]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
a5fedb2906df0a187c20571551723aa2a3a38b31
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21 */
22
23 #include "qemu/osdep.h"
24 #include <hw/block/block.h>
25 #include <hw/hw.h>
26 #include <hw/pci/msix.h>
27 #include <hw/pci/pci.h>
28 #include "sysemu/sysemu.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/block-backend.h"
31
32 #include "nvme.h"
33
34 static void nvme_process_sq(void *opaque);
35
36 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
37 {
38 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
39 }
40
41 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
42 {
43 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
44 }
45
46 static void nvme_inc_cq_tail(NvmeCQueue *cq)
47 {
48 cq->tail++;
49 if (cq->tail >= cq->size) {
50 cq->tail = 0;
51 cq->phase = !cq->phase;
52 }
53 }
54
55 static void nvme_inc_sq_head(NvmeSQueue *sq)
56 {
57 sq->head = (sq->head + 1) % sq->size;
58 }
59
60 static uint8_t nvme_cq_full(NvmeCQueue *cq)
61 {
62 return (cq->tail + 1) % cq->size == cq->head;
63 }
64
65 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
66 {
67 return sq->head == sq->tail;
68 }
69
70 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
71 {
72 if (cq->irq_enabled) {
73 if (msix_enabled(&(n->parent_obj))) {
74 msix_notify(&(n->parent_obj), cq->vector);
75 } else {
76 pci_irq_pulse(&n->parent_obj);
77 }
78 }
79 }
80
81 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
82 uint32_t len, NvmeCtrl *n)
83 {
84 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
85 trans_len = MIN(len, trans_len);
86 int num_prps = (len >> n->page_bits) + 1;
87
88 if (!prp1) {
89 return NVME_INVALID_FIELD | NVME_DNR;
90 }
91
92 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
93 qemu_sglist_add(qsg, prp1, trans_len);
94 len -= trans_len;
95 if (len) {
96 if (!prp2) {
97 goto unmap;
98 }
99 if (len > n->page_size) {
100 uint64_t prp_list[n->max_prp_ents];
101 uint32_t nents, prp_trans;
102 int i = 0;
103
104 nents = (len + n->page_size - 1) >> n->page_bits;
105 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
106 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
107 while (len != 0) {
108 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
109
110 if (i == n->max_prp_ents - 1 && len > n->page_size) {
111 if (!prp_ent || prp_ent & (n->page_size - 1)) {
112 goto unmap;
113 }
114
115 i = 0;
116 nents = (len + n->page_size - 1) >> n->page_bits;
117 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
118 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
119 prp_trans);
120 prp_ent = le64_to_cpu(prp_list[i]);
121 }
122
123 if (!prp_ent || prp_ent & (n->page_size - 1)) {
124 goto unmap;
125 }
126
127 trans_len = MIN(len, n->page_size);
128 qemu_sglist_add(qsg, prp_ent, trans_len);
129 len -= trans_len;
130 i++;
131 }
132 } else {
133 if (prp2 & (n->page_size - 1)) {
134 goto unmap;
135 }
136 qemu_sglist_add(qsg, prp2, len);
137 }
138 }
139 return NVME_SUCCESS;
140
141 unmap:
142 qemu_sglist_destroy(qsg);
143 return NVME_INVALID_FIELD | NVME_DNR;
144 }
145
146 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
147 uint64_t prp1, uint64_t prp2)
148 {
149 QEMUSGList qsg;
150
151 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
152 return NVME_INVALID_FIELD | NVME_DNR;
153 }
154 if (dma_buf_read(ptr, len, &qsg)) {
155 qemu_sglist_destroy(&qsg);
156 return NVME_INVALID_FIELD | NVME_DNR;
157 }
158 qemu_sglist_destroy(&qsg);
159 return NVME_SUCCESS;
160 }
161
162 static void nvme_post_cqes(void *opaque)
163 {
164 NvmeCQueue *cq = opaque;
165 NvmeCtrl *n = cq->ctrl;
166 NvmeRequest *req, *next;
167
168 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
169 NvmeSQueue *sq;
170 hwaddr addr;
171
172 if (nvme_cq_full(cq)) {
173 break;
174 }
175
176 QTAILQ_REMOVE(&cq->req_list, req, entry);
177 sq = req->sq;
178 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
179 req->cqe.sq_id = cpu_to_le16(sq->sqid);
180 req->cqe.sq_head = cpu_to_le16(sq->head);
181 addr = cq->dma_addr + cq->tail * n->cqe_size;
182 nvme_inc_cq_tail(cq);
183 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
184 sizeof(req->cqe));
185 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
186 }
187 nvme_isr_notify(n, cq);
188 }
189
190 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
191 {
192 assert(cq->cqid == req->sq->cqid);
193 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
194 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
195 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
196 }
197
198 static void nvme_rw_cb(void *opaque, int ret)
199 {
200 NvmeRequest *req = opaque;
201 NvmeSQueue *sq = req->sq;
202 NvmeCtrl *n = sq->ctrl;
203 NvmeCQueue *cq = n->cq[sq->cqid];
204
205 if (!ret) {
206 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
207 req->status = NVME_SUCCESS;
208 } else {
209 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
210 req->status = NVME_INTERNAL_DEV_ERROR;
211 }
212 if (req->has_sg) {
213 qemu_sglist_destroy(&req->qsg);
214 }
215 nvme_enqueue_req_completion(cq, req);
216 }
217
218 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
219 NvmeRequest *req)
220 {
221 req->has_sg = false;
222 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
223 BLOCK_ACCT_FLUSH);
224 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
225
226 return NVME_NO_COMPLETE;
227 }
228
229 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
230 NvmeRequest *req)
231 {
232 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
233 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
234 uint64_t slba = le64_to_cpu(rw->slba);
235 uint64_t prp1 = le64_to_cpu(rw->prp1);
236 uint64_t prp2 = le64_to_cpu(rw->prp2);
237
238 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
239 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
240 uint64_t data_size = (uint64_t)nlb << data_shift;
241 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
242 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
243 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
244
245 if ((slba + nlb) > ns->id_ns.nsze) {
246 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
247 return NVME_LBA_RANGE | NVME_DNR;
248 }
249
250 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
251 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
252 return NVME_INVALID_FIELD | NVME_DNR;
253 }
254
255 assert((nlb << data_shift) == req->qsg.size);
256
257 req->has_sg = true;
258 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
259 req->aiocb = is_write ?
260 dma_blk_write(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req) :
261 dma_blk_read(n->conf.blk, &req->qsg, aio_slba, nvme_rw_cb, req);
262
263 return NVME_NO_COMPLETE;
264 }
265
266 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
267 {
268 NvmeNamespace *ns;
269 uint32_t nsid = le32_to_cpu(cmd->nsid);
270
271 if (nsid == 0 || nsid > n->num_namespaces) {
272 return NVME_INVALID_NSID | NVME_DNR;
273 }
274
275 ns = &n->namespaces[nsid - 1];
276 switch (cmd->opcode) {
277 case NVME_CMD_FLUSH:
278 return nvme_flush(n, ns, cmd, req);
279 case NVME_CMD_WRITE:
280 case NVME_CMD_READ:
281 return nvme_rw(n, ns, cmd, req);
282 default:
283 return NVME_INVALID_OPCODE | NVME_DNR;
284 }
285 }
286
287 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
288 {
289 n->sq[sq->sqid] = NULL;
290 timer_del(sq->timer);
291 timer_free(sq->timer);
292 g_free(sq->io_req);
293 if (sq->sqid) {
294 g_free(sq);
295 }
296 }
297
298 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
299 {
300 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
301 NvmeRequest *req, *next;
302 NvmeSQueue *sq;
303 NvmeCQueue *cq;
304 uint16_t qid = le16_to_cpu(c->qid);
305
306 if (!qid || nvme_check_sqid(n, qid)) {
307 return NVME_INVALID_QID | NVME_DNR;
308 }
309
310 sq = n->sq[qid];
311 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
312 req = QTAILQ_FIRST(&sq->out_req_list);
313 assert(req->aiocb);
314 blk_aio_cancel(req->aiocb);
315 }
316 if (!nvme_check_cqid(n, sq->cqid)) {
317 cq = n->cq[sq->cqid];
318 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
319
320 nvme_post_cqes(cq);
321 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
322 if (req->sq == sq) {
323 QTAILQ_REMOVE(&cq->req_list, req, entry);
324 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
325 }
326 }
327 }
328
329 nvme_free_sq(sq, n);
330 return NVME_SUCCESS;
331 }
332
333 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
334 uint16_t sqid, uint16_t cqid, uint16_t size)
335 {
336 int i;
337 NvmeCQueue *cq;
338
339 sq->ctrl = n;
340 sq->dma_addr = dma_addr;
341 sq->sqid = sqid;
342 sq->size = size;
343 sq->cqid = cqid;
344 sq->head = sq->tail = 0;
345 sq->io_req = g_new(NvmeRequest, sq->size);
346
347 QTAILQ_INIT(&sq->req_list);
348 QTAILQ_INIT(&sq->out_req_list);
349 for (i = 0; i < sq->size; i++) {
350 sq->io_req[i].sq = sq;
351 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
352 }
353 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
354
355 assert(n->cq[cqid]);
356 cq = n->cq[cqid];
357 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
358 n->sq[sqid] = sq;
359 }
360
361 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
362 {
363 NvmeSQueue *sq;
364 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
365
366 uint16_t cqid = le16_to_cpu(c->cqid);
367 uint16_t sqid = le16_to_cpu(c->sqid);
368 uint16_t qsize = le16_to_cpu(c->qsize);
369 uint16_t qflags = le16_to_cpu(c->sq_flags);
370 uint64_t prp1 = le64_to_cpu(c->prp1);
371
372 if (!cqid || nvme_check_cqid(n, cqid)) {
373 return NVME_INVALID_CQID | NVME_DNR;
374 }
375 if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
376 return NVME_INVALID_QID | NVME_DNR;
377 }
378 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
379 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
380 }
381 if (!prp1 || prp1 & (n->page_size - 1)) {
382 return NVME_INVALID_FIELD | NVME_DNR;
383 }
384 if (!(NVME_SQ_FLAGS_PC(qflags))) {
385 return NVME_INVALID_FIELD | NVME_DNR;
386 }
387 sq = g_malloc0(sizeof(*sq));
388 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
389 return NVME_SUCCESS;
390 }
391
392 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
393 {
394 n->cq[cq->cqid] = NULL;
395 timer_del(cq->timer);
396 timer_free(cq->timer);
397 msix_vector_unuse(&n->parent_obj, cq->vector);
398 if (cq->cqid) {
399 g_free(cq);
400 }
401 }
402
403 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
404 {
405 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
406 NvmeCQueue *cq;
407 uint16_t qid = le16_to_cpu(c->qid);
408
409 if (!qid || nvme_check_cqid(n, qid)) {
410 return NVME_INVALID_CQID | NVME_DNR;
411 }
412
413 cq = n->cq[qid];
414 if (!QTAILQ_EMPTY(&cq->sq_list)) {
415 return NVME_INVALID_QUEUE_DEL;
416 }
417 nvme_free_cq(cq, n);
418 return NVME_SUCCESS;
419 }
420
421 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
422 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
423 {
424 cq->ctrl = n;
425 cq->cqid = cqid;
426 cq->size = size;
427 cq->dma_addr = dma_addr;
428 cq->phase = 1;
429 cq->irq_enabled = irq_enabled;
430 cq->vector = vector;
431 cq->head = cq->tail = 0;
432 QTAILQ_INIT(&cq->req_list);
433 QTAILQ_INIT(&cq->sq_list);
434 msix_vector_use(&n->parent_obj, cq->vector);
435 n->cq[cqid] = cq;
436 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
437 }
438
439 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
440 {
441 NvmeCQueue *cq;
442 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
443 uint16_t cqid = le16_to_cpu(c->cqid);
444 uint16_t vector = le16_to_cpu(c->irq_vector);
445 uint16_t qsize = le16_to_cpu(c->qsize);
446 uint16_t qflags = le16_to_cpu(c->cq_flags);
447 uint64_t prp1 = le64_to_cpu(c->prp1);
448
449 if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
450 return NVME_INVALID_CQID | NVME_DNR;
451 }
452 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
453 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
454 }
455 if (!prp1) {
456 return NVME_INVALID_FIELD | NVME_DNR;
457 }
458 if (vector > n->num_queues) {
459 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
460 }
461 if (!(NVME_CQ_FLAGS_PC(qflags))) {
462 return NVME_INVALID_FIELD | NVME_DNR;
463 }
464
465 cq = g_malloc0(sizeof(*cq));
466 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
467 NVME_CQ_FLAGS_IEN(qflags));
468 return NVME_SUCCESS;
469 }
470
471 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
472 {
473 NvmeNamespace *ns;
474 NvmeIdentify *c = (NvmeIdentify *)cmd;
475 uint32_t cns = le32_to_cpu(c->cns);
476 uint32_t nsid = le32_to_cpu(c->nsid);
477 uint64_t prp1 = le64_to_cpu(c->prp1);
478 uint64_t prp2 = le64_to_cpu(c->prp2);
479
480 if (cns) {
481 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
482 prp1, prp2);
483 }
484 if (nsid == 0 || nsid > n->num_namespaces) {
485 return NVME_INVALID_NSID | NVME_DNR;
486 }
487
488 ns = &n->namespaces[nsid - 1];
489 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
490 prp1, prp2);
491 }
492
493 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
494 {
495 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
496 uint32_t result;
497
498 switch (dw10) {
499 case NVME_VOLATILE_WRITE_CACHE:
500 result = blk_enable_write_cache(n->conf.blk);
501 break;
502 case NVME_NUMBER_OF_QUEUES:
503 result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
504 break;
505 default:
506 return NVME_INVALID_FIELD | NVME_DNR;
507 }
508
509 req->cqe.result = result;
510 return NVME_SUCCESS;
511 }
512
513 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
514 {
515 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
516 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
517
518 switch (dw10) {
519 case NVME_VOLATILE_WRITE_CACHE:
520 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
521 break;
522 case NVME_NUMBER_OF_QUEUES:
523 req->cqe.result =
524 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
525 break;
526 default:
527 return NVME_INVALID_FIELD | NVME_DNR;
528 }
529 return NVME_SUCCESS;
530 }
531
532 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
533 {
534 switch (cmd->opcode) {
535 case NVME_ADM_CMD_DELETE_SQ:
536 return nvme_del_sq(n, cmd);
537 case NVME_ADM_CMD_CREATE_SQ:
538 return nvme_create_sq(n, cmd);
539 case NVME_ADM_CMD_DELETE_CQ:
540 return nvme_del_cq(n, cmd);
541 case NVME_ADM_CMD_CREATE_CQ:
542 return nvme_create_cq(n, cmd);
543 case NVME_ADM_CMD_IDENTIFY:
544 return nvme_identify(n, cmd);
545 case NVME_ADM_CMD_SET_FEATURES:
546 return nvme_set_feature(n, cmd, req);
547 case NVME_ADM_CMD_GET_FEATURES:
548 return nvme_get_feature(n, cmd, req);
549 default:
550 return NVME_INVALID_OPCODE | NVME_DNR;
551 }
552 }
553
554 static void nvme_process_sq(void *opaque)
555 {
556 NvmeSQueue *sq = opaque;
557 NvmeCtrl *n = sq->ctrl;
558 NvmeCQueue *cq = n->cq[sq->cqid];
559
560 uint16_t status;
561 hwaddr addr;
562 NvmeCmd cmd;
563 NvmeRequest *req;
564
565 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
566 addr = sq->dma_addr + sq->head * n->sqe_size;
567 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
568 nvme_inc_sq_head(sq);
569
570 req = QTAILQ_FIRST(&sq->req_list);
571 QTAILQ_REMOVE(&sq->req_list, req, entry);
572 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
573 memset(&req->cqe, 0, sizeof(req->cqe));
574 req->cqe.cid = cmd.cid;
575
576 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
577 nvme_admin_cmd(n, &cmd, req);
578 if (status != NVME_NO_COMPLETE) {
579 req->status = status;
580 nvme_enqueue_req_completion(cq, req);
581 }
582 }
583 }
584
585 static void nvme_clear_ctrl(NvmeCtrl *n)
586 {
587 int i;
588
589 for (i = 0; i < n->num_queues; i++) {
590 if (n->sq[i] != NULL) {
591 nvme_free_sq(n->sq[i], n);
592 }
593 }
594 for (i = 0; i < n->num_queues; i++) {
595 if (n->cq[i] != NULL) {
596 nvme_free_cq(n->cq[i], n);
597 }
598 }
599
600 blk_flush(n->conf.blk);
601 n->bar.cc = 0;
602 }
603
604 static int nvme_start_ctrl(NvmeCtrl *n)
605 {
606 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
607 uint32_t page_size = 1 << page_bits;
608
609 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
610 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
611 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
612 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
613 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
614 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
615 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
616 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
617 !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
618 return -1;
619 }
620
621 n->page_bits = page_bits;
622 n->page_size = page_size;
623 n->max_prp_ents = n->page_size / sizeof(uint64_t);
624 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
625 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
626 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
627 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
628 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
629 NVME_AQA_ASQS(n->bar.aqa) + 1);
630
631 return 0;
632 }
633
634 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
635 unsigned size)
636 {
637 switch (offset) {
638 case 0xc:
639 n->bar.intms |= data & 0xffffffff;
640 n->bar.intmc = n->bar.intms;
641 break;
642 case 0x10:
643 n->bar.intms &= ~(data & 0xffffffff);
644 n->bar.intmc = n->bar.intms;
645 break;
646 case 0x14:
647 /* Windows first sends data, then sends enable bit */
648 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
649 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
650 {
651 n->bar.cc = data;
652 }
653
654 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
655 n->bar.cc = data;
656 if (nvme_start_ctrl(n)) {
657 n->bar.csts = NVME_CSTS_FAILED;
658 } else {
659 n->bar.csts = NVME_CSTS_READY;
660 }
661 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
662 nvme_clear_ctrl(n);
663 n->bar.csts &= ~NVME_CSTS_READY;
664 }
665 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
666 nvme_clear_ctrl(n);
667 n->bar.cc = data;
668 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
669 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
670 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
671 n->bar.cc = data;
672 }
673 break;
674 case 0x24:
675 n->bar.aqa = data & 0xffffffff;
676 break;
677 case 0x28:
678 n->bar.asq = data;
679 break;
680 case 0x2c:
681 n->bar.asq |= data << 32;
682 break;
683 case 0x30:
684 n->bar.acq = data;
685 break;
686 case 0x34:
687 n->bar.acq |= data << 32;
688 break;
689 default:
690 break;
691 }
692 }
693
694 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
695 {
696 NvmeCtrl *n = (NvmeCtrl *)opaque;
697 uint8_t *ptr = (uint8_t *)&n->bar;
698 uint64_t val = 0;
699
700 if (addr < sizeof(n->bar)) {
701 memcpy(&val, ptr + addr, size);
702 }
703 return val;
704 }
705
706 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
707 {
708 uint32_t qid;
709
710 if (addr & ((1 << 2) - 1)) {
711 return;
712 }
713
714 if (((addr - 0x1000) >> 2) & 1) {
715 uint16_t new_head = val & 0xffff;
716 int start_sqs;
717 NvmeCQueue *cq;
718
719 qid = (addr - (0x1000 + (1 << 2))) >> 3;
720 if (nvme_check_cqid(n, qid)) {
721 return;
722 }
723
724 cq = n->cq[qid];
725 if (new_head >= cq->size) {
726 return;
727 }
728
729 start_sqs = nvme_cq_full(cq) ? 1 : 0;
730 cq->head = new_head;
731 if (start_sqs) {
732 NvmeSQueue *sq;
733 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
734 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
735 }
736 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
737 }
738
739 if (cq->tail != cq->head) {
740 nvme_isr_notify(n, cq);
741 }
742 } else {
743 uint16_t new_tail = val & 0xffff;
744 NvmeSQueue *sq;
745
746 qid = (addr - 0x1000) >> 3;
747 if (nvme_check_sqid(n, qid)) {
748 return;
749 }
750
751 sq = n->sq[qid];
752 if (new_tail >= sq->size) {
753 return;
754 }
755
756 sq->tail = new_tail;
757 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
758 }
759 }
760
761 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
762 unsigned size)
763 {
764 NvmeCtrl *n = (NvmeCtrl *)opaque;
765 if (addr < sizeof(n->bar)) {
766 nvme_write_bar(n, addr, data, size);
767 } else if (addr >= 0x1000) {
768 nvme_process_db(n, addr, data);
769 }
770 }
771
772 static const MemoryRegionOps nvme_mmio_ops = {
773 .read = nvme_mmio_read,
774 .write = nvme_mmio_write,
775 .endianness = DEVICE_LITTLE_ENDIAN,
776 .impl = {
777 .min_access_size = 2,
778 .max_access_size = 8,
779 },
780 };
781
782 static int nvme_init(PCIDevice *pci_dev)
783 {
784 NvmeCtrl *n = NVME(pci_dev);
785 NvmeIdCtrl *id = &n->id_ctrl;
786
787 int i;
788 int64_t bs_size;
789 uint8_t *pci_conf;
790
791 if (!n->conf.blk) {
792 return -1;
793 }
794
795 bs_size = blk_getlength(n->conf.blk);
796 if (bs_size < 0) {
797 return -1;
798 }
799
800 blkconf_serial(&n->conf, &n->serial);
801 if (!n->serial) {
802 return -1;
803 }
804 blkconf_blocksizes(&n->conf);
805
806 pci_conf = pci_dev->config;
807 pci_conf[PCI_INTERRUPT_PIN] = 1;
808 pci_config_set_prog_interface(pci_dev->config, 0x2);
809 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
810 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
811
812 n->num_namespaces = 1;
813 n->num_queues = 64;
814 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
815 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
816
817 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
818 n->sq = g_new0(NvmeSQueue *, n->num_queues);
819 n->cq = g_new0(NvmeCQueue *, n->num_queues);
820
821 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
822 "nvme", n->reg_size);
823 pci_register_bar(&n->parent_obj, 0,
824 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
825 &n->iomem);
826 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
827
828 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
829 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
830 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
831 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
832 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
833 id->rab = 6;
834 id->ieee[0] = 0x00;
835 id->ieee[1] = 0x02;
836 id->ieee[2] = 0xb3;
837 id->oacs = cpu_to_le16(0);
838 id->frmw = 7 << 1;
839 id->lpa = 1 << 0;
840 id->sqes = (0x6 << 4) | 0x6;
841 id->cqes = (0x4 << 4) | 0x4;
842 id->nn = cpu_to_le32(n->num_namespaces);
843 id->psd[0].mp = cpu_to_le16(0x9c4);
844 id->psd[0].enlat = cpu_to_le32(0x10);
845 id->psd[0].exlat = cpu_to_le32(0x4);
846 if (blk_enable_write_cache(n->conf.blk)) {
847 id->vwc = 1;
848 }
849
850 n->bar.cap = 0;
851 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
852 NVME_CAP_SET_CQR(n->bar.cap, 1);
853 NVME_CAP_SET_AMS(n->bar.cap, 1);
854 NVME_CAP_SET_TO(n->bar.cap, 0xf);
855 NVME_CAP_SET_CSS(n->bar.cap, 1);
856 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
857
858 n->bar.vs = 0x00010100;
859 n->bar.intmc = n->bar.intms = 0;
860
861 for (i = 0; i < n->num_namespaces; i++) {
862 NvmeNamespace *ns = &n->namespaces[i];
863 NvmeIdNs *id_ns = &ns->id_ns;
864 id_ns->nsfeat = 0;
865 id_ns->nlbaf = 0;
866 id_ns->flbas = 0;
867 id_ns->mc = 0;
868 id_ns->dpc = 0;
869 id_ns->dps = 0;
870 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
871 id_ns->ncap = id_ns->nuse = id_ns->nsze =
872 cpu_to_le64(n->ns_size >>
873 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
874 }
875 return 0;
876 }
877
878 static void nvme_exit(PCIDevice *pci_dev)
879 {
880 NvmeCtrl *n = NVME(pci_dev);
881
882 nvme_clear_ctrl(n);
883 g_free(n->namespaces);
884 g_free(n->cq);
885 g_free(n->sq);
886 msix_uninit_exclusive_bar(pci_dev);
887 }
888
889 static Property nvme_props[] = {
890 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
891 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
892 DEFINE_PROP_END_OF_LIST(),
893 };
894
895 static const VMStateDescription nvme_vmstate = {
896 .name = "nvme",
897 .unmigratable = 1,
898 };
899
900 static void nvme_class_init(ObjectClass *oc, void *data)
901 {
902 DeviceClass *dc = DEVICE_CLASS(oc);
903 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
904
905 pc->init = nvme_init;
906 pc->exit = nvme_exit;
907 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
908 pc->vendor_id = PCI_VENDOR_ID_INTEL;
909 pc->device_id = 0x5845;
910 pc->revision = 1;
911 pc->is_express = 1;
912
913 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
914 dc->desc = "Non-Volatile Memory Express";
915 dc->props = nvme_props;
916 dc->vmsd = &nvme_vmstate;
917 }
918
919 static void nvme_get_bootindex(Object *obj, Visitor *v, void *opaque,
920 const char *name, Error **errp)
921 {
922 NvmeCtrl *s = NVME(obj);
923
924 visit_type_int32(v, &s->conf.bootindex, name, errp);
925 }
926
927 static void nvme_set_bootindex(Object *obj, Visitor *v, void *opaque,
928 const char *name, Error **errp)
929 {
930 NvmeCtrl *s = NVME(obj);
931 int32_t boot_index;
932 Error *local_err = NULL;
933
934 visit_type_int32(v, &boot_index, name, &local_err);
935 if (local_err) {
936 goto out;
937 }
938 /* check whether bootindex is present in fw_boot_order list */
939 check_boot_index(boot_index, &local_err);
940 if (local_err) {
941 goto out;
942 }
943 /* change bootindex to a new one */
944 s->conf.bootindex = boot_index;
945
946 out:
947 if (local_err) {
948 error_propagate(errp, local_err);
949 }
950 }
951
952 static void nvme_instance_init(Object *obj)
953 {
954 object_property_add(obj, "bootindex", "int32",
955 nvme_get_bootindex,
956 nvme_set_bootindex, NULL, NULL, NULL);
957 object_property_set_int(obj, -1, "bootindex", NULL);
958 }
959
960 static const TypeInfo nvme_info = {
961 .name = "nvme",
962 .parent = TYPE_PCI_DEVICE,
963 .instance_size = sizeof(NvmeCtrl),
964 .class_init = nvme_class_init,
965 .instance_init = nvme_instance_init,
966 };
967
968 static void nvme_register_types(void)
969 {
970 type_register_static(&nvme_info);
971 }
972
973 type_init(nvme_register_types)