]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/m25p80.c
Merge remote-tracking branch 'remotes/amarkovic/tags/mips-queue-feb-27-2019' into...
[mirror_qemu.git] / hw / block / m25p80.c
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
36 #endif
37
38 #define DB_PRINT_L(level, ...) do { \
39 if (M25P80_ERR_DEBUG > (level)) { \
40 fprintf(stderr, ": %s: ", __func__); \
41 fprintf(stderr, ## __VA_ARGS__); \
42 } \
43 } while (0)
44
45 /* Fields for FlashPartInfo->flags */
46
47 /* erase capabilities */
48 #define ER_4K 1
49 #define ER_32K 2
50 /* set to allow the page program command to write 0s back to 1. Useful for
51 * modelling EEPROM with SPI flash command set
52 */
53 #define EEPROM 0x100
54
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
57
58 #define SPI_NOR_MAX_ID_LEN 6
59
60 typedef struct FlashPartInfo {
61 const char *part_name;
62 /*
63 * This array stores the ID bytes.
64 * The first three bytes are the JEDIC ID.
65 * JEDEC ID zero means "no ID" (mostly older chips).
66 */
67 uint8_t id[SPI_NOR_MAX_ID_LEN];
68 uint8_t id_len;
69 /* there is confusion between manufacturers as to what a sector is. In this
70 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71 * command (opcode 0xd8).
72 */
73 uint32_t sector_size;
74 uint32_t n_sectors;
75 uint32_t page_size;
76 uint16_t flags;
77 /*
78 * Big sized spi nor are often stacked devices, thus sometime
79 * replace chip erase with die erase.
80 * This field inform how many die is in the chip.
81 */
82 uint8_t die_cnt;
83 } FlashPartInfo;
84
85 /* adapted from linux */
86 /* Used when the "_ext_id" is two bytes at most */
87 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
88 .part_name = _part_name,\
89 .id = {\
90 ((_jedec_id) >> 16) & 0xff,\
91 ((_jedec_id) >> 8) & 0xff,\
92 (_jedec_id) & 0xff,\
93 ((_ext_id) >> 8) & 0xff,\
94 (_ext_id) & 0xff,\
95 },\
96 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
97 .sector_size = (_sector_size),\
98 .n_sectors = (_n_sectors),\
99 .page_size = 256,\
100 .flags = (_flags),\
101 .die_cnt = 0
102
103 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
104 .part_name = _part_name,\
105 .id = {\
106 ((_jedec_id) >> 16) & 0xff,\
107 ((_jedec_id) >> 8) & 0xff,\
108 (_jedec_id) & 0xff,\
109 ((_ext_id) >> 16) & 0xff,\
110 ((_ext_id) >> 8) & 0xff,\
111 (_ext_id) & 0xff,\
112 },\
113 .id_len = 6,\
114 .sector_size = (_sector_size),\
115 .n_sectors = (_n_sectors),\
116 .page_size = 256,\
117 .flags = (_flags),\
118 .die_cnt = 0
119
120 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
121 _flags, _die_cnt)\
122 .part_name = _part_name,\
123 .id = {\
124 ((_jedec_id) >> 16) & 0xff,\
125 ((_jedec_id) >> 8) & 0xff,\
126 (_jedec_id) & 0xff,\
127 ((_ext_id) >> 8) & 0xff,\
128 (_ext_id) & 0xff,\
129 },\
130 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
131 .sector_size = (_sector_size),\
132 .n_sectors = (_n_sectors),\
133 .page_size = 256,\
134 .flags = (_flags),\
135 .die_cnt = _die_cnt
136
137 #define JEDEC_NUMONYX 0x20
138 #define JEDEC_WINBOND 0xEF
139 #define JEDEC_SPANSION 0x01
140
141 /* Numonyx (Micron) Configuration register macros */
142 #define VCFG_DUMMY 0x1
143 #define VCFG_WRAP_SEQUENTIAL 0x2
144 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
145 #define NVCFG_XIP_MODE_MASK (7 << 9)
146 #define VCFG_XIP_MODE_ENABLED (1 << 3)
147 #define CFG_DUMMY_CLK_LEN 4
148 #define NVCFG_DUMMY_CLK_POS 12
149 #define VCFG_DUMMY_CLK_POS 4
150 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
151 #define EVCFG_VPP_ACCELERATOR (1 << 3)
152 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
153 #define NVCFG_DUAL_IO_MASK (1 << 2)
154 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
155 #define NVCFG_QUAD_IO_MASK (1 << 3)
156 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
157 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
158 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
159
160 /* Numonyx (Micron) Flag Status Register macros */
161 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
162 #define FSR_FLASH_READY (1 << 7)
163
164 /* Spansion configuration registers macros. */
165 #define SPANSION_QUAD_CFG_POS 0
166 #define SPANSION_QUAD_CFG_LEN 1
167 #define SPANSION_DUMMY_CLK_POS 0
168 #define SPANSION_DUMMY_CLK_LEN 4
169 #define SPANSION_ADDR_LEN_POS 7
170 #define SPANSION_ADDR_LEN_LEN 1
171
172 /*
173 * Spansion read mode command length in bytes,
174 * the mode is currently not supported.
175 */
176
177 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
178 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
179
180 static const FlashPartInfo known_devices[] = {
181 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
182 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
183 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
184
185 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
186 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
187 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
188
189 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
190 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
191 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
192 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
193
194 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
195
196 /* Atmel EEPROMS - it is assumed, that don't care bit in command
197 * is set to 0. Block protection is not supported.
198 */
199 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
200 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
201
202 /* EON -- en25xxx */
203 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
204 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
205 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
206 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
207 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
208
209 /* GigaDevice */
210 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
211 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
212
213 /* Intel/Numonyx -- xxxs33b */
214 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
215 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
216 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
217 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
218
219 /* Macronix */
220 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
221 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
222 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
223 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
224 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
225 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
226 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
227 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
228 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
229 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
230 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
231 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
232 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
233
234 /* Micron */
235 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
236 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
237 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
238 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
239 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
240 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
241 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
242 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
243 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
244 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
245 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
246 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
247 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
248 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
249 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
250 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
251 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
252
253 /* Spansion -- single (large) sector size only, at least
254 * for the chips listed here (without boot sectors).
255 */
256 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
257 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
258 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
259 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
260 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
261 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
262 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
263 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
264 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
265 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
266 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
267 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
268 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
269 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
270 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
271 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
272 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
273
274 /* Spansion -- boot sectors support */
275 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
276 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
277
278 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
279 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
280 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
281 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
282 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
283 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
284 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
285 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
286 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
287 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
288
289 /* ST Microelectronics -- newer production may have feature updates */
290 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
291 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
292 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
293 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
294 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
295 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
296 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
297 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
298 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
299 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
300
301 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
302 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
303 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
304
305 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
306 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
307 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
308
309 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
310 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
311 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
312 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
313
314 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
315 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
316 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
317 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
318 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
319 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
320 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
321 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
322 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
323 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
324 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
325 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
326 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
327 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
328 };
329
330 typedef enum {
331 NOP = 0,
332 WRSR = 0x1,
333 WRDI = 0x4,
334 RDSR = 0x5,
335 WREN = 0x6,
336 BRRD = 0x16,
337 BRWR = 0x17,
338 JEDEC_READ = 0x9f,
339 BULK_ERASE_60 = 0x60,
340 BULK_ERASE = 0xc7,
341 READ_FSR = 0x70,
342 RDCR = 0x15,
343
344 READ = 0x03,
345 READ4 = 0x13,
346 FAST_READ = 0x0b,
347 FAST_READ4 = 0x0c,
348 DOR = 0x3b,
349 DOR4 = 0x3c,
350 QOR = 0x6b,
351 QOR4 = 0x6c,
352 DIOR = 0xbb,
353 DIOR4 = 0xbc,
354 QIOR = 0xeb,
355 QIOR4 = 0xec,
356
357 PP = 0x02,
358 PP4 = 0x12,
359 PP4_4 = 0x3e,
360 DPP = 0xa2,
361 QPP = 0x32,
362 QPP_4 = 0x34,
363 RDID_90 = 0x90,
364 RDID_AB = 0xab,
365
366 ERASE_4K = 0x20,
367 ERASE4_4K = 0x21,
368 ERASE_32K = 0x52,
369 ERASE4_32K = 0x5c,
370 ERASE_SECTOR = 0xd8,
371 ERASE4_SECTOR = 0xdc,
372
373 EN_4BYTE_ADDR = 0xB7,
374 EX_4BYTE_ADDR = 0xE9,
375
376 EXTEND_ADDR_READ = 0xC8,
377 EXTEND_ADDR_WRITE = 0xC5,
378
379 RESET_ENABLE = 0x66,
380 RESET_MEMORY = 0x99,
381
382 /*
383 * Micron: 0x35 - enable QPI
384 * Spansion: 0x35 - read control register
385 */
386 RDCR_EQIO = 0x35,
387 RSTQIO = 0xf5,
388
389 RNVCR = 0xB5,
390 WNVCR = 0xB1,
391
392 RVCR = 0x85,
393 WVCR = 0x81,
394
395 REVCR = 0x65,
396 WEVCR = 0x61,
397
398 DIE_ERASE = 0xC4,
399 } FlashCMD;
400
401 typedef enum {
402 STATE_IDLE,
403 STATE_PAGE_PROGRAM,
404 STATE_READ,
405 STATE_COLLECTING_DATA,
406 STATE_COLLECTING_VAR_LEN_DATA,
407 STATE_READING_DATA,
408 } CMDState;
409
410 typedef enum {
411 MAN_SPANSION,
412 MAN_MACRONIX,
413 MAN_NUMONYX,
414 MAN_WINBOND,
415 MAN_SST,
416 MAN_GENERIC,
417 } Manufacturer;
418
419 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
420
421 typedef struct Flash {
422 SSISlave parent_obj;
423
424 BlockBackend *blk;
425
426 uint8_t *storage;
427 uint32_t size;
428 int page_size;
429
430 uint8_t state;
431 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
432 uint32_t len;
433 uint32_t pos;
434 bool data_read_loop;
435 uint8_t needed_bytes;
436 uint8_t cmd_in_progress;
437 uint32_t cur_addr;
438 uint32_t nonvolatile_cfg;
439 /* Configuration register for Macronix */
440 uint32_t volatile_cfg;
441 uint32_t enh_volatile_cfg;
442 /* Spansion cfg registers. */
443 uint8_t spansion_cr1nv;
444 uint8_t spansion_cr2nv;
445 uint8_t spansion_cr3nv;
446 uint8_t spansion_cr4nv;
447 uint8_t spansion_cr1v;
448 uint8_t spansion_cr2v;
449 uint8_t spansion_cr3v;
450 uint8_t spansion_cr4v;
451 bool write_enable;
452 bool four_bytes_address_mode;
453 bool reset_enable;
454 bool quad_enable;
455 uint8_t ear;
456
457 int64_t dirty_page;
458
459 const FlashPartInfo *pi;
460
461 } Flash;
462
463 typedef struct M25P80Class {
464 SSISlaveClass parent_class;
465 FlashPartInfo *pi;
466 } M25P80Class;
467
468 #define TYPE_M25P80 "m25p80-generic"
469 #define M25P80(obj) \
470 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
471 #define M25P80_CLASS(klass) \
472 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
473 #define M25P80_GET_CLASS(obj) \
474 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
475
476 static inline Manufacturer get_man(Flash *s)
477 {
478 switch (s->pi->id[0]) {
479 case 0x20:
480 return MAN_NUMONYX;
481 case 0xEF:
482 return MAN_WINBOND;
483 case 0x01:
484 return MAN_SPANSION;
485 case 0xC2:
486 return MAN_MACRONIX;
487 case 0xBF:
488 return MAN_SST;
489 default:
490 return MAN_GENERIC;
491 }
492 }
493
494 static void blk_sync_complete(void *opaque, int ret)
495 {
496 QEMUIOVector *iov = opaque;
497
498 qemu_iovec_destroy(iov);
499 g_free(iov);
500
501 /* do nothing. Masters do not directly interact with the backing store,
502 * only the working copy so no mutexing required.
503 */
504 }
505
506 static void flash_sync_page(Flash *s, int page)
507 {
508 QEMUIOVector *iov;
509
510 if (!s->blk || blk_is_read_only(s->blk)) {
511 return;
512 }
513
514 iov = g_new(QEMUIOVector, 1);
515 qemu_iovec_init(iov, 1);
516 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
517 s->pi->page_size);
518 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
519 blk_sync_complete, iov);
520 }
521
522 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
523 {
524 QEMUIOVector *iov;
525
526 if (!s->blk || blk_is_read_only(s->blk)) {
527 return;
528 }
529
530 assert(!(len % BDRV_SECTOR_SIZE));
531 iov = g_new(QEMUIOVector, 1);
532 qemu_iovec_init(iov, 1);
533 qemu_iovec_add(iov, s->storage + off, len);
534 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
535 }
536
537 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
538 {
539 uint32_t len;
540 uint8_t capa_to_assert = 0;
541
542 switch (cmd) {
543 case ERASE_4K:
544 case ERASE4_4K:
545 len = 4 * KiB;
546 capa_to_assert = ER_4K;
547 break;
548 case ERASE_32K:
549 case ERASE4_32K:
550 len = 32 * KiB;
551 capa_to_assert = ER_32K;
552 break;
553 case ERASE_SECTOR:
554 case ERASE4_SECTOR:
555 len = s->pi->sector_size;
556 break;
557 case BULK_ERASE:
558 len = s->size;
559 break;
560 case DIE_ERASE:
561 if (s->pi->die_cnt) {
562 len = s->size / s->pi->die_cnt;
563 offset = offset & (~(len - 1));
564 } else {
565 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
566 " by device\n");
567 return;
568 }
569 break;
570 default:
571 abort();
572 }
573
574 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
575 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
576 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
577 " device\n", len);
578 }
579
580 if (!s->write_enable) {
581 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
582 return;
583 }
584 memset(s->storage + offset, 0xff, len);
585 flash_sync_area(s, offset, len);
586 }
587
588 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
589 {
590 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
591 flash_sync_page(s, s->dirty_page);
592 s->dirty_page = newpage;
593 }
594 }
595
596 static inline
597 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
598 {
599 uint32_t page = addr / s->pi->page_size;
600 uint8_t prev = s->storage[s->cur_addr];
601
602 if (!s->write_enable) {
603 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
604 }
605
606 if ((prev ^ data) & data) {
607 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
608 " -> %" PRIx8 "\n", addr, prev, data);
609 }
610
611 if (s->pi->flags & EEPROM) {
612 s->storage[s->cur_addr] = data;
613 } else {
614 s->storage[s->cur_addr] &= data;
615 }
616
617 flash_sync_dirty(s, page);
618 s->dirty_page = page;
619 }
620
621 static inline int get_addr_length(Flash *s)
622 {
623 /* check if eeprom is in use */
624 if (s->pi->flags == EEPROM) {
625 return 2;
626 }
627
628 switch (s->cmd_in_progress) {
629 case PP4:
630 case PP4_4:
631 case QPP_4:
632 case READ4:
633 case QIOR4:
634 case ERASE4_4K:
635 case ERASE4_32K:
636 case ERASE4_SECTOR:
637 case FAST_READ4:
638 case DOR4:
639 case QOR4:
640 case DIOR4:
641 return 4;
642 default:
643 return s->four_bytes_address_mode ? 4 : 3;
644 }
645 }
646
647 static void complete_collecting_data(Flash *s)
648 {
649 int i, n;
650
651 n = get_addr_length(s);
652 s->cur_addr = (n == 3 ? s->ear : 0);
653 for (i = 0; i < n; ++i) {
654 s->cur_addr <<= 8;
655 s->cur_addr |= s->data[i];
656 }
657
658 s->cur_addr &= s->size - 1;
659
660 s->state = STATE_IDLE;
661
662 switch (s->cmd_in_progress) {
663 case DPP:
664 case QPP:
665 case QPP_4:
666 case PP:
667 case PP4:
668 case PP4_4:
669 s->state = STATE_PAGE_PROGRAM;
670 break;
671 case READ:
672 case READ4:
673 case FAST_READ:
674 case FAST_READ4:
675 case DOR:
676 case DOR4:
677 case QOR:
678 case QOR4:
679 case DIOR:
680 case DIOR4:
681 case QIOR:
682 case QIOR4:
683 s->state = STATE_READ;
684 break;
685 case ERASE_4K:
686 case ERASE4_4K:
687 case ERASE_32K:
688 case ERASE4_32K:
689 case ERASE_SECTOR:
690 case ERASE4_SECTOR:
691 case DIE_ERASE:
692 flash_erase(s, s->cur_addr, s->cmd_in_progress);
693 break;
694 case WRSR:
695 switch (get_man(s)) {
696 case MAN_SPANSION:
697 s->quad_enable = !!(s->data[1] & 0x02);
698 break;
699 case MAN_MACRONIX:
700 s->quad_enable = extract32(s->data[0], 6, 1);
701 if (s->len > 1) {
702 s->volatile_cfg = s->data[1];
703 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
704 }
705 break;
706 default:
707 break;
708 }
709 if (s->write_enable) {
710 s->write_enable = false;
711 }
712 break;
713 case BRWR:
714 case EXTEND_ADDR_WRITE:
715 s->ear = s->data[0];
716 break;
717 case WNVCR:
718 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
719 break;
720 case WVCR:
721 s->volatile_cfg = s->data[0];
722 break;
723 case WEVCR:
724 s->enh_volatile_cfg = s->data[0];
725 break;
726 case RDID_90:
727 case RDID_AB:
728 if (get_man(s) == MAN_SST) {
729 if (s->cur_addr <= 1) {
730 if (s->cur_addr) {
731 s->data[0] = s->pi->id[2];
732 s->data[1] = s->pi->id[0];
733 } else {
734 s->data[0] = s->pi->id[0];
735 s->data[1] = s->pi->id[2];
736 }
737 s->pos = 0;
738 s->len = 2;
739 s->data_read_loop = true;
740 s->state = STATE_READING_DATA;
741 } else {
742 qemu_log_mask(LOG_GUEST_ERROR,
743 "M25P80: Invalid read id address\n");
744 }
745 } else {
746 qemu_log_mask(LOG_GUEST_ERROR,
747 "M25P80: Read id (command 0x90/0xAB) is not supported"
748 " by device\n");
749 }
750 break;
751 default:
752 break;
753 }
754 }
755
756 static void reset_memory(Flash *s)
757 {
758 s->cmd_in_progress = NOP;
759 s->cur_addr = 0;
760 s->ear = 0;
761 s->four_bytes_address_mode = false;
762 s->len = 0;
763 s->needed_bytes = 0;
764 s->pos = 0;
765 s->state = STATE_IDLE;
766 s->write_enable = false;
767 s->reset_enable = false;
768 s->quad_enable = false;
769
770 switch (get_man(s)) {
771 case MAN_NUMONYX:
772 s->volatile_cfg = 0;
773 s->volatile_cfg |= VCFG_DUMMY;
774 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
775 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
776 != NVCFG_XIP_MODE_DISABLED) {
777 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
778 }
779 s->volatile_cfg |= deposit32(s->volatile_cfg,
780 VCFG_DUMMY_CLK_POS,
781 CFG_DUMMY_CLK_LEN,
782 extract32(s->nonvolatile_cfg,
783 NVCFG_DUMMY_CLK_POS,
784 CFG_DUMMY_CLK_LEN)
785 );
786
787 s->enh_volatile_cfg = 0;
788 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
789 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
790 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
791 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
792 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
793 }
794 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
795 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
796 }
797 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
798 s->four_bytes_address_mode = true;
799 }
800 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
801 s->ear = s->size / MAX_3BYTES_SIZE - 1;
802 }
803 break;
804 case MAN_MACRONIX:
805 s->volatile_cfg = 0x7;
806 break;
807 case MAN_SPANSION:
808 s->spansion_cr1v = s->spansion_cr1nv;
809 s->spansion_cr2v = s->spansion_cr2nv;
810 s->spansion_cr3v = s->spansion_cr3nv;
811 s->spansion_cr4v = s->spansion_cr4nv;
812 s->quad_enable = extract32(s->spansion_cr1v,
813 SPANSION_QUAD_CFG_POS,
814 SPANSION_QUAD_CFG_LEN
815 );
816 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
817 SPANSION_ADDR_LEN_POS,
818 SPANSION_ADDR_LEN_LEN
819 );
820 break;
821 default:
822 break;
823 }
824
825 DB_PRINT_L(0, "Reset done.\n");
826 }
827
828 static void decode_fast_read_cmd(Flash *s)
829 {
830 s->needed_bytes = get_addr_length(s);
831 switch (get_man(s)) {
832 /* Dummy cycles - modeled with bytes writes instead of bits */
833 case MAN_WINBOND:
834 s->needed_bytes += 8;
835 break;
836 case MAN_NUMONYX:
837 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
838 break;
839 case MAN_MACRONIX:
840 if (extract32(s->volatile_cfg, 6, 2) == 1) {
841 s->needed_bytes += 6;
842 } else {
843 s->needed_bytes += 8;
844 }
845 break;
846 case MAN_SPANSION:
847 s->needed_bytes += extract32(s->spansion_cr2v,
848 SPANSION_DUMMY_CLK_POS,
849 SPANSION_DUMMY_CLK_LEN
850 );
851 break;
852 default:
853 break;
854 }
855 s->pos = 0;
856 s->len = 0;
857 s->state = STATE_COLLECTING_DATA;
858 }
859
860 static void decode_dio_read_cmd(Flash *s)
861 {
862 s->needed_bytes = get_addr_length(s);
863 /* Dummy cycles modeled with bytes writes instead of bits */
864 switch (get_man(s)) {
865 case MAN_WINBOND:
866 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
867 break;
868 case MAN_SPANSION:
869 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
870 s->needed_bytes += extract32(s->spansion_cr2v,
871 SPANSION_DUMMY_CLK_POS,
872 SPANSION_DUMMY_CLK_LEN
873 );
874 break;
875 case MAN_NUMONYX:
876 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
877 break;
878 case MAN_MACRONIX:
879 switch (extract32(s->volatile_cfg, 6, 2)) {
880 case 1:
881 s->needed_bytes += 6;
882 break;
883 case 2:
884 s->needed_bytes += 8;
885 break;
886 default:
887 s->needed_bytes += 4;
888 break;
889 }
890 break;
891 default:
892 break;
893 }
894 s->pos = 0;
895 s->len = 0;
896 s->state = STATE_COLLECTING_DATA;
897 }
898
899 static void decode_qio_read_cmd(Flash *s)
900 {
901 s->needed_bytes = get_addr_length(s);
902 /* Dummy cycles modeled with bytes writes instead of bits */
903 switch (get_man(s)) {
904 case MAN_WINBOND:
905 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
906 s->needed_bytes += 4;
907 break;
908 case MAN_SPANSION:
909 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
910 s->needed_bytes += extract32(s->spansion_cr2v,
911 SPANSION_DUMMY_CLK_POS,
912 SPANSION_DUMMY_CLK_LEN
913 );
914 break;
915 case MAN_NUMONYX:
916 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
917 break;
918 case MAN_MACRONIX:
919 switch (extract32(s->volatile_cfg, 6, 2)) {
920 case 1:
921 s->needed_bytes += 4;
922 break;
923 case 2:
924 s->needed_bytes += 8;
925 break;
926 default:
927 s->needed_bytes += 6;
928 break;
929 }
930 break;
931 default:
932 break;
933 }
934 s->pos = 0;
935 s->len = 0;
936 s->state = STATE_COLLECTING_DATA;
937 }
938
939 static void decode_new_cmd(Flash *s, uint32_t value)
940 {
941 s->cmd_in_progress = value;
942 int i;
943 DB_PRINT_L(0, "decoded new command:%x\n", value);
944
945 if (value != RESET_MEMORY) {
946 s->reset_enable = false;
947 }
948
949 switch (value) {
950
951 case ERASE_4K:
952 case ERASE4_4K:
953 case ERASE_32K:
954 case ERASE4_32K:
955 case ERASE_SECTOR:
956 case ERASE4_SECTOR:
957 case READ:
958 case READ4:
959 case DPP:
960 case QPP:
961 case QPP_4:
962 case PP:
963 case PP4:
964 case PP4_4:
965 case DIE_ERASE:
966 case RDID_90:
967 case RDID_AB:
968 s->needed_bytes = get_addr_length(s);
969 s->pos = 0;
970 s->len = 0;
971 s->state = STATE_COLLECTING_DATA;
972 break;
973
974 case FAST_READ:
975 case FAST_READ4:
976 case DOR:
977 case DOR4:
978 case QOR:
979 case QOR4:
980 decode_fast_read_cmd(s);
981 break;
982
983 case DIOR:
984 case DIOR4:
985 decode_dio_read_cmd(s);
986 break;
987
988 case QIOR:
989 case QIOR4:
990 decode_qio_read_cmd(s);
991 break;
992
993 case WRSR:
994 if (s->write_enable) {
995 switch (get_man(s)) {
996 case MAN_SPANSION:
997 s->needed_bytes = 2;
998 s->state = STATE_COLLECTING_DATA;
999 break;
1000 case MAN_MACRONIX:
1001 s->needed_bytes = 2;
1002 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1003 break;
1004 default:
1005 s->needed_bytes = 1;
1006 s->state = STATE_COLLECTING_DATA;
1007 }
1008 s->pos = 0;
1009 }
1010 break;
1011
1012 case WRDI:
1013 s->write_enable = false;
1014 break;
1015 case WREN:
1016 s->write_enable = true;
1017 break;
1018
1019 case RDSR:
1020 s->data[0] = (!!s->write_enable) << 1;
1021 if (get_man(s) == MAN_MACRONIX) {
1022 s->data[0] |= (!!s->quad_enable) << 6;
1023 }
1024 s->pos = 0;
1025 s->len = 1;
1026 s->data_read_loop = true;
1027 s->state = STATE_READING_DATA;
1028 break;
1029
1030 case READ_FSR:
1031 s->data[0] = FSR_FLASH_READY;
1032 if (s->four_bytes_address_mode) {
1033 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1034 }
1035 s->pos = 0;
1036 s->len = 1;
1037 s->data_read_loop = true;
1038 s->state = STATE_READING_DATA;
1039 break;
1040
1041 case JEDEC_READ:
1042 DB_PRINT_L(0, "populated jedec code\n");
1043 for (i = 0; i < s->pi->id_len; i++) {
1044 s->data[i] = s->pi->id[i];
1045 }
1046
1047 s->len = s->pi->id_len;
1048 s->pos = 0;
1049 s->state = STATE_READING_DATA;
1050 break;
1051
1052 case RDCR:
1053 s->data[0] = s->volatile_cfg & 0xFF;
1054 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1055 s->pos = 0;
1056 s->len = 1;
1057 s->state = STATE_READING_DATA;
1058 break;
1059
1060 case BULK_ERASE_60:
1061 case BULK_ERASE:
1062 if (s->write_enable) {
1063 DB_PRINT_L(0, "chip erase\n");
1064 flash_erase(s, 0, BULK_ERASE);
1065 } else {
1066 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1067 "protect!\n");
1068 }
1069 break;
1070 case NOP:
1071 break;
1072 case EN_4BYTE_ADDR:
1073 s->four_bytes_address_mode = true;
1074 break;
1075 case EX_4BYTE_ADDR:
1076 s->four_bytes_address_mode = false;
1077 break;
1078 case BRRD:
1079 case EXTEND_ADDR_READ:
1080 s->data[0] = s->ear;
1081 s->pos = 0;
1082 s->len = 1;
1083 s->state = STATE_READING_DATA;
1084 break;
1085 case BRWR:
1086 case EXTEND_ADDR_WRITE:
1087 if (s->write_enable) {
1088 s->needed_bytes = 1;
1089 s->pos = 0;
1090 s->len = 0;
1091 s->state = STATE_COLLECTING_DATA;
1092 }
1093 break;
1094 case RNVCR:
1095 s->data[0] = s->nonvolatile_cfg & 0xFF;
1096 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1097 s->pos = 0;
1098 s->len = 2;
1099 s->state = STATE_READING_DATA;
1100 break;
1101 case WNVCR:
1102 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1103 s->needed_bytes = 2;
1104 s->pos = 0;
1105 s->len = 0;
1106 s->state = STATE_COLLECTING_DATA;
1107 }
1108 break;
1109 case RVCR:
1110 s->data[0] = s->volatile_cfg & 0xFF;
1111 s->pos = 0;
1112 s->len = 1;
1113 s->state = STATE_READING_DATA;
1114 break;
1115 case WVCR:
1116 if (s->write_enable) {
1117 s->needed_bytes = 1;
1118 s->pos = 0;
1119 s->len = 0;
1120 s->state = STATE_COLLECTING_DATA;
1121 }
1122 break;
1123 case REVCR:
1124 s->data[0] = s->enh_volatile_cfg & 0xFF;
1125 s->pos = 0;
1126 s->len = 1;
1127 s->state = STATE_READING_DATA;
1128 break;
1129 case WEVCR:
1130 if (s->write_enable) {
1131 s->needed_bytes = 1;
1132 s->pos = 0;
1133 s->len = 0;
1134 s->state = STATE_COLLECTING_DATA;
1135 }
1136 break;
1137 case RESET_ENABLE:
1138 s->reset_enable = true;
1139 break;
1140 case RESET_MEMORY:
1141 if (s->reset_enable) {
1142 reset_memory(s);
1143 }
1144 break;
1145 case RDCR_EQIO:
1146 switch (get_man(s)) {
1147 case MAN_SPANSION:
1148 s->data[0] = (!!s->quad_enable) << 1;
1149 s->pos = 0;
1150 s->len = 1;
1151 s->state = STATE_READING_DATA;
1152 break;
1153 case MAN_MACRONIX:
1154 s->quad_enable = true;
1155 break;
1156 default:
1157 break;
1158 }
1159 break;
1160 case RSTQIO:
1161 s->quad_enable = false;
1162 break;
1163 default:
1164 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1165 break;
1166 }
1167 }
1168
1169 static int m25p80_cs(SSISlave *ss, bool select)
1170 {
1171 Flash *s = M25P80(ss);
1172
1173 if (select) {
1174 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1175 complete_collecting_data(s);
1176 }
1177 s->len = 0;
1178 s->pos = 0;
1179 s->state = STATE_IDLE;
1180 flash_sync_dirty(s, -1);
1181 s->data_read_loop = false;
1182 }
1183
1184 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1185
1186 return 0;
1187 }
1188
1189 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1190 {
1191 Flash *s = M25P80(ss);
1192 uint32_t r = 0;
1193
1194 switch (s->state) {
1195
1196 case STATE_PAGE_PROGRAM:
1197 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1198 s->cur_addr, (uint8_t)tx);
1199 flash_write8(s, s->cur_addr, (uint8_t)tx);
1200 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1201 break;
1202
1203 case STATE_READ:
1204 r = s->storage[s->cur_addr];
1205 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1206 (uint8_t)r);
1207 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1208 break;
1209
1210 case STATE_COLLECTING_DATA:
1211 case STATE_COLLECTING_VAR_LEN_DATA:
1212
1213 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1214 qemu_log_mask(LOG_GUEST_ERROR,
1215 "M25P80: Write overrun internal data buffer. "
1216 "SPI controller (QEMU emulator or guest driver) "
1217 "is misbehaving\n");
1218 s->len = s->pos = 0;
1219 s->state = STATE_IDLE;
1220 break;
1221 }
1222
1223 s->data[s->len] = (uint8_t)tx;
1224 s->len++;
1225
1226 if (s->len == s->needed_bytes) {
1227 complete_collecting_data(s);
1228 }
1229 break;
1230
1231 case STATE_READING_DATA:
1232
1233 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1234 qemu_log_mask(LOG_GUEST_ERROR,
1235 "M25P80: Read overrun internal data buffer. "
1236 "SPI controller (QEMU emulator or guest driver) "
1237 "is misbehaving\n");
1238 s->len = s->pos = 0;
1239 s->state = STATE_IDLE;
1240 break;
1241 }
1242
1243 r = s->data[s->pos];
1244 s->pos++;
1245 if (s->pos == s->len) {
1246 s->pos = 0;
1247 if (!s->data_read_loop) {
1248 s->state = STATE_IDLE;
1249 }
1250 }
1251 break;
1252
1253 default:
1254 case STATE_IDLE:
1255 decode_new_cmd(s, (uint8_t)tx);
1256 break;
1257 }
1258
1259 return r;
1260 }
1261
1262 static void m25p80_realize(SSISlave *ss, Error **errp)
1263 {
1264 Flash *s = M25P80(ss);
1265 M25P80Class *mc = M25P80_GET_CLASS(s);
1266 int ret;
1267
1268 s->pi = mc->pi;
1269
1270 s->size = s->pi->sector_size * s->pi->n_sectors;
1271 s->dirty_page = -1;
1272
1273 if (s->blk) {
1274 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1275 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1276 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1277 if (ret < 0) {
1278 return;
1279 }
1280
1281 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1282 s->storage = blk_blockalign(s->blk, s->size);
1283
1284 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1285 error_setg(errp, "failed to read the initial flash content");
1286 return;
1287 }
1288 } else {
1289 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1290 s->storage = blk_blockalign(NULL, s->size);
1291 memset(s->storage, 0xFF, s->size);
1292 }
1293 }
1294
1295 static void m25p80_reset(DeviceState *d)
1296 {
1297 Flash *s = M25P80(d);
1298
1299 reset_memory(s);
1300 }
1301
1302 static int m25p80_pre_save(void *opaque)
1303 {
1304 flash_sync_dirty((Flash *)opaque, -1);
1305
1306 return 0;
1307 }
1308
1309 static Property m25p80_properties[] = {
1310 /* This is default value for Micron flash */
1311 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1312 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1313 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1314 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1315 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1316 DEFINE_PROP_DRIVE("drive", Flash, blk),
1317 DEFINE_PROP_END_OF_LIST(),
1318 };
1319
1320 static int m25p80_pre_load(void *opaque)
1321 {
1322 Flash *s = (Flash *)opaque;
1323
1324 s->data_read_loop = false;
1325 return 0;
1326 }
1327
1328 static bool m25p80_data_read_loop_needed(void *opaque)
1329 {
1330 Flash *s = (Flash *)opaque;
1331
1332 return s->data_read_loop;
1333 }
1334
1335 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1336 .name = "m25p80/data_read_loop",
1337 .version_id = 1,
1338 .minimum_version_id = 1,
1339 .needed = m25p80_data_read_loop_needed,
1340 .fields = (VMStateField[]) {
1341 VMSTATE_BOOL(data_read_loop, Flash),
1342 VMSTATE_END_OF_LIST()
1343 }
1344 };
1345
1346 static const VMStateDescription vmstate_m25p80 = {
1347 .name = "m25p80",
1348 .version_id = 0,
1349 .minimum_version_id = 0,
1350 .pre_save = m25p80_pre_save,
1351 .pre_load = m25p80_pre_load,
1352 .fields = (VMStateField[]) {
1353 VMSTATE_UINT8(state, Flash),
1354 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1355 VMSTATE_UINT32(len, Flash),
1356 VMSTATE_UINT32(pos, Flash),
1357 VMSTATE_UINT8(needed_bytes, Flash),
1358 VMSTATE_UINT8(cmd_in_progress, Flash),
1359 VMSTATE_UINT32(cur_addr, Flash),
1360 VMSTATE_BOOL(write_enable, Flash),
1361 VMSTATE_BOOL(reset_enable, Flash),
1362 VMSTATE_UINT8(ear, Flash),
1363 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1364 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1365 VMSTATE_UINT32(volatile_cfg, Flash),
1366 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1367 VMSTATE_BOOL(quad_enable, Flash),
1368 VMSTATE_UINT8(spansion_cr1nv, Flash),
1369 VMSTATE_UINT8(spansion_cr2nv, Flash),
1370 VMSTATE_UINT8(spansion_cr3nv, Flash),
1371 VMSTATE_UINT8(spansion_cr4nv, Flash),
1372 VMSTATE_END_OF_LIST()
1373 },
1374 .subsections = (const VMStateDescription * []) {
1375 &vmstate_m25p80_data_read_loop,
1376 NULL
1377 }
1378 };
1379
1380 static void m25p80_class_init(ObjectClass *klass, void *data)
1381 {
1382 DeviceClass *dc = DEVICE_CLASS(klass);
1383 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1384 M25P80Class *mc = M25P80_CLASS(klass);
1385
1386 k->realize = m25p80_realize;
1387 k->transfer = m25p80_transfer8;
1388 k->set_cs = m25p80_cs;
1389 k->cs_polarity = SSI_CS_LOW;
1390 dc->vmsd = &vmstate_m25p80;
1391 dc->props = m25p80_properties;
1392 dc->reset = m25p80_reset;
1393 mc->pi = data;
1394 }
1395
1396 static const TypeInfo m25p80_info = {
1397 .name = TYPE_M25P80,
1398 .parent = TYPE_SSI_SLAVE,
1399 .instance_size = sizeof(Flash),
1400 .class_size = sizeof(M25P80Class),
1401 .abstract = true,
1402 };
1403
1404 static void m25p80_register_types(void)
1405 {
1406 int i;
1407
1408 type_register_static(&m25p80_info);
1409 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1410 TypeInfo ti = {
1411 .name = known_devices[i].part_name,
1412 .parent = TYPE_M25P80,
1413 .class_init = m25p80_class_init,
1414 .class_data = (void *)&known_devices[i],
1415 };
1416 type_register(&ti);
1417 }
1418 }
1419
1420 type_init(m25p80_register_types)