
2294 {
2295 FDCtrl *fdctrl = opaque;
2296 FDrive *cur_drv = get_cur_drv(fdctrl);
2297
2298 /* Pretend we are spinning.
2299 * This is needed for Coherent, which uses READ ID to check for
2300 * sector interleaving.
2301 */
2302 if (cur_drv->last_sect != 0) {
2303 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2304 }
2305 /* READ_ID can't automatically succeed! */
2306 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2307 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2308 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2309 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2310 } else {
2311 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2312 }
2313 }
2314
2315 /* Init functions */
2316
2317 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2318 {
2319 DeviceState *dev;
2320 int i;
2321
2322 for (i = 0; i < MAX_FD; i++) {
2323 if (fds[i]) {
2324 dev = qdev_new("floppy");
2325 qdev_prop_set_uint32(dev, "unit", i);
2326 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2327 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2328 &error_fatal);
2329 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2330 }
2331 }
2332 }
2333
2334 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
2335 {
2336 int i, j;
2337 FDrive *drive;
2338 static int command_tables_inited = 0;
2339
2340 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2341 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2342 return;
2343 }
2344
2345 /* Fill 'command_to_handler' lookup table */
2346 if (!command_tables_inited) {
2347 command_tables_inited = 1;
2348 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2349 for (j = 0; j < sizeof(command_to_handler); j++) {
2350 if ((j & handlers[i].mask) == handlers[i].value) {
2351 command_to_handler[j] = i;
2352 }
2353 }
2354 }
2355 }
2356
2357 FLOPPY_DPRINTF("init controller\n");
2358 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2359 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2360 fdctrl->fifo_size = 512;
2361 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2362 fdctrl_result_timer, fdctrl);
2363
2364 fdctrl->version = 0x90; /* Intel 82078 controller */
2365 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2366 fdctrl->num_floppies = MAX_FD;
2367
2368 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2369
2370 for (i = 0; i < MAX_FD; i++) {
2371 drive = &fdctrl->drives[i];
2372 drive->fdctrl = fdctrl;
2373 fd_init(drive);
2374 fd_revalidate(drive);
2375 }
2376 }
2377
2378 static void fdc_register_types(void)
2379 {
2380 type_register_static(&floppy_bus_info);
2381 type_register_static(&floppy_drive_info);
2382 }
2383
2384 type_init(fdc_register_types)