]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
Merge remote-tracking branch 'remotes/kraxel/tags/ui-20200515-pull-request' into...
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * num_queues=<N[optional]>
24 *
25 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 *
28 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
30 * both provided.
31 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
32 * For example:
33 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "hw/block/block.h"
40 #include "hw/pci/msix.h"
41 #include "hw/pci/pci.h"
42 #include "hw/qdev-properties.h"
43 #include "migration/vmstate.h"
44 #include "sysemu/sysemu.h"
45 #include "qapi/error.h"
46 #include "qapi/visitor.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/block-backend.h"
49 #include "exec/ram_addr.h"
50
51 #include "qemu/log.h"
52 #include "qemu/module.h"
53 #include "qemu/cutils.h"
54 #include "trace.h"
55 #include "nvme.h"
56
57 #define NVME_GUEST_ERR(trace, fmt, ...) \
58 do { \
59 (trace_##trace)(__VA_ARGS__); \
60 qemu_log_mask(LOG_GUEST_ERROR, #trace \
61 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
62 } while (0)
63
64 static void nvme_process_sq(void *opaque);
65
66 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
67 {
68 if (n->cmbsz && addr >= n->ctrl_mem.addr &&
69 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
70 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
71 } else {
72 pci_dma_read(&n->parent_obj, addr, buf, size);
73 }
74 }
75
76 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
77 {
78 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
79 }
80
81 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
82 {
83 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
84 }
85
86 static void nvme_inc_cq_tail(NvmeCQueue *cq)
87 {
88 cq->tail++;
89 if (cq->tail >= cq->size) {
90 cq->tail = 0;
91 cq->phase = !cq->phase;
92 }
93 }
94
95 static void nvme_inc_sq_head(NvmeSQueue *sq)
96 {
97 sq->head = (sq->head + 1) % sq->size;
98 }
99
100 static uint8_t nvme_cq_full(NvmeCQueue *cq)
101 {
102 return (cq->tail + 1) % cq->size == cq->head;
103 }
104
105 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
106 {
107 return sq->head == sq->tail;
108 }
109
110 static void nvme_irq_check(NvmeCtrl *n)
111 {
112 if (msix_enabled(&(n->parent_obj))) {
113 return;
114 }
115 if (~n->bar.intms & n->irq_status) {
116 pci_irq_assert(&n->parent_obj);
117 } else {
118 pci_irq_deassert(&n->parent_obj);
119 }
120 }
121
122 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
123 {
124 if (cq->irq_enabled) {
125 if (msix_enabled(&(n->parent_obj))) {
126 trace_nvme_irq_msix(cq->vector);
127 msix_notify(&(n->parent_obj), cq->vector);
128 } else {
129 trace_nvme_irq_pin();
130 assert(cq->cqid < 64);
131 n->irq_status |= 1 << cq->cqid;
132 nvme_irq_check(n);
133 }
134 } else {
135 trace_nvme_irq_masked();
136 }
137 }
138
139 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
140 {
141 if (cq->irq_enabled) {
142 if (msix_enabled(&(n->parent_obj))) {
143 return;
144 } else {
145 assert(cq->cqid < 64);
146 n->irq_status &= ~(1 << cq->cqid);
147 nvme_irq_check(n);
148 }
149 }
150 }
151
152 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
153 uint64_t prp2, uint32_t len, NvmeCtrl *n)
154 {
155 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
156 trans_len = MIN(len, trans_len);
157 int num_prps = (len >> n->page_bits) + 1;
158
159 if (unlikely(!prp1)) {
160 trace_nvme_err_invalid_prp();
161 return NVME_INVALID_FIELD | NVME_DNR;
162 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
163 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
164 qsg->nsg = 0;
165 qemu_iovec_init(iov, num_prps);
166 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
167 } else {
168 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
169 qemu_sglist_add(qsg, prp1, trans_len);
170 }
171 len -= trans_len;
172 if (len) {
173 if (unlikely(!prp2)) {
174 trace_nvme_err_invalid_prp2_missing();
175 goto unmap;
176 }
177 if (len > n->page_size) {
178 uint64_t prp_list[n->max_prp_ents];
179 uint32_t nents, prp_trans;
180 int i = 0;
181
182 nents = (len + n->page_size - 1) >> n->page_bits;
183 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
184 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
185 while (len != 0) {
186 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
187
188 if (i == n->max_prp_ents - 1 && len > n->page_size) {
189 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
190 trace_nvme_err_invalid_prplist_ent(prp_ent);
191 goto unmap;
192 }
193
194 i = 0;
195 nents = (len + n->page_size - 1) >> n->page_bits;
196 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
197 nvme_addr_read(n, prp_ent, (void *)prp_list,
198 prp_trans);
199 prp_ent = le64_to_cpu(prp_list[i]);
200 }
201
202 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
203 trace_nvme_err_invalid_prplist_ent(prp_ent);
204 goto unmap;
205 }
206
207 trans_len = MIN(len, n->page_size);
208 if (qsg->nsg){
209 qemu_sglist_add(qsg, prp_ent, trans_len);
210 } else {
211 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
212 }
213 len -= trans_len;
214 i++;
215 }
216 } else {
217 if (unlikely(prp2 & (n->page_size - 1))) {
218 trace_nvme_err_invalid_prp2_align(prp2);
219 goto unmap;
220 }
221 if (qsg->nsg) {
222 qemu_sglist_add(qsg, prp2, len);
223 } else {
224 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
225 }
226 }
227 }
228 return NVME_SUCCESS;
229
230 unmap:
231 qemu_sglist_destroy(qsg);
232 return NVME_INVALID_FIELD | NVME_DNR;
233 }
234
235 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
236 uint64_t prp1, uint64_t prp2)
237 {
238 QEMUSGList qsg;
239 QEMUIOVector iov;
240 uint16_t status = NVME_SUCCESS;
241
242 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
243 return NVME_INVALID_FIELD | NVME_DNR;
244 }
245 if (qsg.nsg > 0) {
246 if (dma_buf_write(ptr, len, &qsg)) {
247 status = NVME_INVALID_FIELD | NVME_DNR;
248 }
249 qemu_sglist_destroy(&qsg);
250 } else {
251 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
252 status = NVME_INVALID_FIELD | NVME_DNR;
253 }
254 qemu_iovec_destroy(&iov);
255 }
256 return status;
257 }
258
259 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
260 uint64_t prp1, uint64_t prp2)
261 {
262 QEMUSGList qsg;
263 QEMUIOVector iov;
264 uint16_t status = NVME_SUCCESS;
265
266 trace_nvme_dma_read(prp1, prp2);
267
268 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
269 return NVME_INVALID_FIELD | NVME_DNR;
270 }
271 if (qsg.nsg > 0) {
272 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
273 trace_nvme_err_invalid_dma();
274 status = NVME_INVALID_FIELD | NVME_DNR;
275 }
276 qemu_sglist_destroy(&qsg);
277 } else {
278 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
279 trace_nvme_err_invalid_dma();
280 status = NVME_INVALID_FIELD | NVME_DNR;
281 }
282 qemu_iovec_destroy(&iov);
283 }
284 return status;
285 }
286
287 static void nvme_post_cqes(void *opaque)
288 {
289 NvmeCQueue *cq = opaque;
290 NvmeCtrl *n = cq->ctrl;
291 NvmeRequest *req, *next;
292
293 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
294 NvmeSQueue *sq;
295 hwaddr addr;
296
297 if (nvme_cq_full(cq)) {
298 break;
299 }
300
301 QTAILQ_REMOVE(&cq->req_list, req, entry);
302 sq = req->sq;
303 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
304 req->cqe.sq_id = cpu_to_le16(sq->sqid);
305 req->cqe.sq_head = cpu_to_le16(sq->head);
306 addr = cq->dma_addr + cq->tail * n->cqe_size;
307 nvme_inc_cq_tail(cq);
308 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
309 sizeof(req->cqe));
310 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
311 }
312 if (cq->tail != cq->head) {
313 nvme_irq_assert(n, cq);
314 }
315 }
316
317 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
318 {
319 assert(cq->cqid == req->sq->cqid);
320 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
321 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
322 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
323 }
324
325 static void nvme_rw_cb(void *opaque, int ret)
326 {
327 NvmeRequest *req = opaque;
328 NvmeSQueue *sq = req->sq;
329 NvmeCtrl *n = sq->ctrl;
330 NvmeCQueue *cq = n->cq[sq->cqid];
331
332 if (!ret) {
333 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
334 req->status = NVME_SUCCESS;
335 } else {
336 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
337 req->status = NVME_INTERNAL_DEV_ERROR;
338 }
339 if (req->has_sg) {
340 qemu_sglist_destroy(&req->qsg);
341 }
342 nvme_enqueue_req_completion(cq, req);
343 }
344
345 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
346 NvmeRequest *req)
347 {
348 req->has_sg = false;
349 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
350 BLOCK_ACCT_FLUSH);
351 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
352
353 return NVME_NO_COMPLETE;
354 }
355
356 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
357 NvmeRequest *req)
358 {
359 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
360 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
361 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
362 uint64_t slba = le64_to_cpu(rw->slba);
363 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
364 uint64_t offset = slba << data_shift;
365 uint32_t count = nlb << data_shift;
366
367 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
368 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
369 return NVME_LBA_RANGE | NVME_DNR;
370 }
371
372 req->has_sg = false;
373 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
374 BLOCK_ACCT_WRITE);
375 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
376 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
377 return NVME_NO_COMPLETE;
378 }
379
380 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
381 NvmeRequest *req)
382 {
383 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
384 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
385 uint64_t slba = le64_to_cpu(rw->slba);
386 uint64_t prp1 = le64_to_cpu(rw->prp1);
387 uint64_t prp2 = le64_to_cpu(rw->prp2);
388
389 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
390 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
391 uint64_t data_size = (uint64_t)nlb << data_shift;
392 uint64_t data_offset = slba << data_shift;
393 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
394 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
395
396 trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
397
398 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
399 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
400 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
401 return NVME_LBA_RANGE | NVME_DNR;
402 }
403
404 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
405 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
406 return NVME_INVALID_FIELD | NVME_DNR;
407 }
408
409 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
410 if (req->qsg.nsg > 0) {
411 req->has_sg = true;
412 req->aiocb = is_write ?
413 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
414 nvme_rw_cb, req) :
415 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
416 nvme_rw_cb, req);
417 } else {
418 req->has_sg = false;
419 req->aiocb = is_write ?
420 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
421 req) :
422 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
423 req);
424 }
425
426 return NVME_NO_COMPLETE;
427 }
428
429 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
430 {
431 NvmeNamespace *ns;
432 uint32_t nsid = le32_to_cpu(cmd->nsid);
433
434 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
435 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
436 return NVME_INVALID_NSID | NVME_DNR;
437 }
438
439 ns = &n->namespaces[nsid - 1];
440 switch (cmd->opcode) {
441 case NVME_CMD_FLUSH:
442 return nvme_flush(n, ns, cmd, req);
443 case NVME_CMD_WRITE_ZEROS:
444 return nvme_write_zeros(n, ns, cmd, req);
445 case NVME_CMD_WRITE:
446 case NVME_CMD_READ:
447 return nvme_rw(n, ns, cmd, req);
448 default:
449 trace_nvme_err_invalid_opc(cmd->opcode);
450 return NVME_INVALID_OPCODE | NVME_DNR;
451 }
452 }
453
454 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
455 {
456 n->sq[sq->sqid] = NULL;
457 timer_del(sq->timer);
458 timer_free(sq->timer);
459 g_free(sq->io_req);
460 if (sq->sqid) {
461 g_free(sq);
462 }
463 }
464
465 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
466 {
467 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
468 NvmeRequest *req, *next;
469 NvmeSQueue *sq;
470 NvmeCQueue *cq;
471 uint16_t qid = le16_to_cpu(c->qid);
472
473 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
474 trace_nvme_err_invalid_del_sq(qid);
475 return NVME_INVALID_QID | NVME_DNR;
476 }
477
478 trace_nvme_del_sq(qid);
479
480 sq = n->sq[qid];
481 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
482 req = QTAILQ_FIRST(&sq->out_req_list);
483 assert(req->aiocb);
484 blk_aio_cancel(req->aiocb);
485 }
486 if (!nvme_check_cqid(n, sq->cqid)) {
487 cq = n->cq[sq->cqid];
488 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
489
490 nvme_post_cqes(cq);
491 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
492 if (req->sq == sq) {
493 QTAILQ_REMOVE(&cq->req_list, req, entry);
494 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
495 }
496 }
497 }
498
499 nvme_free_sq(sq, n);
500 return NVME_SUCCESS;
501 }
502
503 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
504 uint16_t sqid, uint16_t cqid, uint16_t size)
505 {
506 int i;
507 NvmeCQueue *cq;
508
509 sq->ctrl = n;
510 sq->dma_addr = dma_addr;
511 sq->sqid = sqid;
512 sq->size = size;
513 sq->cqid = cqid;
514 sq->head = sq->tail = 0;
515 sq->io_req = g_new(NvmeRequest, sq->size);
516
517 QTAILQ_INIT(&sq->req_list);
518 QTAILQ_INIT(&sq->out_req_list);
519 for (i = 0; i < sq->size; i++) {
520 sq->io_req[i].sq = sq;
521 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
522 }
523 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
524
525 assert(n->cq[cqid]);
526 cq = n->cq[cqid];
527 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
528 n->sq[sqid] = sq;
529 }
530
531 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
532 {
533 NvmeSQueue *sq;
534 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
535
536 uint16_t cqid = le16_to_cpu(c->cqid);
537 uint16_t sqid = le16_to_cpu(c->sqid);
538 uint16_t qsize = le16_to_cpu(c->qsize);
539 uint16_t qflags = le16_to_cpu(c->sq_flags);
540 uint64_t prp1 = le64_to_cpu(c->prp1);
541
542 trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
543
544 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
545 trace_nvme_err_invalid_create_sq_cqid(cqid);
546 return NVME_INVALID_CQID | NVME_DNR;
547 }
548 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
549 trace_nvme_err_invalid_create_sq_sqid(sqid);
550 return NVME_INVALID_QID | NVME_DNR;
551 }
552 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
553 trace_nvme_err_invalid_create_sq_size(qsize);
554 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
555 }
556 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
557 trace_nvme_err_invalid_create_sq_addr(prp1);
558 return NVME_INVALID_FIELD | NVME_DNR;
559 }
560 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
561 trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
562 return NVME_INVALID_FIELD | NVME_DNR;
563 }
564 sq = g_malloc0(sizeof(*sq));
565 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
566 return NVME_SUCCESS;
567 }
568
569 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
570 {
571 n->cq[cq->cqid] = NULL;
572 timer_del(cq->timer);
573 timer_free(cq->timer);
574 msix_vector_unuse(&n->parent_obj, cq->vector);
575 if (cq->cqid) {
576 g_free(cq);
577 }
578 }
579
580 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
581 {
582 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
583 NvmeCQueue *cq;
584 uint16_t qid = le16_to_cpu(c->qid);
585
586 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
587 trace_nvme_err_invalid_del_cq_cqid(qid);
588 return NVME_INVALID_CQID | NVME_DNR;
589 }
590
591 cq = n->cq[qid];
592 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
593 trace_nvme_err_invalid_del_cq_notempty(qid);
594 return NVME_INVALID_QUEUE_DEL;
595 }
596 nvme_irq_deassert(n, cq);
597 trace_nvme_del_cq(qid);
598 nvme_free_cq(cq, n);
599 return NVME_SUCCESS;
600 }
601
602 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
603 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
604 {
605 cq->ctrl = n;
606 cq->cqid = cqid;
607 cq->size = size;
608 cq->dma_addr = dma_addr;
609 cq->phase = 1;
610 cq->irq_enabled = irq_enabled;
611 cq->vector = vector;
612 cq->head = cq->tail = 0;
613 QTAILQ_INIT(&cq->req_list);
614 QTAILQ_INIT(&cq->sq_list);
615 msix_vector_use(&n->parent_obj, cq->vector);
616 n->cq[cqid] = cq;
617 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
618 }
619
620 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
621 {
622 NvmeCQueue *cq;
623 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
624 uint16_t cqid = le16_to_cpu(c->cqid);
625 uint16_t vector = le16_to_cpu(c->irq_vector);
626 uint16_t qsize = le16_to_cpu(c->qsize);
627 uint16_t qflags = le16_to_cpu(c->cq_flags);
628 uint64_t prp1 = le64_to_cpu(c->prp1);
629
630 trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
631 NVME_CQ_FLAGS_IEN(qflags) != 0);
632
633 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
634 trace_nvme_err_invalid_create_cq_cqid(cqid);
635 return NVME_INVALID_CQID | NVME_DNR;
636 }
637 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
638 trace_nvme_err_invalid_create_cq_size(qsize);
639 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
640 }
641 if (unlikely(!prp1)) {
642 trace_nvme_err_invalid_create_cq_addr(prp1);
643 return NVME_INVALID_FIELD | NVME_DNR;
644 }
645 if (unlikely(vector > n->num_queues)) {
646 trace_nvme_err_invalid_create_cq_vector(vector);
647 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
648 }
649 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
650 trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
651 return NVME_INVALID_FIELD | NVME_DNR;
652 }
653
654 cq = g_malloc0(sizeof(*cq));
655 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
656 NVME_CQ_FLAGS_IEN(qflags));
657 return NVME_SUCCESS;
658 }
659
660 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
661 {
662 uint64_t prp1 = le64_to_cpu(c->prp1);
663 uint64_t prp2 = le64_to_cpu(c->prp2);
664
665 trace_nvme_identify_ctrl();
666
667 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
668 prp1, prp2);
669 }
670
671 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
672 {
673 NvmeNamespace *ns;
674 uint32_t nsid = le32_to_cpu(c->nsid);
675 uint64_t prp1 = le64_to_cpu(c->prp1);
676 uint64_t prp2 = le64_to_cpu(c->prp2);
677
678 trace_nvme_identify_ns(nsid);
679
680 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
681 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
682 return NVME_INVALID_NSID | NVME_DNR;
683 }
684
685 ns = &n->namespaces[nsid - 1];
686
687 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
688 prp1, prp2);
689 }
690
691 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
692 {
693 static const int data_len = 4 * KiB;
694 uint32_t min_nsid = le32_to_cpu(c->nsid);
695 uint64_t prp1 = le64_to_cpu(c->prp1);
696 uint64_t prp2 = le64_to_cpu(c->prp2);
697 uint32_t *list;
698 uint16_t ret;
699 int i, j = 0;
700
701 trace_nvme_identify_nslist(min_nsid);
702
703 list = g_malloc0(data_len);
704 for (i = 0; i < n->num_namespaces; i++) {
705 if (i < min_nsid) {
706 continue;
707 }
708 list[j++] = cpu_to_le32(i + 1);
709 if (j == data_len / sizeof(uint32_t)) {
710 break;
711 }
712 }
713 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
714 g_free(list);
715 return ret;
716 }
717
718 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
719 {
720 NvmeIdentify *c = (NvmeIdentify *)cmd;
721
722 switch (le32_to_cpu(c->cns)) {
723 case 0x00:
724 return nvme_identify_ns(n, c);
725 case 0x01:
726 return nvme_identify_ctrl(n, c);
727 case 0x02:
728 return nvme_identify_nslist(n, c);
729 default:
730 trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
731 return NVME_INVALID_FIELD | NVME_DNR;
732 }
733 }
734
735 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
736 {
737 trace_nvme_setfeat_timestamp(ts);
738
739 n->host_timestamp = le64_to_cpu(ts);
740 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
741 }
742
743 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
744 {
745 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
746 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
747
748 union nvme_timestamp {
749 struct {
750 uint64_t timestamp:48;
751 uint64_t sync:1;
752 uint64_t origin:3;
753 uint64_t rsvd1:12;
754 };
755 uint64_t all;
756 };
757
758 union nvme_timestamp ts;
759 ts.all = 0;
760
761 /*
762 * If the sum of the Timestamp value set by the host and the elapsed
763 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
764 */
765 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
766
767 /* If the host timestamp is non-zero, set the timestamp origin */
768 ts.origin = n->host_timestamp ? 0x01 : 0x00;
769
770 trace_nvme_getfeat_timestamp(ts.all);
771
772 return cpu_to_le64(ts.all);
773 }
774
775 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
776 {
777 uint64_t prp1 = le64_to_cpu(cmd->prp1);
778 uint64_t prp2 = le64_to_cpu(cmd->prp2);
779
780 uint64_t timestamp = nvme_get_timestamp(n);
781
782 return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
783 sizeof(timestamp), prp1, prp2);
784 }
785
786 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
787 {
788 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
789 uint32_t result;
790
791 switch (dw10) {
792 case NVME_VOLATILE_WRITE_CACHE:
793 result = blk_enable_write_cache(n->conf.blk);
794 trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
795 break;
796 case NVME_NUMBER_OF_QUEUES:
797 result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
798 trace_nvme_getfeat_numq(result);
799 break;
800 case NVME_TIMESTAMP:
801 return nvme_get_feature_timestamp(n, cmd);
802 break;
803 default:
804 trace_nvme_err_invalid_getfeat(dw10);
805 return NVME_INVALID_FIELD | NVME_DNR;
806 }
807
808 req->cqe.result = result;
809 return NVME_SUCCESS;
810 }
811
812 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
813 {
814 uint16_t ret;
815 uint64_t timestamp;
816 uint64_t prp1 = le64_to_cpu(cmd->prp1);
817 uint64_t prp2 = le64_to_cpu(cmd->prp2);
818
819 ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
820 sizeof(timestamp), prp1, prp2);
821 if (ret != NVME_SUCCESS) {
822 return ret;
823 }
824
825 nvme_set_timestamp(n, timestamp);
826
827 return NVME_SUCCESS;
828 }
829
830 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
831 {
832 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
833 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
834
835 switch (dw10) {
836 case NVME_VOLATILE_WRITE_CACHE:
837 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
838 break;
839 case NVME_NUMBER_OF_QUEUES:
840 trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
841 ((dw11 >> 16) & 0xFFFF) + 1,
842 n->num_queues - 1, n->num_queues - 1);
843 req->cqe.result =
844 cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
845 break;
846
847 case NVME_TIMESTAMP:
848 return nvme_set_feature_timestamp(n, cmd);
849 break;
850
851 default:
852 trace_nvme_err_invalid_setfeat(dw10);
853 return NVME_INVALID_FIELD | NVME_DNR;
854 }
855 return NVME_SUCCESS;
856 }
857
858 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
859 {
860 switch (cmd->opcode) {
861 case NVME_ADM_CMD_DELETE_SQ:
862 return nvme_del_sq(n, cmd);
863 case NVME_ADM_CMD_CREATE_SQ:
864 return nvme_create_sq(n, cmd);
865 case NVME_ADM_CMD_DELETE_CQ:
866 return nvme_del_cq(n, cmd);
867 case NVME_ADM_CMD_CREATE_CQ:
868 return nvme_create_cq(n, cmd);
869 case NVME_ADM_CMD_IDENTIFY:
870 return nvme_identify(n, cmd);
871 case NVME_ADM_CMD_SET_FEATURES:
872 return nvme_set_feature(n, cmd, req);
873 case NVME_ADM_CMD_GET_FEATURES:
874 return nvme_get_feature(n, cmd, req);
875 default:
876 trace_nvme_err_invalid_admin_opc(cmd->opcode);
877 return NVME_INVALID_OPCODE | NVME_DNR;
878 }
879 }
880
881 static void nvme_process_sq(void *opaque)
882 {
883 NvmeSQueue *sq = opaque;
884 NvmeCtrl *n = sq->ctrl;
885 NvmeCQueue *cq = n->cq[sq->cqid];
886
887 uint16_t status;
888 hwaddr addr;
889 NvmeCmd cmd;
890 NvmeRequest *req;
891
892 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
893 addr = sq->dma_addr + sq->head * n->sqe_size;
894 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
895 nvme_inc_sq_head(sq);
896
897 req = QTAILQ_FIRST(&sq->req_list);
898 QTAILQ_REMOVE(&sq->req_list, req, entry);
899 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
900 memset(&req->cqe, 0, sizeof(req->cqe));
901 req->cqe.cid = cmd.cid;
902
903 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
904 nvme_admin_cmd(n, &cmd, req);
905 if (status != NVME_NO_COMPLETE) {
906 req->status = status;
907 nvme_enqueue_req_completion(cq, req);
908 }
909 }
910 }
911
912 static void nvme_clear_ctrl(NvmeCtrl *n)
913 {
914 int i;
915
916 blk_drain(n->conf.blk);
917
918 for (i = 0; i < n->num_queues; i++) {
919 if (n->sq[i] != NULL) {
920 nvme_free_sq(n->sq[i], n);
921 }
922 }
923 for (i = 0; i < n->num_queues; i++) {
924 if (n->cq[i] != NULL) {
925 nvme_free_cq(n->cq[i], n);
926 }
927 }
928
929 blk_flush(n->conf.blk);
930 n->bar.cc = 0;
931 }
932
933 static int nvme_start_ctrl(NvmeCtrl *n)
934 {
935 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
936 uint32_t page_size = 1 << page_bits;
937
938 if (unlikely(n->cq[0])) {
939 trace_nvme_err_startfail_cq();
940 return -1;
941 }
942 if (unlikely(n->sq[0])) {
943 trace_nvme_err_startfail_sq();
944 return -1;
945 }
946 if (unlikely(!n->bar.asq)) {
947 trace_nvme_err_startfail_nbarasq();
948 return -1;
949 }
950 if (unlikely(!n->bar.acq)) {
951 trace_nvme_err_startfail_nbaracq();
952 return -1;
953 }
954 if (unlikely(n->bar.asq & (page_size - 1))) {
955 trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
956 return -1;
957 }
958 if (unlikely(n->bar.acq & (page_size - 1))) {
959 trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
960 return -1;
961 }
962 if (unlikely(NVME_CC_MPS(n->bar.cc) <
963 NVME_CAP_MPSMIN(n->bar.cap))) {
964 trace_nvme_err_startfail_page_too_small(
965 NVME_CC_MPS(n->bar.cc),
966 NVME_CAP_MPSMIN(n->bar.cap));
967 return -1;
968 }
969 if (unlikely(NVME_CC_MPS(n->bar.cc) >
970 NVME_CAP_MPSMAX(n->bar.cap))) {
971 trace_nvme_err_startfail_page_too_large(
972 NVME_CC_MPS(n->bar.cc),
973 NVME_CAP_MPSMAX(n->bar.cap));
974 return -1;
975 }
976 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
977 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
978 trace_nvme_err_startfail_cqent_too_small(
979 NVME_CC_IOCQES(n->bar.cc),
980 NVME_CTRL_CQES_MIN(n->bar.cap));
981 return -1;
982 }
983 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
984 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
985 trace_nvme_err_startfail_cqent_too_large(
986 NVME_CC_IOCQES(n->bar.cc),
987 NVME_CTRL_CQES_MAX(n->bar.cap));
988 return -1;
989 }
990 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
991 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
992 trace_nvme_err_startfail_sqent_too_small(
993 NVME_CC_IOSQES(n->bar.cc),
994 NVME_CTRL_SQES_MIN(n->bar.cap));
995 return -1;
996 }
997 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
998 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
999 trace_nvme_err_startfail_sqent_too_large(
1000 NVME_CC_IOSQES(n->bar.cc),
1001 NVME_CTRL_SQES_MAX(n->bar.cap));
1002 return -1;
1003 }
1004 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1005 trace_nvme_err_startfail_asqent_sz_zero();
1006 return -1;
1007 }
1008 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1009 trace_nvme_err_startfail_acqent_sz_zero();
1010 return -1;
1011 }
1012
1013 n->page_bits = page_bits;
1014 n->page_size = page_size;
1015 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1016 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1017 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1018 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1019 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1020 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1021 NVME_AQA_ASQS(n->bar.aqa) + 1);
1022
1023 nvme_set_timestamp(n, 0ULL);
1024
1025 return 0;
1026 }
1027
1028 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1029 unsigned size)
1030 {
1031 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1032 NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
1033 "MMIO write not 32-bit aligned,"
1034 " offset=0x%"PRIx64"", offset);
1035 /* should be ignored, fall through for now */
1036 }
1037
1038 if (unlikely(size < sizeof(uint32_t))) {
1039 NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
1040 "MMIO write smaller than 32-bits,"
1041 " offset=0x%"PRIx64", size=%u",
1042 offset, size);
1043 /* should be ignored, fall through for now */
1044 }
1045
1046 switch (offset) {
1047 case 0xc: /* INTMS */
1048 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1049 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1050 "undefined access to interrupt mask set"
1051 " when MSI-X is enabled");
1052 /* should be ignored, fall through for now */
1053 }
1054 n->bar.intms |= data & 0xffffffff;
1055 n->bar.intmc = n->bar.intms;
1056 trace_nvme_mmio_intm_set(data & 0xffffffff,
1057 n->bar.intmc);
1058 nvme_irq_check(n);
1059 break;
1060 case 0x10: /* INTMC */
1061 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1062 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1063 "undefined access to interrupt mask clr"
1064 " when MSI-X is enabled");
1065 /* should be ignored, fall through for now */
1066 }
1067 n->bar.intms &= ~(data & 0xffffffff);
1068 n->bar.intmc = n->bar.intms;
1069 trace_nvme_mmio_intm_clr(data & 0xffffffff,
1070 n->bar.intmc);
1071 nvme_irq_check(n);
1072 break;
1073 case 0x14: /* CC */
1074 trace_nvme_mmio_cfg(data & 0xffffffff);
1075 /* Windows first sends data, then sends enable bit */
1076 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1077 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1078 {
1079 n->bar.cc = data;
1080 }
1081
1082 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1083 n->bar.cc = data;
1084 if (unlikely(nvme_start_ctrl(n))) {
1085 trace_nvme_err_startfail();
1086 n->bar.csts = NVME_CSTS_FAILED;
1087 } else {
1088 trace_nvme_mmio_start_success();
1089 n->bar.csts = NVME_CSTS_READY;
1090 }
1091 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1092 trace_nvme_mmio_stopped();
1093 nvme_clear_ctrl(n);
1094 n->bar.csts &= ~NVME_CSTS_READY;
1095 }
1096 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1097 trace_nvme_mmio_shutdown_set();
1098 nvme_clear_ctrl(n);
1099 n->bar.cc = data;
1100 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1101 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1102 trace_nvme_mmio_shutdown_cleared();
1103 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1104 n->bar.cc = data;
1105 }
1106 break;
1107 case 0x1C: /* CSTS */
1108 if (data & (1 << 4)) {
1109 NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
1110 "attempted to W1C CSTS.NSSRO"
1111 " but CAP.NSSRS is zero (not supported)");
1112 } else if (data != 0) {
1113 NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
1114 "attempted to set a read only bit"
1115 " of controller status");
1116 }
1117 break;
1118 case 0x20: /* NSSR */
1119 if (data == 0x4E564D65) {
1120 trace_nvme_ub_mmiowr_ssreset_unsupported();
1121 } else {
1122 /* The spec says that writes of other values have no effect */
1123 return;
1124 }
1125 break;
1126 case 0x24: /* AQA */
1127 n->bar.aqa = data & 0xffffffff;
1128 trace_nvme_mmio_aqattr(data & 0xffffffff);
1129 break;
1130 case 0x28: /* ASQ */
1131 n->bar.asq = data;
1132 trace_nvme_mmio_asqaddr(data);
1133 break;
1134 case 0x2c: /* ASQ hi */
1135 n->bar.asq |= data << 32;
1136 trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1137 break;
1138 case 0x30: /* ACQ */
1139 trace_nvme_mmio_acqaddr(data);
1140 n->bar.acq = data;
1141 break;
1142 case 0x34: /* ACQ hi */
1143 n->bar.acq |= data << 32;
1144 trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1145 break;
1146 case 0x38: /* CMBLOC */
1147 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1148 "invalid write to reserved CMBLOC"
1149 " when CMBSZ is zero, ignored");
1150 return;
1151 case 0x3C: /* CMBSZ */
1152 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1153 "invalid write to read only CMBSZ, ignored");
1154 return;
1155 case 0xE00: /* PMRCAP */
1156 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrcap_readonly,
1157 "invalid write to PMRCAP register, ignored");
1158 return;
1159 case 0xE04: /* TODO PMRCTL */
1160 break;
1161 case 0xE08: /* PMRSTS */
1162 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrsts_readonly,
1163 "invalid write to PMRSTS register, ignored");
1164 return;
1165 case 0xE0C: /* PMREBS */
1166 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrebs_readonly,
1167 "invalid write to PMREBS register, ignored");
1168 return;
1169 case 0xE10: /* PMRSWTP */
1170 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrswtp_readonly,
1171 "invalid write to PMRSWTP register, ignored");
1172 return;
1173 case 0xE14: /* TODO PMRMSC */
1174 break;
1175 default:
1176 NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1177 "invalid MMIO write,"
1178 " offset=0x%"PRIx64", data=%"PRIx64"",
1179 offset, data);
1180 break;
1181 }
1182 }
1183
1184 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1185 {
1186 NvmeCtrl *n = (NvmeCtrl *)opaque;
1187 uint8_t *ptr = (uint8_t *)&n->bar;
1188 uint64_t val = 0;
1189
1190 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1191 NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1192 "MMIO read not 32-bit aligned,"
1193 " offset=0x%"PRIx64"", addr);
1194 /* should RAZ, fall through for now */
1195 } else if (unlikely(size < sizeof(uint32_t))) {
1196 NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1197 "MMIO read smaller than 32-bits,"
1198 " offset=0x%"PRIx64"", addr);
1199 /* should RAZ, fall through for now */
1200 }
1201
1202 if (addr < sizeof(n->bar)) {
1203 /*
1204 * When PMRWBM bit 1 is set then read from
1205 * from PMRSTS should ensure prior writes
1206 * made it to persistent media
1207 */
1208 if (addr == 0xE08 &&
1209 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1210 qemu_ram_writeback(n->pmrdev->mr.ram_block,
1211 0, n->pmrdev->size);
1212 }
1213 memcpy(&val, ptr + addr, size);
1214 } else {
1215 NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1216 "MMIO read beyond last register,"
1217 " offset=0x%"PRIx64", returning 0", addr);
1218 }
1219
1220 return val;
1221 }
1222
1223 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1224 {
1225 uint32_t qid;
1226
1227 if (unlikely(addr & ((1 << 2) - 1))) {
1228 NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1229 "doorbell write not 32-bit aligned,"
1230 " offset=0x%"PRIx64", ignoring", addr);
1231 return;
1232 }
1233
1234 if (((addr - 0x1000) >> 2) & 1) {
1235 /* Completion queue doorbell write */
1236
1237 uint16_t new_head = val & 0xffff;
1238 int start_sqs;
1239 NvmeCQueue *cq;
1240
1241 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1242 if (unlikely(nvme_check_cqid(n, qid))) {
1243 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1244 "completion queue doorbell write"
1245 " for nonexistent queue,"
1246 " sqid=%"PRIu32", ignoring", qid);
1247 return;
1248 }
1249
1250 cq = n->cq[qid];
1251 if (unlikely(new_head >= cq->size)) {
1252 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1253 "completion queue doorbell write value"
1254 " beyond queue size, sqid=%"PRIu32","
1255 " new_head=%"PRIu16", ignoring",
1256 qid, new_head);
1257 return;
1258 }
1259
1260 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1261 cq->head = new_head;
1262 if (start_sqs) {
1263 NvmeSQueue *sq;
1264 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1265 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1266 }
1267 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1268 }
1269
1270 if (cq->tail == cq->head) {
1271 nvme_irq_deassert(n, cq);
1272 }
1273 } else {
1274 /* Submission queue doorbell write */
1275
1276 uint16_t new_tail = val & 0xffff;
1277 NvmeSQueue *sq;
1278
1279 qid = (addr - 0x1000) >> 3;
1280 if (unlikely(nvme_check_sqid(n, qid))) {
1281 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1282 "submission queue doorbell write"
1283 " for nonexistent queue,"
1284 " sqid=%"PRIu32", ignoring", qid);
1285 return;
1286 }
1287
1288 sq = n->sq[qid];
1289 if (unlikely(new_tail >= sq->size)) {
1290 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1291 "submission queue doorbell write value"
1292 " beyond queue size, sqid=%"PRIu32","
1293 " new_tail=%"PRIu16", ignoring",
1294 qid, new_tail);
1295 return;
1296 }
1297
1298 sq->tail = new_tail;
1299 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1300 }
1301 }
1302
1303 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1304 unsigned size)
1305 {
1306 NvmeCtrl *n = (NvmeCtrl *)opaque;
1307 if (addr < sizeof(n->bar)) {
1308 nvme_write_bar(n, addr, data, size);
1309 } else if (addr >= 0x1000) {
1310 nvme_process_db(n, addr, data);
1311 }
1312 }
1313
1314 static const MemoryRegionOps nvme_mmio_ops = {
1315 .read = nvme_mmio_read,
1316 .write = nvme_mmio_write,
1317 .endianness = DEVICE_LITTLE_ENDIAN,
1318 .impl = {
1319 .min_access_size = 2,
1320 .max_access_size = 8,
1321 },
1322 };
1323
1324 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1325 unsigned size)
1326 {
1327 NvmeCtrl *n = (NvmeCtrl *)opaque;
1328 stn_le_p(&n->cmbuf[addr], size, data);
1329 }
1330
1331 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1332 {
1333 NvmeCtrl *n = (NvmeCtrl *)opaque;
1334 return ldn_le_p(&n->cmbuf[addr], size);
1335 }
1336
1337 static const MemoryRegionOps nvme_cmb_ops = {
1338 .read = nvme_cmb_read,
1339 .write = nvme_cmb_write,
1340 .endianness = DEVICE_LITTLE_ENDIAN,
1341 .impl = {
1342 .min_access_size = 1,
1343 .max_access_size = 8,
1344 },
1345 };
1346
1347 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1348 {
1349 NvmeCtrl *n = NVME(pci_dev);
1350 NvmeIdCtrl *id = &n->id_ctrl;
1351
1352 int i;
1353 int64_t bs_size;
1354 uint8_t *pci_conf;
1355
1356 if (!n->num_queues) {
1357 error_setg(errp, "num_queues can't be zero");
1358 return;
1359 }
1360
1361 if (!n->conf.blk) {
1362 error_setg(errp, "drive property not set");
1363 return;
1364 }
1365
1366 bs_size = blk_getlength(n->conf.blk);
1367 if (bs_size < 0) {
1368 error_setg(errp, "could not get backing file size");
1369 return;
1370 }
1371
1372 if (!n->serial) {
1373 error_setg(errp, "serial property not set");
1374 return;
1375 }
1376
1377 if (!n->cmb_size_mb && n->pmrdev) {
1378 if (host_memory_backend_is_mapped(n->pmrdev)) {
1379 char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1380 error_setg(errp, "can't use already busy memdev: %s", path);
1381 g_free(path);
1382 return;
1383 }
1384
1385 if (!is_power_of_2(n->pmrdev->size)) {
1386 error_setg(errp, "pmr backend size needs to be power of 2 in size");
1387 return;
1388 }
1389
1390 host_memory_backend_set_mapped(n->pmrdev, true);
1391 }
1392
1393 blkconf_blocksizes(&n->conf);
1394 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1395 false, errp)) {
1396 return;
1397 }
1398
1399 pci_conf = pci_dev->config;
1400 pci_conf[PCI_INTERRUPT_PIN] = 1;
1401 pci_config_set_prog_interface(pci_dev->config, 0x2);
1402 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1403 pcie_endpoint_cap_init(pci_dev, 0x80);
1404
1405 n->num_namespaces = 1;
1406 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1407 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1408
1409 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1410 n->sq = g_new0(NvmeSQueue *, n->num_queues);
1411 n->cq = g_new0(NvmeCQueue *, n->num_queues);
1412
1413 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1414 "nvme", n->reg_size);
1415 pci_register_bar(pci_dev, 0,
1416 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1417 &n->iomem);
1418 msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
1419
1420 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1421 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1422 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1423 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1424 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1425 id->rab = 6;
1426 id->ieee[0] = 0x00;
1427 id->ieee[1] = 0x02;
1428 id->ieee[2] = 0xb3;
1429 id->oacs = cpu_to_le16(0);
1430 id->frmw = 7 << 1;
1431 id->lpa = 1 << 0;
1432 id->sqes = (0x6 << 4) | 0x6;
1433 id->cqes = (0x4 << 4) | 0x4;
1434 id->nn = cpu_to_le32(n->num_namespaces);
1435 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1436 id->psd[0].mp = cpu_to_le16(0x9c4);
1437 id->psd[0].enlat = cpu_to_le32(0x10);
1438 id->psd[0].exlat = cpu_to_le32(0x4);
1439 if (blk_enable_write_cache(n->conf.blk)) {
1440 id->vwc = 1;
1441 }
1442
1443 n->bar.cap = 0;
1444 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1445 NVME_CAP_SET_CQR(n->bar.cap, 1);
1446 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1447 NVME_CAP_SET_CSS(n->bar.cap, 1);
1448 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1449
1450 n->bar.vs = 0x00010200;
1451 n->bar.intmc = n->bar.intms = 0;
1452
1453 if (n->cmb_size_mb) {
1454
1455 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1456 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1457
1458 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1459 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1460 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1461 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1462 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1463 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1464 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1465
1466 n->cmbloc = n->bar.cmbloc;
1467 n->cmbsz = n->bar.cmbsz;
1468
1469 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1470 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1471 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1472 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1473 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1474 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1475
1476 } else if (n->pmrdev) {
1477 /* Controller Capabilities register */
1478 NVME_CAP_SET_PMRS(n->bar.cap, 1);
1479
1480 /* PMR Capabities register */
1481 n->bar.pmrcap = 0;
1482 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1483 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1484 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2);
1485 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1486 /* Turn on bit 1 support */
1487 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1488 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1489 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1490
1491 /* PMR Control register */
1492 n->bar.pmrctl = 0;
1493 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1494
1495 /* PMR Status register */
1496 n->bar.pmrsts = 0;
1497 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1498 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1499 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1500 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1501
1502 /* PMR Elasticity Buffer Size register */
1503 n->bar.pmrebs = 0;
1504 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1505 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1506 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1507
1508 /* PMR Sustained Write Throughput register */
1509 n->bar.pmrswtp = 0;
1510 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1511 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1512
1513 /* PMR Memory Space Control register */
1514 n->bar.pmrmsc = 0;
1515 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1516 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1517
1518 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1519 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1520 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1521 }
1522
1523 for (i = 0; i < n->num_namespaces; i++) {
1524 NvmeNamespace *ns = &n->namespaces[i];
1525 NvmeIdNs *id_ns = &ns->id_ns;
1526 id_ns->nsfeat = 0;
1527 id_ns->nlbaf = 0;
1528 id_ns->flbas = 0;
1529 id_ns->mc = 0;
1530 id_ns->dpc = 0;
1531 id_ns->dps = 0;
1532 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1533 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1534 cpu_to_le64(n->ns_size >>
1535 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1536 }
1537 }
1538
1539 static void nvme_exit(PCIDevice *pci_dev)
1540 {
1541 NvmeCtrl *n = NVME(pci_dev);
1542
1543 nvme_clear_ctrl(n);
1544 g_free(n->namespaces);
1545 g_free(n->cq);
1546 g_free(n->sq);
1547
1548 if (n->cmb_size_mb) {
1549 g_free(n->cmbuf);
1550 }
1551
1552 if (n->pmrdev) {
1553 host_memory_backend_set_mapped(n->pmrdev, false);
1554 }
1555 msix_uninit_exclusive_bar(pci_dev);
1556 }
1557
1558 static Property nvme_props[] = {
1559 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1560 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1561 HostMemoryBackend *),
1562 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1563 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1564 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1565 DEFINE_PROP_END_OF_LIST(),
1566 };
1567
1568 static const VMStateDescription nvme_vmstate = {
1569 .name = "nvme",
1570 .unmigratable = 1,
1571 };
1572
1573 static void nvme_class_init(ObjectClass *oc, void *data)
1574 {
1575 DeviceClass *dc = DEVICE_CLASS(oc);
1576 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1577
1578 pc->realize = nvme_realize;
1579 pc->exit = nvme_exit;
1580 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1581 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1582 pc->device_id = 0x5845;
1583 pc->revision = 2;
1584
1585 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1586 dc->desc = "Non-Volatile Memory Express";
1587 device_class_set_props(dc, nvme_props);
1588 dc->vmsd = &nvme_vmstate;
1589 }
1590
1591 static void nvme_instance_init(Object *obj)
1592 {
1593 NvmeCtrl *s = NVME(obj);
1594
1595 device_add_bootindex_property(obj, &s->conf.bootindex,
1596 "bootindex", "/namespace@1,0",
1597 DEVICE(obj));
1598 }
1599
1600 static const TypeInfo nvme_info = {
1601 .name = TYPE_NVME,
1602 .parent = TYPE_PCI_DEVICE,
1603 .instance_size = sizeof(NvmeCtrl),
1604 .class_init = nvme_class_init,
1605 .instance_init = nvme_instance_init,
1606 .interfaces = (InterfaceInfo[]) {
1607 { INTERFACE_PCIE_DEVICE },
1608 { }
1609 },
1610 };
1611
1612 static void nvme_register_types(void)
1613 {
1614 type_register_static(&nvme_info);
1615 }
1616
1617 type_init(nvme_register_types)