]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nand.c
Merge remote-tracking branch 'pmaydell/arm-devs.for-upstream' into staging
[mirror_qemu.git] / hw / block / nand.c
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
12 *
13 * This code is licensed under the GNU GPL v2.
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
17 */
18
19 #ifndef NAND_IO
20
21 # include "hw/hw.h"
22 # include "hw/block/flash.h"
23 # include "sysemu/blockdev.h"
24 #include "hw/qdev.h"
25 #include "qemu/error-report.h"
26
27 # define NAND_CMD_READ0 0x00
28 # define NAND_CMD_READ1 0x01
29 # define NAND_CMD_READ2 0x50
30 # define NAND_CMD_LPREAD2 0x30
31 # define NAND_CMD_NOSERIALREAD2 0x35
32 # define NAND_CMD_RANDOMREAD1 0x05
33 # define NAND_CMD_RANDOMREAD2 0xe0
34 # define NAND_CMD_READID 0x90
35 # define NAND_CMD_RESET 0xff
36 # define NAND_CMD_PAGEPROGRAM1 0x80
37 # define NAND_CMD_PAGEPROGRAM2 0x10
38 # define NAND_CMD_CACHEPROGRAM2 0x15
39 # define NAND_CMD_BLOCKERASE1 0x60
40 # define NAND_CMD_BLOCKERASE2 0xd0
41 # define NAND_CMD_READSTATUS 0x70
42 # define NAND_CMD_COPYBACKPRG1 0x85
43
44 # define NAND_IOSTATUS_ERROR (1 << 0)
45 # define NAND_IOSTATUS_PLANE0 (1 << 1)
46 # define NAND_IOSTATUS_PLANE1 (1 << 2)
47 # define NAND_IOSTATUS_PLANE2 (1 << 3)
48 # define NAND_IOSTATUS_PLANE3 (1 << 4)
49 # define NAND_IOSTATUS_READY (1 << 6)
50 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
51
52 # define MAX_PAGE 0x800
53 # define MAX_OOB 0x40
54
55 typedef struct NANDFlashState NANDFlashState;
56 struct NANDFlashState {
57 DeviceState parent_obj;
58
59 uint8_t manf_id, chip_id;
60 uint8_t buswidth; /* in BYTES */
61 int size, pages;
62 int page_shift, oob_shift, erase_shift, addr_shift;
63 uint8_t *storage;
64 BlockDriverState *bdrv;
65 int mem_oob;
66
67 uint8_t cle, ale, ce, wp, gnd;
68
69 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
70 uint8_t *ioaddr;
71 int iolen;
72
73 uint32_t cmd;
74 uint64_t addr;
75 int addrlen;
76 int status;
77 int offset;
78
79 void (*blk_write)(NANDFlashState *s);
80 void (*blk_erase)(NANDFlashState *s);
81 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
82
83 uint32_t ioaddr_vmstate;
84 };
85
86 #define TYPE_NAND "nand"
87
88 #define NAND(obj) \
89 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
90
91 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
92 {
93 /* Like memcpy() but we logical-AND the data into the destination */
94 int i;
95 for (i = 0; i < n; i++) {
96 dest[i] &= src[i];
97 }
98 }
99
100 # define NAND_NO_AUTOINCR 0x00000001
101 # define NAND_BUSWIDTH_16 0x00000002
102 # define NAND_NO_PADDING 0x00000004
103 # define NAND_CACHEPRG 0x00000008
104 # define NAND_COPYBACK 0x00000010
105 # define NAND_IS_AND 0x00000020
106 # define NAND_4PAGE_ARRAY 0x00000040
107 # define NAND_NO_READRDY 0x00000100
108 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
109
110 # define NAND_IO
111
112 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
113 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
114 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
115 # define OOB_SHIFT (PAGE_SHIFT - 5)
116 # define OOB_SIZE (1 << OOB_SHIFT)
117 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
118 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
119
120 # define PAGE_SIZE 256
121 # define PAGE_SHIFT 8
122 # define PAGE_SECTORS 1
123 # define ADDR_SHIFT 8
124 # include "nand.c"
125 # define PAGE_SIZE 512
126 # define PAGE_SHIFT 9
127 # define PAGE_SECTORS 1
128 # define ADDR_SHIFT 8
129 # include "nand.c"
130 # define PAGE_SIZE 2048
131 # define PAGE_SHIFT 11
132 # define PAGE_SECTORS 4
133 # define ADDR_SHIFT 16
134 # include "nand.c"
135
136 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
137 static const struct {
138 int size;
139 int width;
140 int page_shift;
141 int erase_shift;
142 uint32_t options;
143 } nand_flash_ids[0x100] = {
144 [0 ... 0xff] = { 0 },
145
146 [0x6e] = { 1, 8, 8, 4, 0 },
147 [0x64] = { 2, 8, 8, 4, 0 },
148 [0x6b] = { 4, 8, 9, 4, 0 },
149 [0xe8] = { 1, 8, 8, 4, 0 },
150 [0xec] = { 1, 8, 8, 4, 0 },
151 [0xea] = { 2, 8, 8, 4, 0 },
152 [0xd5] = { 4, 8, 9, 4, 0 },
153 [0xe3] = { 4, 8, 9, 4, 0 },
154 [0xe5] = { 4, 8, 9, 4, 0 },
155 [0xd6] = { 8, 8, 9, 4, 0 },
156
157 [0x39] = { 8, 8, 9, 4, 0 },
158 [0xe6] = { 8, 8, 9, 4, 0 },
159 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
160 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
161
162 [0x33] = { 16, 8, 9, 5, 0 },
163 [0x73] = { 16, 8, 9, 5, 0 },
164 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
165 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
166
167 [0x35] = { 32, 8, 9, 5, 0 },
168 [0x75] = { 32, 8, 9, 5, 0 },
169 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
170 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
171
172 [0x36] = { 64, 8, 9, 5, 0 },
173 [0x76] = { 64, 8, 9, 5, 0 },
174 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
176
177 [0x78] = { 128, 8, 9, 5, 0 },
178 [0x39] = { 128, 8, 9, 5, 0 },
179 [0x79] = { 128, 8, 9, 5, 0 },
180 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
181 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
182 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
183 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
184
185 [0x71] = { 256, 8, 9, 5, 0 },
186
187 /*
188 * These are the new chips with large page size. The pagesize and the
189 * erasesize is determined from the extended id bytes
190 */
191 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
192 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
193
194 /* 512 Megabit */
195 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
196 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
197 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
198 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
199
200 /* 1 Gigabit */
201 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
202 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
203 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
204 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
205
206 /* 2 Gigabit */
207 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
208 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
209 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
210 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
211
212 /* 4 Gigabit */
213 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
214 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
215 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
216 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
217
218 /* 8 Gigabit */
219 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
220 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
221 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
222 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
223
224 /* 16 Gigabit */
225 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
226 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
227 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
228 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
229 };
230
231 static void nand_reset(DeviceState *dev)
232 {
233 NANDFlashState *s = NAND(dev);
234 s->cmd = NAND_CMD_READ0;
235 s->addr = 0;
236 s->addrlen = 0;
237 s->iolen = 0;
238 s->offset = 0;
239 s->status &= NAND_IOSTATUS_UNPROTCT;
240 s->status |= NAND_IOSTATUS_READY;
241 }
242
243 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
244 {
245 s->ioaddr[s->iolen++] = value;
246 for (value = s->buswidth; --value;) {
247 s->ioaddr[s->iolen++] = 0;
248 }
249 }
250
251 static void nand_command(NANDFlashState *s)
252 {
253 unsigned int offset;
254 switch (s->cmd) {
255 case NAND_CMD_READ0:
256 s->iolen = 0;
257 break;
258
259 case NAND_CMD_READID:
260 s->ioaddr = s->io;
261 s->iolen = 0;
262 nand_pushio_byte(s, s->manf_id);
263 nand_pushio_byte(s, s->chip_id);
264 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
265 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
266 /* Page Size, Block Size, Spare Size; bit 6 indicates
267 * 8 vs 16 bit width NAND.
268 */
269 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
270 } else {
271 nand_pushio_byte(s, 0xc0); /* Multi-plane */
272 }
273 break;
274
275 case NAND_CMD_RANDOMREAD2:
276 case NAND_CMD_NOSERIALREAD2:
277 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
278 break;
279 offset = s->addr & ((1 << s->addr_shift) - 1);
280 s->blk_load(s, s->addr, offset);
281 if (s->gnd)
282 s->iolen = (1 << s->page_shift) - offset;
283 else
284 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
285 break;
286
287 case NAND_CMD_RESET:
288 nand_reset(DEVICE(s));
289 break;
290
291 case NAND_CMD_PAGEPROGRAM1:
292 s->ioaddr = s->io;
293 s->iolen = 0;
294 break;
295
296 case NAND_CMD_PAGEPROGRAM2:
297 if (s->wp) {
298 s->blk_write(s);
299 }
300 break;
301
302 case NAND_CMD_BLOCKERASE1:
303 break;
304
305 case NAND_CMD_BLOCKERASE2:
306 s->addr &= (1ull << s->addrlen * 8) - 1;
307 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
308 16 : 8;
309
310 if (s->wp) {
311 s->blk_erase(s);
312 }
313 break;
314
315 case NAND_CMD_READSTATUS:
316 s->ioaddr = s->io;
317 s->iolen = 0;
318 nand_pushio_byte(s, s->status);
319 break;
320
321 default:
322 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
323 }
324 }
325
326 static void nand_pre_save(void *opaque)
327 {
328 NANDFlashState *s = NAND(opaque);
329
330 s->ioaddr_vmstate = s->ioaddr - s->io;
331 }
332
333 static int nand_post_load(void *opaque, int version_id)
334 {
335 NANDFlashState *s = NAND(opaque);
336
337 if (s->ioaddr_vmstate > sizeof(s->io)) {
338 return -EINVAL;
339 }
340 s->ioaddr = s->io + s->ioaddr_vmstate;
341
342 return 0;
343 }
344
345 static const VMStateDescription vmstate_nand = {
346 .name = "nand",
347 .version_id = 1,
348 .minimum_version_id = 1,
349 .minimum_version_id_old = 1,
350 .pre_save = nand_pre_save,
351 .post_load = nand_post_load,
352 .fields = (VMStateField[]) {
353 VMSTATE_UINT8(cle, NANDFlashState),
354 VMSTATE_UINT8(ale, NANDFlashState),
355 VMSTATE_UINT8(ce, NANDFlashState),
356 VMSTATE_UINT8(wp, NANDFlashState),
357 VMSTATE_UINT8(gnd, NANDFlashState),
358 VMSTATE_BUFFER(io, NANDFlashState),
359 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
360 VMSTATE_INT32(iolen, NANDFlashState),
361 VMSTATE_UINT32(cmd, NANDFlashState),
362 VMSTATE_UINT64(addr, NANDFlashState),
363 VMSTATE_INT32(addrlen, NANDFlashState),
364 VMSTATE_INT32(status, NANDFlashState),
365 VMSTATE_INT32(offset, NANDFlashState),
366 /* XXX: do we want to save s->storage too? */
367 VMSTATE_END_OF_LIST()
368 }
369 };
370
371 static void nand_realize(DeviceState *dev, Error **errp)
372 {
373 int pagesize;
374 NANDFlashState *s = NAND(dev);
375
376 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
377 s->size = nand_flash_ids[s->chip_id].size << 20;
378 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
379 s->page_shift = 11;
380 s->erase_shift = 6;
381 } else {
382 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
383 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
384 }
385
386 switch (1 << s->page_shift) {
387 case 256:
388 nand_init_256(s);
389 break;
390 case 512:
391 nand_init_512(s);
392 break;
393 case 2048:
394 nand_init_2048(s);
395 break;
396 default:
397 error_setg(errp, "Unsupported NAND block size %#x\n",
398 1 << s->page_shift);
399 return;
400 }
401
402 pagesize = 1 << s->oob_shift;
403 s->mem_oob = 1;
404 if (s->bdrv) {
405 if (bdrv_is_read_only(s->bdrv)) {
406 error_setg(errp, "Can't use a read-only drive");
407 return;
408 }
409 if (bdrv_getlength(s->bdrv) >=
410 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
411 pagesize = 0;
412 s->mem_oob = 0;
413 }
414 } else {
415 pagesize += 1 << s->page_shift;
416 }
417 if (pagesize) {
418 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
419 0xff, s->pages * pagesize);
420 }
421 /* Give s->ioaddr a sane value in case we save state before it is used. */
422 s->ioaddr = s->io;
423 }
424
425 static Property nand_properties[] = {
426 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
427 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
428 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
429 DEFINE_PROP_END_OF_LIST(),
430 };
431
432 static void nand_class_init(ObjectClass *klass, void *data)
433 {
434 DeviceClass *dc = DEVICE_CLASS(klass);
435
436 dc->realize = nand_realize;
437 dc->reset = nand_reset;
438 dc->vmsd = &vmstate_nand;
439 dc->props = nand_properties;
440 }
441
442 static const TypeInfo nand_info = {
443 .name = TYPE_NAND,
444 .parent = TYPE_DEVICE,
445 .instance_size = sizeof(NANDFlashState),
446 .class_init = nand_class_init,
447 };
448
449 static void nand_register_types(void)
450 {
451 type_register_static(&nand_info);
452 }
453
454 /*
455 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
456 * outputs are R/B and eight I/O pins.
457 *
458 * CE, WP and R/B are active low.
459 */
460 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
461 uint8_t ce, uint8_t wp, uint8_t gnd)
462 {
463 NANDFlashState *s = NAND(dev);
464
465 s->cle = cle;
466 s->ale = ale;
467 s->ce = ce;
468 s->wp = wp;
469 s->gnd = gnd;
470 if (wp) {
471 s->status |= NAND_IOSTATUS_UNPROTCT;
472 } else {
473 s->status &= ~NAND_IOSTATUS_UNPROTCT;
474 }
475 }
476
477 void nand_getpins(DeviceState *dev, int *rb)
478 {
479 *rb = 1;
480 }
481
482 void nand_setio(DeviceState *dev, uint32_t value)
483 {
484 int i;
485 NANDFlashState *s = NAND(dev);
486
487 if (!s->ce && s->cle) {
488 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
489 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
490 return;
491 if (value == NAND_CMD_RANDOMREAD1) {
492 s->addr &= ~((1 << s->addr_shift) - 1);
493 s->addrlen = 0;
494 return;
495 }
496 }
497 if (value == NAND_CMD_READ0) {
498 s->offset = 0;
499 } else if (value == NAND_CMD_READ1) {
500 s->offset = 0x100;
501 value = NAND_CMD_READ0;
502 } else if (value == NAND_CMD_READ2) {
503 s->offset = 1 << s->page_shift;
504 value = NAND_CMD_READ0;
505 }
506
507 s->cmd = value;
508
509 if (s->cmd == NAND_CMD_READSTATUS ||
510 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
511 s->cmd == NAND_CMD_BLOCKERASE1 ||
512 s->cmd == NAND_CMD_BLOCKERASE2 ||
513 s->cmd == NAND_CMD_NOSERIALREAD2 ||
514 s->cmd == NAND_CMD_RANDOMREAD2 ||
515 s->cmd == NAND_CMD_RESET) {
516 nand_command(s);
517 }
518
519 if (s->cmd != NAND_CMD_RANDOMREAD2) {
520 s->addrlen = 0;
521 }
522 }
523
524 if (s->ale) {
525 unsigned int shift = s->addrlen * 8;
526 unsigned int mask = ~(0xff << shift);
527 unsigned int v = value << shift;
528
529 s->addr = (s->addr & mask) | v;
530 s->addrlen ++;
531
532 switch (s->addrlen) {
533 case 1:
534 if (s->cmd == NAND_CMD_READID) {
535 nand_command(s);
536 }
537 break;
538 case 2: /* fix cache address as a byte address */
539 s->addr <<= (s->buswidth - 1);
540 break;
541 case 3:
542 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
543 (s->cmd == NAND_CMD_READ0 ||
544 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
545 nand_command(s);
546 }
547 break;
548 case 4:
549 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
550 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
551 (s->cmd == NAND_CMD_READ0 ||
552 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
553 nand_command(s);
554 }
555 break;
556 case 5:
557 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
558 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
559 (s->cmd == NAND_CMD_READ0 ||
560 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
561 nand_command(s);
562 }
563 break;
564 default:
565 break;
566 }
567 }
568
569 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
570 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
571 for (i = s->buswidth; i--; value >>= 8) {
572 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
573 }
574 }
575 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
576 if ((s->addr & ((1 << s->addr_shift) - 1)) <
577 (1 << s->page_shift) + (1 << s->oob_shift)) {
578 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
579 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
580 (uint8_t) (value & 0xff);
581 }
582 }
583 }
584 }
585
586 uint32_t nand_getio(DeviceState *dev)
587 {
588 int offset;
589 uint32_t x = 0;
590 NANDFlashState *s = NAND(dev);
591
592 /* Allow sequential reading */
593 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
594 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
595 s->offset = 0;
596
597 s->blk_load(s, s->addr, offset);
598 if (s->gnd)
599 s->iolen = (1 << s->page_shift) - offset;
600 else
601 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
602 }
603
604 if (s->ce || s->iolen <= 0) {
605 return 0;
606 }
607
608 for (offset = s->buswidth; offset--;) {
609 x |= s->ioaddr[offset] << (offset << 3);
610 }
611 /* after receiving READ STATUS command all subsequent reads will
612 * return the status register value until another command is issued
613 */
614 if (s->cmd != NAND_CMD_READSTATUS) {
615 s->addr += s->buswidth;
616 s->ioaddr += s->buswidth;
617 s->iolen -= s->buswidth;
618 }
619 return x;
620 }
621
622 uint32_t nand_getbuswidth(DeviceState *dev)
623 {
624 NANDFlashState *s = (NANDFlashState *) dev;
625 return s->buswidth << 3;
626 }
627
628 DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
629 {
630 DeviceState *dev;
631
632 if (nand_flash_ids[chip_id].size == 0) {
633 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
634 }
635 dev = qdev_create(NULL, "nand");
636 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
637 qdev_prop_set_uint8(dev, "chip_id", chip_id);
638 if (bdrv) {
639 qdev_prop_set_drive_nofail(dev, "drive", bdrv);
640 }
641
642 qdev_init_nofail(dev);
643 return dev;
644 }
645
646 type_init(nand_register_types)
647
648 #else
649
650 /* Program a single page */
651 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
652 {
653 uint64_t off, page, sector, soff;
654 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
655 if (PAGE(s->addr) >= s->pages)
656 return;
657
658 if (!s->bdrv) {
659 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
660 s->offset, s->io, s->iolen);
661 } else if (s->mem_oob) {
662 sector = SECTOR(s->addr);
663 off = (s->addr & PAGE_MASK) + s->offset;
664 soff = SECTOR_OFFSET(s->addr);
665 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
666 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
667 return;
668 }
669
670 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
671 if (off + s->iolen > PAGE_SIZE) {
672 page = PAGE(s->addr);
673 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
674 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
675 }
676
677 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
678 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
679 }
680 } else {
681 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
682 sector = off >> 9;
683 soff = off & 0x1ff;
684 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
685 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
686 return;
687 }
688
689 mem_and(iobuf + soff, s->io, s->iolen);
690
691 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
692 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
693 }
694 }
695 s->offset = 0;
696 }
697
698 /* Erase a single block */
699 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
700 {
701 uint64_t i, page, addr;
702 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
703 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
704
705 if (PAGE(addr) >= s->pages) {
706 return;
707 }
708
709 if (!s->bdrv) {
710 memset(s->storage + PAGE_START(addr),
711 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
712 } else if (s->mem_oob) {
713 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
714 0xff, OOB_SIZE << s->erase_shift);
715 i = SECTOR(addr);
716 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
717 for (; i < page; i ++)
718 if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) {
719 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
720 }
721 } else {
722 addr = PAGE_START(addr);
723 page = addr >> 9;
724 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
725 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
726 }
727 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
728 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
729 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
730 }
731
732 memset(iobuf, 0xff, 0x200);
733 i = (addr & ~0x1ff) + 0x200;
734 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
735 i < addr; i += 0x200) {
736 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) {
737 printf("%s: write error in sector %" PRIu64 "\n",
738 __func__, i >> 9);
739 }
740 }
741
742 page = i >> 9;
743 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
744 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
745 }
746 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
747 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
748 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
749 }
750 }
751 }
752
753 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
754 uint64_t addr, int offset)
755 {
756 if (PAGE(addr) >= s->pages) {
757 return;
758 }
759
760 if (s->bdrv) {
761 if (s->mem_oob) {
762 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
763 printf("%s: read error in sector %" PRIu64 "\n",
764 __func__, SECTOR(addr));
765 }
766 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
767 s->storage + (PAGE(s->addr) << OOB_SHIFT),
768 OOB_SIZE);
769 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
770 } else {
771 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
772 s->io, (PAGE_SECTORS + 2)) < 0) {
773 printf("%s: read error in sector %" PRIu64 "\n",
774 __func__, PAGE_START(addr) >> 9);
775 }
776 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
777 }
778 } else {
779 memcpy(s->io, s->storage + PAGE_START(s->addr) +
780 offset, PAGE_SIZE + OOB_SIZE - offset);
781 s->ioaddr = s->io;
782 }
783 }
784
785 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
786 {
787 s->oob_shift = PAGE_SHIFT - 5;
788 s->pages = s->size >> PAGE_SHIFT;
789 s->addr_shift = ADDR_SHIFT;
790
791 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
792 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
793 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
794 }
795
796 # undef PAGE_SIZE
797 # undef PAGE_SHIFT
798 # undef PAGE_SECTORS
799 # undef ADDR_SHIFT
800 #endif /* NAND_IO */