]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nand.c
Merge remote-tracking branch 'remotes/huth-gitlab/tags/pull-request-2020-12-21' into...
[mirror_qemu.git] / hw / block / nand.c
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
12 *
13 * This code is licensed under the GNU GPL v2.
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
17 */
18
19 #ifndef NAND_IO
20
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/block/flash.h"
25 #include "sysemu/block-backend.h"
26 #include "migration/vmstate.h"
27 #include "qapi/error.h"
28 #include "qemu/error-report.h"
29 #include "qemu/module.h"
30 #include "qom/object.h"
31
32 # define NAND_CMD_READ0 0x00
33 # define NAND_CMD_READ1 0x01
34 # define NAND_CMD_READ2 0x50
35 # define NAND_CMD_LPREAD2 0x30
36 # define NAND_CMD_NOSERIALREAD2 0x35
37 # define NAND_CMD_RANDOMREAD1 0x05
38 # define NAND_CMD_RANDOMREAD2 0xe0
39 # define NAND_CMD_READID 0x90
40 # define NAND_CMD_RESET 0xff
41 # define NAND_CMD_PAGEPROGRAM1 0x80
42 # define NAND_CMD_PAGEPROGRAM2 0x10
43 # define NAND_CMD_CACHEPROGRAM2 0x15
44 # define NAND_CMD_BLOCKERASE1 0x60
45 # define NAND_CMD_BLOCKERASE2 0xd0
46 # define NAND_CMD_READSTATUS 0x70
47 # define NAND_CMD_COPYBACKPRG1 0x85
48
49 # define NAND_IOSTATUS_ERROR (1 << 0)
50 # define NAND_IOSTATUS_PLANE0 (1 << 1)
51 # define NAND_IOSTATUS_PLANE1 (1 << 2)
52 # define NAND_IOSTATUS_PLANE2 (1 << 3)
53 # define NAND_IOSTATUS_PLANE3 (1 << 4)
54 # define NAND_IOSTATUS_READY (1 << 6)
55 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
56
57 # define MAX_PAGE 0x800
58 # define MAX_OOB 0x40
59
60 typedef struct NANDFlashState NANDFlashState;
61 struct NANDFlashState {
62 DeviceState parent_obj;
63
64 uint8_t manf_id, chip_id;
65 uint8_t buswidth; /* in BYTES */
66 int size, pages;
67 int page_shift, oob_shift, erase_shift, addr_shift;
68 uint8_t *storage;
69 BlockBackend *blk;
70 int mem_oob;
71
72 uint8_t cle, ale, ce, wp, gnd;
73
74 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
75 uint8_t *ioaddr;
76 int iolen;
77
78 uint32_t cmd;
79 uint64_t addr;
80 int addrlen;
81 int status;
82 int offset;
83
84 void (*blk_write)(NANDFlashState *s);
85 void (*blk_erase)(NANDFlashState *s);
86 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
87
88 uint32_t ioaddr_vmstate;
89 };
90
91 #define TYPE_NAND "nand"
92
93 OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND)
94
95 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
96 {
97 /* Like memcpy() but we logical-AND the data into the destination */
98 int i;
99 for (i = 0; i < n; i++) {
100 dest[i] &= src[i];
101 }
102 }
103
104 # define NAND_NO_AUTOINCR 0x00000001
105 # define NAND_BUSWIDTH_16 0x00000002
106 # define NAND_NO_PADDING 0x00000004
107 # define NAND_CACHEPRG 0x00000008
108 # define NAND_COPYBACK 0x00000010
109 # define NAND_IS_AND 0x00000020
110 # define NAND_4PAGE_ARRAY 0x00000040
111 # define NAND_NO_READRDY 0x00000100
112 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
113
114 # define NAND_IO
115
116 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
117 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
118 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
119 # define OOB_SHIFT (PAGE_SHIFT - 5)
120 # define OOB_SIZE (1 << OOB_SHIFT)
121 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
122 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
123
124 # define PAGE_SIZE 256
125 # define PAGE_SHIFT 8
126 # define PAGE_SECTORS 1
127 # define ADDR_SHIFT 8
128 # include "nand.c"
129 # define PAGE_SIZE 512
130 # define PAGE_SHIFT 9
131 # define PAGE_SECTORS 1
132 # define ADDR_SHIFT 8
133 # include "nand.c"
134 # define PAGE_SIZE 2048
135 # define PAGE_SHIFT 11
136 # define PAGE_SECTORS 4
137 # define ADDR_SHIFT 16
138 # include "nand.c"
139
140 /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */
141 static const struct {
142 int size;
143 int width;
144 int page_shift;
145 int erase_shift;
146 uint32_t options;
147 } nand_flash_ids[0x100] = {
148 [0 ... 0xff] = { 0 },
149
150 [0x6b] = { 4, 8, 9, 4, 0 },
151 [0xe3] = { 4, 8, 9, 4, 0 },
152 [0xe5] = { 4, 8, 9, 4, 0 },
153 [0xd6] = { 8, 8, 9, 4, 0 },
154 [0xe6] = { 8, 8, 9, 4, 0 },
155
156 [0x33] = { 16, 8, 9, 5, 0 },
157 [0x73] = { 16, 8, 9, 5, 0 },
158 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
159 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
160
161 [0x35] = { 32, 8, 9, 5, 0 },
162 [0x75] = { 32, 8, 9, 5, 0 },
163 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
164 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
165
166 [0x36] = { 64, 8, 9, 5, 0 },
167 [0x76] = { 64, 8, 9, 5, 0 },
168 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
170
171 [0x78] = { 128, 8, 9, 5, 0 },
172 [0x39] = { 128, 8, 9, 5, 0 },
173 [0x79] = { 128, 8, 9, 5, 0 },
174 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
176 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
178
179 [0x71] = { 256, 8, 9, 5, 0 },
180
181 /*
182 * These are the new chips with large page size. The pagesize and the
183 * erasesize is determined from the extended id bytes
184 */
185 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
186 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
187
188 /* 512 Megabit */
189 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
190 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
191 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
192 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
193
194 /* 1 Gigabit */
195 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
196 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
197 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
198 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
199
200 /* 2 Gigabit */
201 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
202 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
203 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
204 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
205
206 /* 4 Gigabit */
207 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
208 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
209 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
210 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
211
212 /* 8 Gigabit */
213 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
214 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
215 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
216 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
217
218 /* 16 Gigabit */
219 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
220 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
221 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
222 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
223 };
224
225 static void nand_reset(DeviceState *dev)
226 {
227 NANDFlashState *s = NAND(dev);
228 s->cmd = NAND_CMD_READ0;
229 s->addr = 0;
230 s->addrlen = 0;
231 s->iolen = 0;
232 s->offset = 0;
233 s->status &= NAND_IOSTATUS_UNPROTCT;
234 s->status |= NAND_IOSTATUS_READY;
235 }
236
237 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
238 {
239 s->ioaddr[s->iolen++] = value;
240 for (value = s->buswidth; --value;) {
241 s->ioaddr[s->iolen++] = 0;
242 }
243 }
244
245 static void nand_command(NANDFlashState *s)
246 {
247 unsigned int offset;
248 switch (s->cmd) {
249 case NAND_CMD_READ0:
250 s->iolen = 0;
251 break;
252
253 case NAND_CMD_READID:
254 s->ioaddr = s->io;
255 s->iolen = 0;
256 nand_pushio_byte(s, s->manf_id);
257 nand_pushio_byte(s, s->chip_id);
258 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
259 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
260 /* Page Size, Block Size, Spare Size; bit 6 indicates
261 * 8 vs 16 bit width NAND.
262 */
263 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
264 } else {
265 nand_pushio_byte(s, 0xc0); /* Multi-plane */
266 }
267 break;
268
269 case NAND_CMD_RANDOMREAD2:
270 case NAND_CMD_NOSERIALREAD2:
271 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
272 break;
273 offset = s->addr & ((1 << s->addr_shift) - 1);
274 s->blk_load(s, s->addr, offset);
275 if (s->gnd)
276 s->iolen = (1 << s->page_shift) - offset;
277 else
278 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
279 break;
280
281 case NAND_CMD_RESET:
282 nand_reset(DEVICE(s));
283 break;
284
285 case NAND_CMD_PAGEPROGRAM1:
286 s->ioaddr = s->io;
287 s->iolen = 0;
288 break;
289
290 case NAND_CMD_PAGEPROGRAM2:
291 if (s->wp) {
292 s->blk_write(s);
293 }
294 break;
295
296 case NAND_CMD_BLOCKERASE1:
297 break;
298
299 case NAND_CMD_BLOCKERASE2:
300 s->addr &= (1ull << s->addrlen * 8) - 1;
301 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
302 16 : 8;
303
304 if (s->wp) {
305 s->blk_erase(s);
306 }
307 break;
308
309 case NAND_CMD_READSTATUS:
310 s->ioaddr = s->io;
311 s->iolen = 0;
312 nand_pushio_byte(s, s->status);
313 break;
314
315 default:
316 printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
317 }
318 }
319
320 static int nand_pre_save(void *opaque)
321 {
322 NANDFlashState *s = NAND(opaque);
323
324 s->ioaddr_vmstate = s->ioaddr - s->io;
325
326 return 0;
327 }
328
329 static int nand_post_load(void *opaque, int version_id)
330 {
331 NANDFlashState *s = NAND(opaque);
332
333 if (s->ioaddr_vmstate > sizeof(s->io)) {
334 return -EINVAL;
335 }
336 s->ioaddr = s->io + s->ioaddr_vmstate;
337
338 return 0;
339 }
340
341 static const VMStateDescription vmstate_nand = {
342 .name = "nand",
343 .version_id = 1,
344 .minimum_version_id = 1,
345 .pre_save = nand_pre_save,
346 .post_load = nand_post_load,
347 .fields = (VMStateField[]) {
348 VMSTATE_UINT8(cle, NANDFlashState),
349 VMSTATE_UINT8(ale, NANDFlashState),
350 VMSTATE_UINT8(ce, NANDFlashState),
351 VMSTATE_UINT8(wp, NANDFlashState),
352 VMSTATE_UINT8(gnd, NANDFlashState),
353 VMSTATE_BUFFER(io, NANDFlashState),
354 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
355 VMSTATE_INT32(iolen, NANDFlashState),
356 VMSTATE_UINT32(cmd, NANDFlashState),
357 VMSTATE_UINT64(addr, NANDFlashState),
358 VMSTATE_INT32(addrlen, NANDFlashState),
359 VMSTATE_INT32(status, NANDFlashState),
360 VMSTATE_INT32(offset, NANDFlashState),
361 /* XXX: do we want to save s->storage too? */
362 VMSTATE_END_OF_LIST()
363 }
364 };
365
366 static void nand_realize(DeviceState *dev, Error **errp)
367 {
368 int pagesize;
369 NANDFlashState *s = NAND(dev);
370 int ret;
371
372
373 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
374 s->size = nand_flash_ids[s->chip_id].size << 20;
375 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
376 s->page_shift = 11;
377 s->erase_shift = 6;
378 } else {
379 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
380 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
381 }
382
383 switch (1 << s->page_shift) {
384 case 256:
385 nand_init_256(s);
386 break;
387 case 512:
388 nand_init_512(s);
389 break;
390 case 2048:
391 nand_init_2048(s);
392 break;
393 default:
394 error_setg(errp, "Unsupported NAND block size %#x",
395 1 << s->page_shift);
396 return;
397 }
398
399 pagesize = 1 << s->oob_shift;
400 s->mem_oob = 1;
401 if (s->blk) {
402 if (blk_is_read_only(s->blk)) {
403 error_setg(errp, "Can't use a read-only drive");
404 return;
405 }
406 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
407 BLK_PERM_ALL, errp);
408 if (ret < 0) {
409 return;
410 }
411 if (blk_getlength(s->blk) >=
412 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
413 pagesize = 0;
414 s->mem_oob = 0;
415 }
416 } else {
417 pagesize += 1 << s->page_shift;
418 }
419 if (pagesize) {
420 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
421 0xff, s->pages * pagesize);
422 }
423 /* Give s->ioaddr a sane value in case we save state before it is used. */
424 s->ioaddr = s->io;
425 }
426
427 static Property nand_properties[] = {
428 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
429 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
430 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
431 DEFINE_PROP_END_OF_LIST(),
432 };
433
434 static void nand_class_init(ObjectClass *klass, void *data)
435 {
436 DeviceClass *dc = DEVICE_CLASS(klass);
437
438 dc->realize = nand_realize;
439 dc->reset = nand_reset;
440 dc->vmsd = &vmstate_nand;
441 device_class_set_props(dc, nand_properties);
442 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
443 }
444
445 static const TypeInfo nand_info = {
446 .name = TYPE_NAND,
447 .parent = TYPE_DEVICE,
448 .instance_size = sizeof(NANDFlashState),
449 .class_init = nand_class_init,
450 };
451
452 static void nand_register_types(void)
453 {
454 type_register_static(&nand_info);
455 }
456
457 /*
458 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
459 * outputs are R/B and eight I/O pins.
460 *
461 * CE, WP and R/B are active low.
462 */
463 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
464 uint8_t ce, uint8_t wp, uint8_t gnd)
465 {
466 NANDFlashState *s = NAND(dev);
467
468 s->cle = cle;
469 s->ale = ale;
470 s->ce = ce;
471 s->wp = wp;
472 s->gnd = gnd;
473 if (wp) {
474 s->status |= NAND_IOSTATUS_UNPROTCT;
475 } else {
476 s->status &= ~NAND_IOSTATUS_UNPROTCT;
477 }
478 }
479
480 void nand_getpins(DeviceState *dev, int *rb)
481 {
482 *rb = 1;
483 }
484
485 void nand_setio(DeviceState *dev, uint32_t value)
486 {
487 int i;
488 NANDFlashState *s = NAND(dev);
489
490 if (!s->ce && s->cle) {
491 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
492 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
493 return;
494 if (value == NAND_CMD_RANDOMREAD1) {
495 s->addr &= ~((1 << s->addr_shift) - 1);
496 s->addrlen = 0;
497 return;
498 }
499 }
500 if (value == NAND_CMD_READ0) {
501 s->offset = 0;
502 } else if (value == NAND_CMD_READ1) {
503 s->offset = 0x100;
504 value = NAND_CMD_READ0;
505 } else if (value == NAND_CMD_READ2) {
506 s->offset = 1 << s->page_shift;
507 value = NAND_CMD_READ0;
508 }
509
510 s->cmd = value;
511
512 if (s->cmd == NAND_CMD_READSTATUS ||
513 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
514 s->cmd == NAND_CMD_BLOCKERASE1 ||
515 s->cmd == NAND_CMD_BLOCKERASE2 ||
516 s->cmd == NAND_CMD_NOSERIALREAD2 ||
517 s->cmd == NAND_CMD_RANDOMREAD2 ||
518 s->cmd == NAND_CMD_RESET) {
519 nand_command(s);
520 }
521
522 if (s->cmd != NAND_CMD_RANDOMREAD2) {
523 s->addrlen = 0;
524 }
525 }
526
527 if (s->ale) {
528 unsigned int shift = s->addrlen * 8;
529 uint64_t mask = ~(0xffull << shift);
530 uint64_t v = (uint64_t)value << shift;
531
532 s->addr = (s->addr & mask) | v;
533 s->addrlen ++;
534
535 switch (s->addrlen) {
536 case 1:
537 if (s->cmd == NAND_CMD_READID) {
538 nand_command(s);
539 }
540 break;
541 case 2: /* fix cache address as a byte address */
542 s->addr <<= (s->buswidth - 1);
543 break;
544 case 3:
545 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
546 (s->cmd == NAND_CMD_READ0 ||
547 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
548 nand_command(s);
549 }
550 break;
551 case 4:
552 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
553 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
554 (s->cmd == NAND_CMD_READ0 ||
555 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
556 nand_command(s);
557 }
558 break;
559 case 5:
560 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
561 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
562 (s->cmd == NAND_CMD_READ0 ||
563 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
564 nand_command(s);
565 }
566 break;
567 default:
568 break;
569 }
570 }
571
572 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
573 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
574 for (i = s->buswidth; i--; value >>= 8) {
575 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
576 }
577 }
578 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
579 if ((s->addr & ((1 << s->addr_shift) - 1)) <
580 (1 << s->page_shift) + (1 << s->oob_shift)) {
581 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
582 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
583 (uint8_t) (value & 0xff);
584 }
585 }
586 }
587 }
588
589 uint32_t nand_getio(DeviceState *dev)
590 {
591 int offset;
592 uint32_t x = 0;
593 NANDFlashState *s = NAND(dev);
594
595 /* Allow sequential reading */
596 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
597 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
598 s->offset = 0;
599
600 s->blk_load(s, s->addr, offset);
601 if (s->gnd)
602 s->iolen = (1 << s->page_shift) - offset;
603 else
604 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
605 }
606
607 if (s->ce || s->iolen <= 0) {
608 return 0;
609 }
610
611 for (offset = s->buswidth; offset--;) {
612 x |= s->ioaddr[offset] << (offset << 3);
613 }
614 /* after receiving READ STATUS command all subsequent reads will
615 * return the status register value until another command is issued
616 */
617 if (s->cmd != NAND_CMD_READSTATUS) {
618 s->addr += s->buswidth;
619 s->ioaddr += s->buswidth;
620 s->iolen -= s->buswidth;
621 }
622 return x;
623 }
624
625 uint32_t nand_getbuswidth(DeviceState *dev)
626 {
627 NANDFlashState *s = (NANDFlashState *) dev;
628 return s->buswidth << 3;
629 }
630
631 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
632 {
633 DeviceState *dev;
634
635 if (nand_flash_ids[chip_id].size == 0) {
636 hw_error("%s: Unsupported NAND chip ID.\n", __func__);
637 }
638 dev = qdev_new(TYPE_NAND);
639 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
640 qdev_prop_set_uint8(dev, "chip_id", chip_id);
641 if (blk) {
642 qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal);
643 }
644
645 qdev_realize(dev, NULL, &error_fatal);
646 return dev;
647 }
648
649 type_init(nand_register_types)
650
651 #else
652
653 /* Program a single page */
654 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
655 {
656 uint64_t off, page, sector, soff;
657 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
658 if (PAGE(s->addr) >= s->pages)
659 return;
660
661 if (!s->blk) {
662 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
663 s->offset, s->io, s->iolen);
664 } else if (s->mem_oob) {
665 sector = SECTOR(s->addr);
666 off = (s->addr & PAGE_MASK) + s->offset;
667 soff = SECTOR_OFFSET(s->addr);
668 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
669 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
670 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
671 return;
672 }
673
674 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
675 if (off + s->iolen > PAGE_SIZE) {
676 page = PAGE(s->addr);
677 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
678 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
679 }
680
681 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
682 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
683 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
684 }
685 } else {
686 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
687 sector = off >> 9;
688 soff = off & 0x1ff;
689 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
690 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
691 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
692 return;
693 }
694
695 mem_and(iobuf + soff, s->io, s->iolen);
696
697 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
698 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
699 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
700 }
701 }
702 s->offset = 0;
703 }
704
705 /* Erase a single block */
706 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
707 {
708 uint64_t i, page, addr;
709 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
710 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
711
712 if (PAGE(addr) >= s->pages) {
713 return;
714 }
715
716 if (!s->blk) {
717 memset(s->storage + PAGE_START(addr),
718 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
719 } else if (s->mem_oob) {
720 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
721 0xff, OOB_SIZE << s->erase_shift);
722 i = SECTOR(addr);
723 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
724 for (; i < page; i ++)
725 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
726 BDRV_SECTOR_SIZE, 0) < 0) {
727 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
728 }
729 } else {
730 addr = PAGE_START(addr);
731 page = addr >> 9;
732 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
733 BDRV_SECTOR_SIZE) < 0) {
734 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
735 }
736 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
737 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
738 BDRV_SECTOR_SIZE, 0) < 0) {
739 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
740 }
741
742 memset(iobuf, 0xff, 0x200);
743 i = (addr & ~0x1ff) + 0x200;
744 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
745 i < addr; i += 0x200) {
746 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
747 printf("%s: write error in sector %" PRIu64 "\n",
748 __func__, i >> 9);
749 }
750 }
751
752 page = i >> 9;
753 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
754 BDRV_SECTOR_SIZE) < 0) {
755 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
756 }
757 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
758 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
759 BDRV_SECTOR_SIZE, 0) < 0) {
760 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
761 }
762 }
763 }
764
765 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
766 uint64_t addr, int offset)
767 {
768 if (PAGE(addr) >= s->pages) {
769 return;
770 }
771
772 if (s->blk) {
773 if (s->mem_oob) {
774 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
775 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
776 printf("%s: read error in sector %" PRIu64 "\n",
777 __func__, SECTOR(addr));
778 }
779 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
780 s->storage + (PAGE(s->addr) << OOB_SHIFT),
781 OOB_SIZE);
782 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
783 } else {
784 if (blk_pread(s->blk, PAGE_START(addr), s->io,
785 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
786 printf("%s: read error in sector %" PRIu64 "\n",
787 __func__, PAGE_START(addr) >> 9);
788 }
789 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
790 }
791 } else {
792 memcpy(s->io, s->storage + PAGE_START(s->addr) +
793 offset, PAGE_SIZE + OOB_SIZE - offset);
794 s->ioaddr = s->io;
795 }
796 }
797
798 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
799 {
800 s->oob_shift = PAGE_SHIFT - 5;
801 s->pages = s->size >> PAGE_SHIFT;
802 s->addr_shift = ADDR_SHIFT;
803
804 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
805 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
806 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
807 }
808
809 # undef PAGE_SIZE
810 # undef PAGE_SHIFT
811 # undef PAGE_SECTORS
812 # undef ADDR_SHIFT
813 #endif /* NAND_IO */