]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
169e4fa7a5c107b0d93d96c9eefaf44b11051fc5
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21 */
22
23 #include <hw/block/block.h>
24 #include <hw/hw.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27 #include "sysemu/sysemu.h"
28 #include "qapi/visitor.h"
29 #include "sysemu/block-backend.h"
30
31 #include "nvme.h"
32
33 static void nvme_process_sq(void *opaque);
34
35 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
36 {
37 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
38 }
39
40 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
41 {
42 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
43 }
44
45 static void nvme_inc_cq_tail(NvmeCQueue *cq)
46 {
47 cq->tail++;
48 if (cq->tail >= cq->size) {
49 cq->tail = 0;
50 cq->phase = !cq->phase;
51 }
52 }
53
54 static void nvme_inc_sq_head(NvmeSQueue *sq)
55 {
56 sq->head = (sq->head + 1) % sq->size;
57 }
58
59 static uint8_t nvme_cq_full(NvmeCQueue *cq)
60 {
61 return (cq->tail + 1) % cq->size == cq->head;
62 }
63
64 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
65 {
66 return sq->head == sq->tail;
67 }
68
69 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
70 {
71 if (cq->irq_enabled) {
72 if (msix_enabled(&(n->parent_obj))) {
73 msix_notify(&(n->parent_obj), cq->vector);
74 } else {
75 pci_irq_pulse(&n->parent_obj);
76 }
77 }
78 }
79
80 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
81 uint32_t len, NvmeCtrl *n)
82 {
83 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
84 trans_len = MIN(len, trans_len);
85 int num_prps = (len >> n->page_bits) + 1;
86
87 if (!prp1) {
88 return NVME_INVALID_FIELD | NVME_DNR;
89 }
90
91 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
92 qemu_sglist_add(qsg, prp1, trans_len);
93 len -= trans_len;
94 if (len) {
95 if (!prp2) {
96 goto unmap;
97 }
98 if (len > n->page_size) {
99 uint64_t prp_list[n->max_prp_ents];
100 uint32_t nents, prp_trans;
101 int i = 0;
102
103 nents = (len + n->page_size - 1) >> n->page_bits;
104 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
105 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
106 while (len != 0) {
107 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
108
109 if (i == n->max_prp_ents - 1 && len > n->page_size) {
110 if (!prp_ent || prp_ent & (n->page_size - 1)) {
111 goto unmap;
112 }
113
114 i = 0;
115 nents = (len + n->page_size - 1) >> n->page_bits;
116 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
117 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
118 prp_trans);
119 prp_ent = le64_to_cpu(prp_list[i]);
120 }
121
122 if (!prp_ent || prp_ent & (n->page_size - 1)) {
123 goto unmap;
124 }
125
126 trans_len = MIN(len, n->page_size);
127 qemu_sglist_add(qsg, prp_ent, trans_len);
128 len -= trans_len;
129 i++;
130 }
131 } else {
132 if (prp2 & (n->page_size - 1)) {
133 goto unmap;
134 }
135 qemu_sglist_add(qsg, prp2, len);
136 }
137 }
138 return NVME_SUCCESS;
139
140 unmap:
141 qemu_sglist_destroy(qsg);
142 return NVME_INVALID_FIELD | NVME_DNR;
143 }
144
145 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
146 uint64_t prp1, uint64_t prp2)
147 {
148 QEMUSGList qsg;
149
150 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
151 return NVME_INVALID_FIELD | NVME_DNR;
152 }
153 if (dma_buf_read(ptr, len, &qsg)) {
154 qemu_sglist_destroy(&qsg);
155 return NVME_INVALID_FIELD | NVME_DNR;
156 }
157 qemu_sglist_destroy(&qsg);
158 return NVME_SUCCESS;
159 }
160
161 static void nvme_post_cqes(void *opaque)
162 {
163 NvmeCQueue *cq = opaque;
164 NvmeCtrl *n = cq->ctrl;
165 NvmeRequest *req, *next;
166
167 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
168 NvmeSQueue *sq;
169 hwaddr addr;
170
171 if (nvme_cq_full(cq)) {
172 break;
173 }
174
175 QTAILQ_REMOVE(&cq->req_list, req, entry);
176 sq = req->sq;
177 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
178 req->cqe.sq_id = cpu_to_le16(sq->sqid);
179 req->cqe.sq_head = cpu_to_le16(sq->head);
180 addr = cq->dma_addr + cq->tail * n->cqe_size;
181 nvme_inc_cq_tail(cq);
182 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
183 sizeof(req->cqe));
184 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
185 }
186 nvme_isr_notify(n, cq);
187 }
188
189 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
190 {
191 assert(cq->cqid == req->sq->cqid);
192 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
193 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
194 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
195 }
196
197 static void nvme_rw_cb(void *opaque, int ret)
198 {
199 NvmeRequest *req = opaque;
200 NvmeSQueue *sq = req->sq;
201 NvmeCtrl *n = sq->ctrl;
202 NvmeCQueue *cq = n->cq[sq->cqid];
203
204 if (!ret) {
205 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
206 req->status = NVME_SUCCESS;
207 } else {
208 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
209 req->status = NVME_INTERNAL_DEV_ERROR;
210 }
211 if (req->has_sg) {
212 qemu_sglist_destroy(&req->qsg);
213 }
214 nvme_enqueue_req_completion(cq, req);
215 }
216
217 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
218 NvmeRequest *req)
219 {
220 req->has_sg = false;
221 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
222 BLOCK_ACCT_FLUSH);
223 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
224
225 return NVME_NO_COMPLETE;
226 }
227
228 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
229 NvmeRequest *req)
230 {
231 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
232 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
233 uint64_t slba = le64_to_cpu(rw->slba);
234 uint64_t prp1 = le64_to_cpu(rw->prp1);
235 uint64_t prp2 = le64_to_cpu(rw->prp2);
236
237 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
238 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
239 uint64_t data_size = (uint64_t)nlb << data_shift;
240 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
241 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
242 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
243
244 if ((slba + nlb) > ns->id_ns.nsze) {
245 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
246 return NVME_LBA_RANGE | NVME_DNR;
247 }
248
249 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
250 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
251 return NVME_INVALID_FIELD | NVME_DNR;
252 }
253
254 assert((nlb << data_shift) == req->qsg.size);
255
256 req->has_sg = true;
257 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
258 req->aiocb = is_write ?
259 dma_blk_write(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req) :
260 dma_blk_read(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req);
261
262 return NVME_NO_COMPLETE;
263 }
264
265 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
266 {
267 NvmeNamespace *ns;
268 uint32_t nsid = le32_to_cpu(cmd->nsid);
269
270 if (nsid == 0 || nsid > n->num_namespaces) {
271 return NVME_INVALID_NSID | NVME_DNR;
272 }
273
274 ns = &n->namespaces[nsid - 1];
275 switch (cmd->opcode) {
276 case NVME_CMD_FLUSH:
277 return nvme_flush(n, ns, cmd, req);
278 case NVME_CMD_WRITE:
279 case NVME_CMD_READ:
280 return nvme_rw(n, ns, cmd, req);
281 default:
282 return NVME_INVALID_OPCODE | NVME_DNR;
283 }
284 }
285
286 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
287 {
288 n->sq[sq->sqid] = NULL;
289 timer_del(sq->timer);
290 timer_free(sq->timer);
291 g_free(sq->io_req);
292 if (sq->sqid) {
293 g_free(sq);
294 }
295 }
296
297 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
298 {
299 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
300 NvmeRequest *req, *next;
301 NvmeSQueue *sq;
302 NvmeCQueue *cq;
303 uint16_t qid = le16_to_cpu(c->qid);
304
305 if (!qid || nvme_check_sqid(n, qid)) {
306 return NVME_INVALID_QID | NVME_DNR;
307 }
308
309 sq = n->sq[qid];
310 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
311 req = QTAILQ_FIRST(&sq->out_req_list);
312 assert(req->aiocb);
313 blk_aio_cancel(req->aiocb);
314 }
315 if (!nvme_check_cqid(n, sq->cqid)) {
316 cq = n->cq[sq->cqid];
317 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
318
319 nvme_post_cqes(cq);
320 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
321 if (req->sq == sq) {
322 QTAILQ_REMOVE(&cq->req_list, req, entry);
323 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
324 }
325 }
326 }
327
328 nvme_free_sq(sq, n);
329 return NVME_SUCCESS;
330 }
331
332 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
333 uint16_t sqid, uint16_t cqid, uint16_t size)
334 {
335 int i;
336 NvmeCQueue *cq;
337
338 sq->ctrl = n;
339 sq->dma_addr = dma_addr;
340 sq->sqid = sqid;
341 sq->size = size;
342 sq->cqid = cqid;
343 sq->head = sq->tail = 0;
344 sq->io_req = g_new(NvmeRequest, sq->size);
345
346 QTAILQ_INIT(&sq->req_list);
347 QTAILQ_INIT(&sq->out_req_list);
348 for (i = 0; i < sq->size; i++) {
349 sq->io_req[i].sq = sq;
350 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
351 }
352 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
353
354 assert(n->cq[cqid]);
355 cq = n->cq[cqid];
356 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
357 n->sq[sqid] = sq;
358 }
359
360 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
361 {
362 NvmeSQueue *sq;
363 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
364
365 uint16_t cqid = le16_to_cpu(c->cqid);
366 uint16_t sqid = le16_to_cpu(c->sqid);
367 uint16_t qsize = le16_to_cpu(c->qsize);
368 uint16_t qflags = le16_to_cpu(c->sq_flags);
369 uint64_t prp1 = le64_to_cpu(c->prp1);
370
371 if (!cqid || nvme_check_cqid(n, cqid)) {
372 return NVME_INVALID_CQID | NVME_DNR;
373 }
374 if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
375 return NVME_INVALID_QID | NVME_DNR;
376 }
377 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
378 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
379 }
380 if (!prp1 || prp1 & (n->page_size - 1)) {
381 return NVME_INVALID_FIELD | NVME_DNR;
382 }
383 if (!(NVME_SQ_FLAGS_PC(qflags))) {
384 return NVME_INVALID_FIELD | NVME_DNR;
385 }
386 sq = g_malloc0(sizeof(*sq));
387 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
388 return NVME_SUCCESS;
389 }
390
391 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
392 {
393 n->cq[cq->cqid] = NULL;
394 timer_del(cq->timer);
395 timer_free(cq->timer);
396 msix_vector_unuse(&n->parent_obj, cq->vector);
397 if (cq->cqid) {
398 g_free(cq);
399 }
400 }
401
402 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
403 {
404 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
405 NvmeCQueue *cq;
406 uint16_t qid = le16_to_cpu(c->qid);
407
408 if (!qid || nvme_check_cqid(n, qid)) {
409 return NVME_INVALID_CQID | NVME_DNR;
410 }
411
412 cq = n->cq[qid];
413 if (!QTAILQ_EMPTY(&cq->sq_list)) {
414 return NVME_INVALID_QUEUE_DEL;
415 }
416 nvme_free_cq(cq, n);
417 return NVME_SUCCESS;
418 }
419
420 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
421 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
422 {
423 cq->ctrl = n;
424 cq->cqid = cqid;
425 cq->size = size;
426 cq->dma_addr = dma_addr;
427 cq->phase = 1;
428 cq->irq_enabled = irq_enabled;
429 cq->vector = vector;
430 cq->head = cq->tail = 0;
431 QTAILQ_INIT(&cq->req_list);
432 QTAILQ_INIT(&cq->sq_list);
433 msix_vector_use(&n->parent_obj, cq->vector);
434 n->cq[cqid] = cq;
435 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
436 }
437
438 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
439 {
440 NvmeCQueue *cq;
441 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
442 uint16_t cqid = le16_to_cpu(c->cqid);
443 uint16_t vector = le16_to_cpu(c->irq_vector);
444 uint16_t qsize = le16_to_cpu(c->qsize);
445 uint16_t qflags = le16_to_cpu(c->cq_flags);
446 uint64_t prp1 = le64_to_cpu(c->prp1);
447
448 if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
449 return NVME_INVALID_CQID | NVME_DNR;
450 }
451 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
452 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
453 }
454 if (!prp1) {
455 return NVME_INVALID_FIELD | NVME_DNR;
456 }
457 if (vector > n->num_queues) {
458 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
459 }
460 if (!(NVME_CQ_FLAGS_PC(qflags))) {
461 return NVME_INVALID_FIELD | NVME_DNR;
462 }
463
464 cq = g_malloc0(sizeof(*cq));
465 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
466 NVME_CQ_FLAGS_IEN(qflags));
467 return NVME_SUCCESS;
468 }
469
470 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
471 {
472 NvmeNamespace *ns;
473 NvmeIdentify *c = (NvmeIdentify *)cmd;
474 uint32_t cns = le32_to_cpu(c->cns);
475 uint32_t nsid = le32_to_cpu(c->nsid);
476 uint64_t prp1 = le64_to_cpu(c->prp1);
477 uint64_t prp2 = le64_to_cpu(c->prp2);
478
479 if (cns) {
480 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
481 prp1, prp2);
482 }
483 if (nsid == 0 || nsid > n->num_namespaces) {
484 return NVME_INVALID_NSID | NVME_DNR;
485 }
486
487 ns = &n->namespaces[nsid - 1];
488 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
489 prp1, prp2);
490 }
491
492 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
493 {
494 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
495 uint32_t result;
496
497 switch (dw10) {
498 case NVME_VOLATILE_WRITE_CACHE:
499 result = blk_enable_write_cache(n->conf.blk);
500 break;
501 case NVME_NUMBER_OF_QUEUES:
502 result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
503 break;
504 default:
505 return NVME_INVALID_FIELD | NVME_DNR;
506 }
507
508 req->cqe.result = result;
509 return NVME_SUCCESS;
510 }
511
512 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
513 {
514 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
515 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
516
517 switch (dw10) {
518 case NVME_VOLATILE_WRITE_CACHE:
519 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
520 break;
521 case NVME_NUMBER_OF_QUEUES:
522 req->cqe.result =
523 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
524 break;
525 default:
526 return NVME_INVALID_FIELD | NVME_DNR;
527 }
528 return NVME_SUCCESS;
529 }
530
531 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
532 {
533 switch (cmd->opcode) {
534 case NVME_ADM_CMD_DELETE_SQ:
535 return nvme_del_sq(n, cmd);
536 case NVME_ADM_CMD_CREATE_SQ:
537 return nvme_create_sq(n, cmd);
538 case NVME_ADM_CMD_DELETE_CQ:
539 return nvme_del_cq(n, cmd);
540 case NVME_ADM_CMD_CREATE_CQ:
541 return nvme_create_cq(n, cmd);
542 case NVME_ADM_CMD_IDENTIFY:
543 return nvme_identify(n, cmd);
544 case NVME_ADM_CMD_SET_FEATURES:
545 return nvme_set_feature(n, cmd, req);
546 case NVME_ADM_CMD_GET_FEATURES:
547 return nvme_get_feature(n, cmd, req);
548 default:
549 return NVME_INVALID_OPCODE | NVME_DNR;
550 }
551 }
552
553 static void nvme_process_sq(void *opaque)
554 {
555 NvmeSQueue *sq = opaque;
556 NvmeCtrl *n = sq->ctrl;
557 NvmeCQueue *cq = n->cq[sq->cqid];
558
559 uint16_t status;
560 hwaddr addr;
561 NvmeCmd cmd;
562 NvmeRequest *req;
563
564 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
565 addr = sq->dma_addr + sq->head * n->sqe_size;
566 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
567 nvme_inc_sq_head(sq);
568
569 req = QTAILQ_FIRST(&sq->req_list);
570 QTAILQ_REMOVE(&sq->req_list, req, entry);
571 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
572 memset(&req->cqe, 0, sizeof(req->cqe));
573 req->cqe.cid = cmd.cid;
574
575 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
576 nvme_admin_cmd(n, &cmd, req);
577 if (status != NVME_NO_COMPLETE) {
578 req->status = status;
579 nvme_enqueue_req_completion(cq, req);
580 }
581 }
582 }
583
584 static void nvme_clear_ctrl(NvmeCtrl *n)
585 {
586 int i;
587
588 for (i = 0; i < n->num_queues; i++) {
589 if (n->sq[i] != NULL) {
590 nvme_free_sq(n->sq[i], n);
591 }
592 }
593 for (i = 0; i < n->num_queues; i++) {
594 if (n->cq[i] != NULL) {
595 nvme_free_cq(n->cq[i], n);
596 }
597 }
598
599 blk_flush(n->conf.blk);
600 n->bar.cc = 0;
601 }
602
603 static int nvme_start_ctrl(NvmeCtrl *n)
604 {
605 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
606 uint32_t page_size = 1 << page_bits;
607
608 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
609 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
610 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
611 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
612 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
613 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
614 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
615 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
616 !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
617 return -1;
618 }
619
620 n->page_bits = page_bits;
621 n->page_size = page_size;
622 n->max_prp_ents = n->page_size / sizeof(uint64_t);
623 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
624 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
625 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
626 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
627 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
628 NVME_AQA_ASQS(n->bar.aqa) + 1);
629
630 return 0;
631 }
632
633 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
634 unsigned size)
635 {
636 switch (offset) {
637 case 0xc:
638 n->bar.intms |= data & 0xffffffff;
639 n->bar.intmc = n->bar.intms;
640 break;
641 case 0x10:
642 n->bar.intms &= ~(data & 0xffffffff);
643 n->bar.intmc = n->bar.intms;
644 break;
645 case 0x14:
646 /* Windows first sends data, then sends enable bit */
647 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
648 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
649 {
650 n->bar.cc = data;
651 }
652
653 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
654 n->bar.cc = data;
655 if (nvme_start_ctrl(n)) {
656 n->bar.csts = NVME_CSTS_FAILED;
657 } else {
658 n->bar.csts = NVME_CSTS_READY;
659 }
660 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
661 nvme_clear_ctrl(n);
662 n->bar.csts &= ~NVME_CSTS_READY;
663 }
664 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
665 nvme_clear_ctrl(n);
666 n->bar.cc = data;
667 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
668 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
669 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
670 n->bar.cc = data;
671 }
672 break;
673 case 0x24:
674 n->bar.aqa = data & 0xffffffff;
675 break;
676 case 0x28:
677 n->bar.asq = data;
678 break;
679 case 0x2c:
680 n->bar.asq |= data << 32;
681 break;
682 case 0x30:
683 n->bar.acq = data;
684 break;
685 case 0x34:
686 n->bar.acq |= data << 32;
687 break;
688 default:
689 break;
690 }
691 }
692
693 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
694 {
695 NvmeCtrl *n = (NvmeCtrl *)opaque;
696 uint8_t *ptr = (uint8_t *)&n->bar;
697 uint64_t val = 0;
698
699 if (addr < sizeof(n->bar)) {
700 memcpy(&val, ptr + addr, size);
701 }
702 return val;
703 }
704
705 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
706 {
707 uint32_t qid;
708
709 if (addr & ((1 << 2) - 1)) {
710 return;
711 }
712
713 if (((addr - 0x1000) >> 2) & 1) {
714 uint16_t new_head = val & 0xffff;
715 int start_sqs;
716 NvmeCQueue *cq;
717
718 qid = (addr - (0x1000 + (1 << 2))) >> 3;
719 if (nvme_check_cqid(n, qid)) {
720 return;
721 }
722
723 cq = n->cq[qid];
724 if (new_head >= cq->size) {
725 return;
726 }
727
728 start_sqs = nvme_cq_full(cq) ? 1 : 0;
729 cq->head = new_head;
730 if (start_sqs) {
731 NvmeSQueue *sq;
732 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
733 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
734 }
735 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
736 }
737
738 if (cq->tail != cq->head) {
739 nvme_isr_notify(n, cq);
740 }
741 } else {
742 uint16_t new_tail = val & 0xffff;
743 NvmeSQueue *sq;
744
745 qid = (addr - 0x1000) >> 3;
746 if (nvme_check_sqid(n, qid)) {
747 return;
748 }
749
750 sq = n->sq[qid];
751 if (new_tail >= sq->size) {
752 return;
753 }
754
755 sq->tail = new_tail;
756 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
757 }
758 }
759
760 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
761 unsigned size)
762 {
763 NvmeCtrl *n = (NvmeCtrl *)opaque;
764 if (addr < sizeof(n->bar)) {
765 nvme_write_bar(n, addr, data, size);
766 } else if (addr >= 0x1000) {
767 nvme_process_db(n, addr, data);
768 }
769 }
770
771 static const MemoryRegionOps nvme_mmio_ops = {
772 .read = nvme_mmio_read,
773 .write = nvme_mmio_write,
774 .endianness = DEVICE_LITTLE_ENDIAN,
775 .impl = {
776 .min_access_size = 2,
777 .max_access_size = 8,
778 },
779 };
780
781 static int nvme_init(PCIDevice *pci_dev)
782 {
783 NvmeCtrl *n = NVME(pci_dev);
784 NvmeIdCtrl *id = &n->id_ctrl;
785
786 int i;
787 int64_t bs_size;
788 uint8_t *pci_conf;
789
790 if (!n->conf.blk) {
791 return -1;
792 }
793
794 bs_size = blk_getlength(n->conf.blk);
795 if (bs_size < 0) {
796 return -1;
797 }
798
799 blkconf_serial(&n->conf, &n->serial);
800 if (!n->serial) {
801 return -1;
802 }
803 blkconf_blocksizes(&n->conf);
804
805 pci_conf = pci_dev->config;
806 pci_conf[PCI_INTERRUPT_PIN] = 1;
807 pci_config_set_prog_interface(pci_dev->config, 0x2);
808 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
809 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
810
811 n->num_namespaces = 1;
812 n->num_queues = 64;
813 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
814 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
815
816 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
817 n->sq = g_new0(NvmeSQueue *, n->num_queues);
818 n->cq = g_new0(NvmeCQueue *, n->num_queues);
819
820 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
821 "nvme", n->reg_size);
822 pci_register_bar(&n->parent_obj, 0,
823 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
824 &n->iomem);
825 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
826
827 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
828 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
829 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
830 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
831 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
832 id->rab = 6;
833 id->ieee[0] = 0x00;
834 id->ieee[1] = 0x02;
835 id->ieee[2] = 0xb3;
836 id->oacs = cpu_to_le16(0);
837 id->frmw = 7 << 1;
838 id->lpa = 1 << 0;
839 id->sqes = (0x6 << 4) | 0x6;
840 id->cqes = (0x4 << 4) | 0x4;
841 id->nn = cpu_to_le32(n->num_namespaces);
842 id->psd[0].mp = cpu_to_le16(0x9c4);
843 id->psd[0].enlat = cpu_to_le32(0x10);
844 id->psd[0].exlat = cpu_to_le32(0x4);
845 if (blk_enable_write_cache(n->conf.blk)) {
846 id->vwc = 1;
847 }
848
849 n->bar.cap = 0;
850 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
851 NVME_CAP_SET_CQR(n->bar.cap, 1);
852 NVME_CAP_SET_AMS(n->bar.cap, 1);
853 NVME_CAP_SET_TO(n->bar.cap, 0xf);
854 NVME_CAP_SET_CSS(n->bar.cap, 1);
855 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
856
857 n->bar.vs = 0x00010100;
858 n->bar.intmc = n->bar.intms = 0;
859
860 for (i = 0; i < n->num_namespaces; i++) {
861 NvmeNamespace *ns = &n->namespaces[i];
862 NvmeIdNs *id_ns = &ns->id_ns;
863 id_ns->nsfeat = 0;
864 id_ns->nlbaf = 0;
865 id_ns->flbas = 0;
866 id_ns->mc = 0;
867 id_ns->dpc = 0;
868 id_ns->dps = 0;
869 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
870 id_ns->ncap = id_ns->nuse = id_ns->nsze =
871 cpu_to_le64(n->ns_size >>
872 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
873 }
874 return 0;
875 }
876
877 static void nvme_exit(PCIDevice *pci_dev)
878 {
879 NvmeCtrl *n = NVME(pci_dev);
880
881 nvme_clear_ctrl(n);
882 g_free(n->namespaces);
883 g_free(n->cq);
884 g_free(n->sq);
885 msix_uninit_exclusive_bar(pci_dev);
886 }
887
888 static Property nvme_props[] = {
889 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
890 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
891 DEFINE_PROP_END_OF_LIST(),
892 };
893
894 static const VMStateDescription nvme_vmstate = {
895 .name = "nvme",
896 .unmigratable = 1,
897 };
898
899 static void nvme_class_init(ObjectClass *oc, void *data)
900 {
901 DeviceClass *dc = DEVICE_CLASS(oc);
902 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
903
904 pc->init = nvme_init;
905 pc->exit = nvme_exit;
906 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
907 pc->vendor_id = PCI_VENDOR_ID_INTEL;
908 pc->device_id = 0x5845;
909 pc->revision = 1;
910 pc->is_express = 1;
911
912 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
913 dc->desc = "Non-Volatile Memory Express";
914 dc->props = nvme_props;
915 dc->vmsd = &nvme_vmstate;
916 }
917
918 static void nvme_get_bootindex(Object *obj, Visitor *v, void *opaque,
919 const char *name, Error **errp)
920 {
921 NvmeCtrl *s = NVME(obj);
922
923 visit_type_int32(v, &s->conf.bootindex, name, errp);
924 }
925
926 static void nvme_set_bootindex(Object *obj, Visitor *v, void *opaque,
927 const char *name, Error **errp)
928 {
929 NvmeCtrl *s = NVME(obj);
930 int32_t boot_index;
931 Error *local_err = NULL;
932
933 visit_type_int32(v, &boot_index, name, &local_err);
934 if (local_err) {
935 goto out;
936 }
937 /* check whether bootindex is present in fw_boot_order list */
938 check_boot_index(boot_index, &local_err);
939 if (local_err) {
940 goto out;
941 }
942 /* change bootindex to a new one */
943 s->conf.bootindex = boot_index;
944
945 out:
946 if (local_err) {
947 error_propagate(errp, local_err);
948 }
949 }
950
951 static void nvme_instance_init(Object *obj)
952 {
953 object_property_add(obj, "bootindex", "int32",
954 nvme_get_bootindex,
955 nvme_set_bootindex, NULL, NULL, NULL);
956 object_property_set_int(obj, -1, "bootindex", NULL);
957 }
958
959 static const TypeInfo nvme_info = {
960 .name = "nvme",
961 .parent = TYPE_PCI_DEVICE,
962 .instance_size = sizeof(NvmeCtrl),
963 .class_init = nvme_class_init,
964 .instance_init = nvme_instance_init,
965 };
966
967 static void nvme_register_types(void)
968 {
969 type_register_static(&nvme_info);
970 }
971
972 type_init(nvme_register_types)