]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
bc2d9d2091d68cd988c49d2c654579614694d574
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * num_queues=<N[optional]>
24 *
25 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 *
28 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
30 * both provided.
31 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
32 * For example:
33 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "hw/block/block.h"
40 #include "hw/pci/msix.h"
41 #include "hw/pci/pci.h"
42 #include "hw/qdev-properties.h"
43 #include "migration/vmstate.h"
44 #include "sysemu/sysemu.h"
45 #include "qapi/error.h"
46 #include "qapi/visitor.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/block-backend.h"
49 #include "exec/memory.h"
50 #include "qemu/log.h"
51 #include "qemu/module.h"
52 #include "qemu/cutils.h"
53 #include "trace.h"
54 #include "nvme.h"
55
56 #define NVME_REG_SIZE 0x1000
57 #define NVME_DB_SIZE 4
58
59 #define NVME_GUEST_ERR(trace, fmt, ...) \
60 do { \
61 (trace_##trace)(__VA_ARGS__); \
62 qemu_log_mask(LOG_GUEST_ERROR, #trace \
63 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
64 } while (0)
65
66 static void nvme_process_sq(void *opaque);
67
68 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
69 {
70 if (n->cmbsz && addr >= n->ctrl_mem.addr &&
71 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
72 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
73 } else {
74 pci_dma_read(&n->parent_obj, addr, buf, size);
75 }
76 }
77
78 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
79 {
80 return sqid < n->params.num_queues && n->sq[sqid] != NULL ? 0 : -1;
81 }
82
83 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
84 {
85 return cqid < n->params.num_queues && n->cq[cqid] != NULL ? 0 : -1;
86 }
87
88 static void nvme_inc_cq_tail(NvmeCQueue *cq)
89 {
90 cq->tail++;
91 if (cq->tail >= cq->size) {
92 cq->tail = 0;
93 cq->phase = !cq->phase;
94 }
95 }
96
97 static void nvme_inc_sq_head(NvmeSQueue *sq)
98 {
99 sq->head = (sq->head + 1) % sq->size;
100 }
101
102 static uint8_t nvme_cq_full(NvmeCQueue *cq)
103 {
104 return (cq->tail + 1) % cq->size == cq->head;
105 }
106
107 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
108 {
109 return sq->head == sq->tail;
110 }
111
112 static void nvme_irq_check(NvmeCtrl *n)
113 {
114 if (msix_enabled(&(n->parent_obj))) {
115 return;
116 }
117 if (~n->bar.intms & n->irq_status) {
118 pci_irq_assert(&n->parent_obj);
119 } else {
120 pci_irq_deassert(&n->parent_obj);
121 }
122 }
123
124 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
125 {
126 if (cq->irq_enabled) {
127 if (msix_enabled(&(n->parent_obj))) {
128 trace_pci_nvme_irq_msix(cq->vector);
129 msix_notify(&(n->parent_obj), cq->vector);
130 } else {
131 trace_pci_nvme_irq_pin();
132 assert(cq->cqid < 64);
133 n->irq_status |= 1 << cq->cqid;
134 nvme_irq_check(n);
135 }
136 } else {
137 trace_pci_nvme_irq_masked();
138 }
139 }
140
141 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
142 {
143 if (cq->irq_enabled) {
144 if (msix_enabled(&(n->parent_obj))) {
145 return;
146 } else {
147 assert(cq->cqid < 64);
148 n->irq_status &= ~(1 << cq->cqid);
149 nvme_irq_check(n);
150 }
151 }
152 }
153
154 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
155 uint64_t prp2, uint32_t len, NvmeCtrl *n)
156 {
157 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
158 trans_len = MIN(len, trans_len);
159 int num_prps = (len >> n->page_bits) + 1;
160
161 if (unlikely(!prp1)) {
162 trace_pci_nvme_err_invalid_prp();
163 return NVME_INVALID_FIELD | NVME_DNR;
164 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
165 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
166 qsg->nsg = 0;
167 qemu_iovec_init(iov, num_prps);
168 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
169 } else {
170 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
171 qemu_sglist_add(qsg, prp1, trans_len);
172 }
173 len -= trans_len;
174 if (len) {
175 if (unlikely(!prp2)) {
176 trace_pci_nvme_err_invalid_prp2_missing();
177 goto unmap;
178 }
179 if (len > n->page_size) {
180 uint64_t prp_list[n->max_prp_ents];
181 uint32_t nents, prp_trans;
182 int i = 0;
183
184 nents = (len + n->page_size - 1) >> n->page_bits;
185 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
186 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
187 while (len != 0) {
188 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
189
190 if (i == n->max_prp_ents - 1 && len > n->page_size) {
191 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
192 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
193 goto unmap;
194 }
195
196 i = 0;
197 nents = (len + n->page_size - 1) >> n->page_bits;
198 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
199 nvme_addr_read(n, prp_ent, (void *)prp_list,
200 prp_trans);
201 prp_ent = le64_to_cpu(prp_list[i]);
202 }
203
204 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
205 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
206 goto unmap;
207 }
208
209 trans_len = MIN(len, n->page_size);
210 if (qsg->nsg){
211 qemu_sglist_add(qsg, prp_ent, trans_len);
212 } else {
213 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
214 }
215 len -= trans_len;
216 i++;
217 }
218 } else {
219 if (unlikely(prp2 & (n->page_size - 1))) {
220 trace_pci_nvme_err_invalid_prp2_align(prp2);
221 goto unmap;
222 }
223 if (qsg->nsg) {
224 qemu_sglist_add(qsg, prp2, len);
225 } else {
226 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
227 }
228 }
229 }
230 return NVME_SUCCESS;
231
232 unmap:
233 qemu_sglist_destroy(qsg);
234 return NVME_INVALID_FIELD | NVME_DNR;
235 }
236
237 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
238 uint64_t prp1, uint64_t prp2)
239 {
240 QEMUSGList qsg;
241 QEMUIOVector iov;
242 uint16_t status = NVME_SUCCESS;
243
244 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
245 return NVME_INVALID_FIELD | NVME_DNR;
246 }
247 if (qsg.nsg > 0) {
248 if (dma_buf_write(ptr, len, &qsg)) {
249 status = NVME_INVALID_FIELD | NVME_DNR;
250 }
251 qemu_sglist_destroy(&qsg);
252 } else {
253 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
254 status = NVME_INVALID_FIELD | NVME_DNR;
255 }
256 qemu_iovec_destroy(&iov);
257 }
258 return status;
259 }
260
261 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
262 uint64_t prp1, uint64_t prp2)
263 {
264 QEMUSGList qsg;
265 QEMUIOVector iov;
266 uint16_t status = NVME_SUCCESS;
267
268 trace_pci_nvme_dma_read(prp1, prp2);
269
270 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
271 return NVME_INVALID_FIELD | NVME_DNR;
272 }
273 if (qsg.nsg > 0) {
274 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
275 trace_pci_nvme_err_invalid_dma();
276 status = NVME_INVALID_FIELD | NVME_DNR;
277 }
278 qemu_sglist_destroy(&qsg);
279 } else {
280 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
281 trace_pci_nvme_err_invalid_dma();
282 status = NVME_INVALID_FIELD | NVME_DNR;
283 }
284 qemu_iovec_destroy(&iov);
285 }
286 return status;
287 }
288
289 static void nvme_post_cqes(void *opaque)
290 {
291 NvmeCQueue *cq = opaque;
292 NvmeCtrl *n = cq->ctrl;
293 NvmeRequest *req, *next;
294
295 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
296 NvmeSQueue *sq;
297 hwaddr addr;
298
299 if (nvme_cq_full(cq)) {
300 break;
301 }
302
303 QTAILQ_REMOVE(&cq->req_list, req, entry);
304 sq = req->sq;
305 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
306 req->cqe.sq_id = cpu_to_le16(sq->sqid);
307 req->cqe.sq_head = cpu_to_le16(sq->head);
308 addr = cq->dma_addr + cq->tail * n->cqe_size;
309 nvme_inc_cq_tail(cq);
310 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
311 sizeof(req->cqe));
312 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
313 }
314 if (cq->tail != cq->head) {
315 nvme_irq_assert(n, cq);
316 }
317 }
318
319 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
320 {
321 assert(cq->cqid == req->sq->cqid);
322 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
323 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
324 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
325 }
326
327 static void nvme_rw_cb(void *opaque, int ret)
328 {
329 NvmeRequest *req = opaque;
330 NvmeSQueue *sq = req->sq;
331 NvmeCtrl *n = sq->ctrl;
332 NvmeCQueue *cq = n->cq[sq->cqid];
333
334 if (!ret) {
335 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
336 req->status = NVME_SUCCESS;
337 } else {
338 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
339 req->status = NVME_INTERNAL_DEV_ERROR;
340 }
341 if (req->has_sg) {
342 qemu_sglist_destroy(&req->qsg);
343 }
344 nvme_enqueue_req_completion(cq, req);
345 }
346
347 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
348 NvmeRequest *req)
349 {
350 req->has_sg = false;
351 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
352 BLOCK_ACCT_FLUSH);
353 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
354
355 return NVME_NO_COMPLETE;
356 }
357
358 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
359 NvmeRequest *req)
360 {
361 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
362 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
363 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
364 uint64_t slba = le64_to_cpu(rw->slba);
365 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
366 uint64_t offset = slba << data_shift;
367 uint32_t count = nlb << data_shift;
368
369 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
370 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
371 return NVME_LBA_RANGE | NVME_DNR;
372 }
373
374 req->has_sg = false;
375 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
376 BLOCK_ACCT_WRITE);
377 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
378 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
379 return NVME_NO_COMPLETE;
380 }
381
382 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
383 NvmeRequest *req)
384 {
385 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
386 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
387 uint64_t slba = le64_to_cpu(rw->slba);
388 uint64_t prp1 = le64_to_cpu(rw->prp1);
389 uint64_t prp2 = le64_to_cpu(rw->prp2);
390
391 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
392 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
393 uint64_t data_size = (uint64_t)nlb << data_shift;
394 uint64_t data_offset = slba << data_shift;
395 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
396 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
397
398 trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
399
400 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
401 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
402 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
403 return NVME_LBA_RANGE | NVME_DNR;
404 }
405
406 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
407 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
408 return NVME_INVALID_FIELD | NVME_DNR;
409 }
410
411 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
412 if (req->qsg.nsg > 0) {
413 req->has_sg = true;
414 req->aiocb = is_write ?
415 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
416 nvme_rw_cb, req) :
417 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
418 nvme_rw_cb, req);
419 } else {
420 req->has_sg = false;
421 req->aiocb = is_write ?
422 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
423 req) :
424 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
425 req);
426 }
427
428 return NVME_NO_COMPLETE;
429 }
430
431 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
432 {
433 NvmeNamespace *ns;
434 uint32_t nsid = le32_to_cpu(cmd->nsid);
435
436 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
437 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
438 return NVME_INVALID_NSID | NVME_DNR;
439 }
440
441 ns = &n->namespaces[nsid - 1];
442 switch (cmd->opcode) {
443 case NVME_CMD_FLUSH:
444 return nvme_flush(n, ns, cmd, req);
445 case NVME_CMD_WRITE_ZEROS:
446 return nvme_write_zeros(n, ns, cmd, req);
447 case NVME_CMD_WRITE:
448 case NVME_CMD_READ:
449 return nvme_rw(n, ns, cmd, req);
450 default:
451 trace_pci_nvme_err_invalid_opc(cmd->opcode);
452 return NVME_INVALID_OPCODE | NVME_DNR;
453 }
454 }
455
456 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
457 {
458 n->sq[sq->sqid] = NULL;
459 timer_del(sq->timer);
460 timer_free(sq->timer);
461 g_free(sq->io_req);
462 if (sq->sqid) {
463 g_free(sq);
464 }
465 }
466
467 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
468 {
469 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
470 NvmeRequest *req, *next;
471 NvmeSQueue *sq;
472 NvmeCQueue *cq;
473 uint16_t qid = le16_to_cpu(c->qid);
474
475 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
476 trace_pci_nvme_err_invalid_del_sq(qid);
477 return NVME_INVALID_QID | NVME_DNR;
478 }
479
480 trace_pci_nvme_del_sq(qid);
481
482 sq = n->sq[qid];
483 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
484 req = QTAILQ_FIRST(&sq->out_req_list);
485 assert(req->aiocb);
486 blk_aio_cancel(req->aiocb);
487 }
488 if (!nvme_check_cqid(n, sq->cqid)) {
489 cq = n->cq[sq->cqid];
490 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
491
492 nvme_post_cqes(cq);
493 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
494 if (req->sq == sq) {
495 QTAILQ_REMOVE(&cq->req_list, req, entry);
496 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
497 }
498 }
499 }
500
501 nvme_free_sq(sq, n);
502 return NVME_SUCCESS;
503 }
504
505 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
506 uint16_t sqid, uint16_t cqid, uint16_t size)
507 {
508 int i;
509 NvmeCQueue *cq;
510
511 sq->ctrl = n;
512 sq->dma_addr = dma_addr;
513 sq->sqid = sqid;
514 sq->size = size;
515 sq->cqid = cqid;
516 sq->head = sq->tail = 0;
517 sq->io_req = g_new(NvmeRequest, sq->size);
518
519 QTAILQ_INIT(&sq->req_list);
520 QTAILQ_INIT(&sq->out_req_list);
521 for (i = 0; i < sq->size; i++) {
522 sq->io_req[i].sq = sq;
523 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
524 }
525 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
526
527 assert(n->cq[cqid]);
528 cq = n->cq[cqid];
529 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
530 n->sq[sqid] = sq;
531 }
532
533 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
534 {
535 NvmeSQueue *sq;
536 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
537
538 uint16_t cqid = le16_to_cpu(c->cqid);
539 uint16_t sqid = le16_to_cpu(c->sqid);
540 uint16_t qsize = le16_to_cpu(c->qsize);
541 uint16_t qflags = le16_to_cpu(c->sq_flags);
542 uint64_t prp1 = le64_to_cpu(c->prp1);
543
544 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
545
546 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
547 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
548 return NVME_INVALID_CQID | NVME_DNR;
549 }
550 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
551 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
552 return NVME_INVALID_QID | NVME_DNR;
553 }
554 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
555 trace_pci_nvme_err_invalid_create_sq_size(qsize);
556 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
557 }
558 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
559 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
560 return NVME_INVALID_FIELD | NVME_DNR;
561 }
562 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
563 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
564 return NVME_INVALID_FIELD | NVME_DNR;
565 }
566 sq = g_malloc0(sizeof(*sq));
567 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
568 return NVME_SUCCESS;
569 }
570
571 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
572 {
573 n->cq[cq->cqid] = NULL;
574 timer_del(cq->timer);
575 timer_free(cq->timer);
576 msix_vector_unuse(&n->parent_obj, cq->vector);
577 if (cq->cqid) {
578 g_free(cq);
579 }
580 }
581
582 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
583 {
584 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
585 NvmeCQueue *cq;
586 uint16_t qid = le16_to_cpu(c->qid);
587
588 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
589 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
590 return NVME_INVALID_CQID | NVME_DNR;
591 }
592
593 cq = n->cq[qid];
594 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
595 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
596 return NVME_INVALID_QUEUE_DEL;
597 }
598 nvme_irq_deassert(n, cq);
599 trace_pci_nvme_del_cq(qid);
600 nvme_free_cq(cq, n);
601 return NVME_SUCCESS;
602 }
603
604 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
605 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
606 {
607 cq->ctrl = n;
608 cq->cqid = cqid;
609 cq->size = size;
610 cq->dma_addr = dma_addr;
611 cq->phase = 1;
612 cq->irq_enabled = irq_enabled;
613 cq->vector = vector;
614 cq->head = cq->tail = 0;
615 QTAILQ_INIT(&cq->req_list);
616 QTAILQ_INIT(&cq->sq_list);
617 msix_vector_use(&n->parent_obj, cq->vector);
618 n->cq[cqid] = cq;
619 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
620 }
621
622 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
623 {
624 NvmeCQueue *cq;
625 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
626 uint16_t cqid = le16_to_cpu(c->cqid);
627 uint16_t vector = le16_to_cpu(c->irq_vector);
628 uint16_t qsize = le16_to_cpu(c->qsize);
629 uint16_t qflags = le16_to_cpu(c->cq_flags);
630 uint64_t prp1 = le64_to_cpu(c->prp1);
631
632 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
633 NVME_CQ_FLAGS_IEN(qflags) != 0);
634
635 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
636 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
637 return NVME_INVALID_CQID | NVME_DNR;
638 }
639 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
640 trace_pci_nvme_err_invalid_create_cq_size(qsize);
641 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
642 }
643 if (unlikely(!prp1)) {
644 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
645 return NVME_INVALID_FIELD | NVME_DNR;
646 }
647 if (unlikely(vector > n->params.num_queues)) {
648 trace_pci_nvme_err_invalid_create_cq_vector(vector);
649 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
650 }
651 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
652 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
653 return NVME_INVALID_FIELD | NVME_DNR;
654 }
655
656 cq = g_malloc0(sizeof(*cq));
657 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
658 NVME_CQ_FLAGS_IEN(qflags));
659 return NVME_SUCCESS;
660 }
661
662 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
663 {
664 uint64_t prp1 = le64_to_cpu(c->prp1);
665 uint64_t prp2 = le64_to_cpu(c->prp2);
666
667 trace_pci_nvme_identify_ctrl();
668
669 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
670 prp1, prp2);
671 }
672
673 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
674 {
675 NvmeNamespace *ns;
676 uint32_t nsid = le32_to_cpu(c->nsid);
677 uint64_t prp1 = le64_to_cpu(c->prp1);
678 uint64_t prp2 = le64_to_cpu(c->prp2);
679
680 trace_pci_nvme_identify_ns(nsid);
681
682 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
683 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
684 return NVME_INVALID_NSID | NVME_DNR;
685 }
686
687 ns = &n->namespaces[nsid - 1];
688
689 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
690 prp1, prp2);
691 }
692
693 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
694 {
695 static const int data_len = 4 * KiB;
696 uint32_t min_nsid = le32_to_cpu(c->nsid);
697 uint64_t prp1 = le64_to_cpu(c->prp1);
698 uint64_t prp2 = le64_to_cpu(c->prp2);
699 uint32_t *list;
700 uint16_t ret;
701 int i, j = 0;
702
703 trace_pci_nvme_identify_nslist(min_nsid);
704
705 list = g_malloc0(data_len);
706 for (i = 0; i < n->num_namespaces; i++) {
707 if (i < min_nsid) {
708 continue;
709 }
710 list[j++] = cpu_to_le32(i + 1);
711 if (j == data_len / sizeof(uint32_t)) {
712 break;
713 }
714 }
715 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
716 g_free(list);
717 return ret;
718 }
719
720 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
721 {
722 NvmeIdentify *c = (NvmeIdentify *)cmd;
723
724 switch (le32_to_cpu(c->cns)) {
725 case 0x00:
726 return nvme_identify_ns(n, c);
727 case 0x01:
728 return nvme_identify_ctrl(n, c);
729 case 0x02:
730 return nvme_identify_nslist(n, c);
731 default:
732 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
733 return NVME_INVALID_FIELD | NVME_DNR;
734 }
735 }
736
737 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
738 {
739 trace_pci_nvme_setfeat_timestamp(ts);
740
741 n->host_timestamp = le64_to_cpu(ts);
742 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
743 }
744
745 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
746 {
747 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
748 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
749
750 union nvme_timestamp {
751 struct {
752 uint64_t timestamp:48;
753 uint64_t sync:1;
754 uint64_t origin:3;
755 uint64_t rsvd1:12;
756 };
757 uint64_t all;
758 };
759
760 union nvme_timestamp ts;
761 ts.all = 0;
762
763 /*
764 * If the sum of the Timestamp value set by the host and the elapsed
765 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
766 */
767 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
768
769 /* If the host timestamp is non-zero, set the timestamp origin */
770 ts.origin = n->host_timestamp ? 0x01 : 0x00;
771
772 trace_pci_nvme_getfeat_timestamp(ts.all);
773
774 return cpu_to_le64(ts.all);
775 }
776
777 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
778 {
779 uint64_t prp1 = le64_to_cpu(cmd->prp1);
780 uint64_t prp2 = le64_to_cpu(cmd->prp2);
781
782 uint64_t timestamp = nvme_get_timestamp(n);
783
784 return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
785 sizeof(timestamp), prp1, prp2);
786 }
787
788 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
789 {
790 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
791 uint32_t result;
792
793 switch (dw10) {
794 case NVME_VOLATILE_WRITE_CACHE:
795 result = blk_enable_write_cache(n->conf.blk);
796 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
797 break;
798 case NVME_NUMBER_OF_QUEUES:
799 result = cpu_to_le32((n->params.num_queues - 2) |
800 ((n->params.num_queues - 2) << 16));
801 trace_pci_nvme_getfeat_numq(result);
802 break;
803 case NVME_TIMESTAMP:
804 return nvme_get_feature_timestamp(n, cmd);
805 default:
806 trace_pci_nvme_err_invalid_getfeat(dw10);
807 return NVME_INVALID_FIELD | NVME_DNR;
808 }
809
810 req->cqe.result = result;
811 return NVME_SUCCESS;
812 }
813
814 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
815 {
816 uint16_t ret;
817 uint64_t timestamp;
818 uint64_t prp1 = le64_to_cpu(cmd->prp1);
819 uint64_t prp2 = le64_to_cpu(cmd->prp2);
820
821 ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
822 sizeof(timestamp), prp1, prp2);
823 if (ret != NVME_SUCCESS) {
824 return ret;
825 }
826
827 nvme_set_timestamp(n, timestamp);
828
829 return NVME_SUCCESS;
830 }
831
832 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
833 {
834 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
835 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
836
837 switch (dw10) {
838 case NVME_VOLATILE_WRITE_CACHE:
839 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
840 break;
841 case NVME_NUMBER_OF_QUEUES:
842 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
843 ((dw11 >> 16) & 0xFFFF) + 1,
844 n->params.num_queues - 1,
845 n->params.num_queues - 1);
846 req->cqe.result = cpu_to_le32((n->params.num_queues - 2) |
847 ((n->params.num_queues - 2) << 16));
848 break;
849 case NVME_TIMESTAMP:
850 return nvme_set_feature_timestamp(n, cmd);
851 default:
852 trace_pci_nvme_err_invalid_setfeat(dw10);
853 return NVME_INVALID_FIELD | NVME_DNR;
854 }
855 return NVME_SUCCESS;
856 }
857
858 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
859 {
860 switch (cmd->opcode) {
861 case NVME_ADM_CMD_DELETE_SQ:
862 return nvme_del_sq(n, cmd);
863 case NVME_ADM_CMD_CREATE_SQ:
864 return nvme_create_sq(n, cmd);
865 case NVME_ADM_CMD_DELETE_CQ:
866 return nvme_del_cq(n, cmd);
867 case NVME_ADM_CMD_CREATE_CQ:
868 return nvme_create_cq(n, cmd);
869 case NVME_ADM_CMD_IDENTIFY:
870 return nvme_identify(n, cmd);
871 case NVME_ADM_CMD_SET_FEATURES:
872 return nvme_set_feature(n, cmd, req);
873 case NVME_ADM_CMD_GET_FEATURES:
874 return nvme_get_feature(n, cmd, req);
875 default:
876 trace_pci_nvme_err_invalid_admin_opc(cmd->opcode);
877 return NVME_INVALID_OPCODE | NVME_DNR;
878 }
879 }
880
881 static void nvme_process_sq(void *opaque)
882 {
883 NvmeSQueue *sq = opaque;
884 NvmeCtrl *n = sq->ctrl;
885 NvmeCQueue *cq = n->cq[sq->cqid];
886
887 uint16_t status;
888 hwaddr addr;
889 NvmeCmd cmd;
890 NvmeRequest *req;
891
892 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
893 addr = sq->dma_addr + sq->head * n->sqe_size;
894 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
895 nvme_inc_sq_head(sq);
896
897 req = QTAILQ_FIRST(&sq->req_list);
898 QTAILQ_REMOVE(&sq->req_list, req, entry);
899 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
900 memset(&req->cqe, 0, sizeof(req->cqe));
901 req->cqe.cid = cmd.cid;
902
903 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
904 nvme_admin_cmd(n, &cmd, req);
905 if (status != NVME_NO_COMPLETE) {
906 req->status = status;
907 nvme_enqueue_req_completion(cq, req);
908 }
909 }
910 }
911
912 static void nvme_clear_ctrl(NvmeCtrl *n)
913 {
914 int i;
915
916 blk_drain(n->conf.blk);
917
918 for (i = 0; i < n->params.num_queues; i++) {
919 if (n->sq[i] != NULL) {
920 nvme_free_sq(n->sq[i], n);
921 }
922 }
923 for (i = 0; i < n->params.num_queues; i++) {
924 if (n->cq[i] != NULL) {
925 nvme_free_cq(n->cq[i], n);
926 }
927 }
928
929 blk_flush(n->conf.blk);
930 n->bar.cc = 0;
931 }
932
933 static int nvme_start_ctrl(NvmeCtrl *n)
934 {
935 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
936 uint32_t page_size = 1 << page_bits;
937
938 if (unlikely(n->cq[0])) {
939 trace_pci_nvme_err_startfail_cq();
940 return -1;
941 }
942 if (unlikely(n->sq[0])) {
943 trace_pci_nvme_err_startfail_sq();
944 return -1;
945 }
946 if (unlikely(!n->bar.asq)) {
947 trace_pci_nvme_err_startfail_nbarasq();
948 return -1;
949 }
950 if (unlikely(!n->bar.acq)) {
951 trace_pci_nvme_err_startfail_nbaracq();
952 return -1;
953 }
954 if (unlikely(n->bar.asq & (page_size - 1))) {
955 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
956 return -1;
957 }
958 if (unlikely(n->bar.acq & (page_size - 1))) {
959 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
960 return -1;
961 }
962 if (unlikely(NVME_CC_MPS(n->bar.cc) <
963 NVME_CAP_MPSMIN(n->bar.cap))) {
964 trace_pci_nvme_err_startfail_page_too_small(
965 NVME_CC_MPS(n->bar.cc),
966 NVME_CAP_MPSMIN(n->bar.cap));
967 return -1;
968 }
969 if (unlikely(NVME_CC_MPS(n->bar.cc) >
970 NVME_CAP_MPSMAX(n->bar.cap))) {
971 trace_pci_nvme_err_startfail_page_too_large(
972 NVME_CC_MPS(n->bar.cc),
973 NVME_CAP_MPSMAX(n->bar.cap));
974 return -1;
975 }
976 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
977 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
978 trace_pci_nvme_err_startfail_cqent_too_small(
979 NVME_CC_IOCQES(n->bar.cc),
980 NVME_CTRL_CQES_MIN(n->bar.cap));
981 return -1;
982 }
983 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
984 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
985 trace_pci_nvme_err_startfail_cqent_too_large(
986 NVME_CC_IOCQES(n->bar.cc),
987 NVME_CTRL_CQES_MAX(n->bar.cap));
988 return -1;
989 }
990 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
991 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
992 trace_pci_nvme_err_startfail_sqent_too_small(
993 NVME_CC_IOSQES(n->bar.cc),
994 NVME_CTRL_SQES_MIN(n->bar.cap));
995 return -1;
996 }
997 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
998 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
999 trace_pci_nvme_err_startfail_sqent_too_large(
1000 NVME_CC_IOSQES(n->bar.cc),
1001 NVME_CTRL_SQES_MAX(n->bar.cap));
1002 return -1;
1003 }
1004 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1005 trace_pci_nvme_err_startfail_asqent_sz_zero();
1006 return -1;
1007 }
1008 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1009 trace_pci_nvme_err_startfail_acqent_sz_zero();
1010 return -1;
1011 }
1012
1013 n->page_bits = page_bits;
1014 n->page_size = page_size;
1015 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1016 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1017 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1018 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1019 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1020 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1021 NVME_AQA_ASQS(n->bar.aqa) + 1);
1022
1023 nvme_set_timestamp(n, 0ULL);
1024
1025 return 0;
1026 }
1027
1028 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1029 unsigned size)
1030 {
1031 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1032 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1033 "MMIO write not 32-bit aligned,"
1034 " offset=0x%"PRIx64"", offset);
1035 /* should be ignored, fall through for now */
1036 }
1037
1038 if (unlikely(size < sizeof(uint32_t))) {
1039 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1040 "MMIO write smaller than 32-bits,"
1041 " offset=0x%"PRIx64", size=%u",
1042 offset, size);
1043 /* should be ignored, fall through for now */
1044 }
1045
1046 switch (offset) {
1047 case 0xc: /* INTMS */
1048 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1049 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1050 "undefined access to interrupt mask set"
1051 " when MSI-X is enabled");
1052 /* should be ignored, fall through for now */
1053 }
1054 n->bar.intms |= data & 0xffffffff;
1055 n->bar.intmc = n->bar.intms;
1056 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1057 nvme_irq_check(n);
1058 break;
1059 case 0x10: /* INTMC */
1060 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1061 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1062 "undefined access to interrupt mask clr"
1063 " when MSI-X is enabled");
1064 /* should be ignored, fall through for now */
1065 }
1066 n->bar.intms &= ~(data & 0xffffffff);
1067 n->bar.intmc = n->bar.intms;
1068 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1069 nvme_irq_check(n);
1070 break;
1071 case 0x14: /* CC */
1072 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1073 /* Windows first sends data, then sends enable bit */
1074 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1075 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1076 {
1077 n->bar.cc = data;
1078 }
1079
1080 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1081 n->bar.cc = data;
1082 if (unlikely(nvme_start_ctrl(n))) {
1083 trace_pci_nvme_err_startfail();
1084 n->bar.csts = NVME_CSTS_FAILED;
1085 } else {
1086 trace_pci_nvme_mmio_start_success();
1087 n->bar.csts = NVME_CSTS_READY;
1088 }
1089 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1090 trace_pci_nvme_mmio_stopped();
1091 nvme_clear_ctrl(n);
1092 n->bar.csts &= ~NVME_CSTS_READY;
1093 }
1094 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1095 trace_pci_nvme_mmio_shutdown_set();
1096 nvme_clear_ctrl(n);
1097 n->bar.cc = data;
1098 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1099 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1100 trace_pci_nvme_mmio_shutdown_cleared();
1101 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1102 n->bar.cc = data;
1103 }
1104 break;
1105 case 0x1C: /* CSTS */
1106 if (data & (1 << 4)) {
1107 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1108 "attempted to W1C CSTS.NSSRO"
1109 " but CAP.NSSRS is zero (not supported)");
1110 } else if (data != 0) {
1111 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1112 "attempted to set a read only bit"
1113 " of controller status");
1114 }
1115 break;
1116 case 0x20: /* NSSR */
1117 if (data == 0x4E564D65) {
1118 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1119 } else {
1120 /* The spec says that writes of other values have no effect */
1121 return;
1122 }
1123 break;
1124 case 0x24: /* AQA */
1125 n->bar.aqa = data & 0xffffffff;
1126 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1127 break;
1128 case 0x28: /* ASQ */
1129 n->bar.asq = data;
1130 trace_pci_nvme_mmio_asqaddr(data);
1131 break;
1132 case 0x2c: /* ASQ hi */
1133 n->bar.asq |= data << 32;
1134 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1135 break;
1136 case 0x30: /* ACQ */
1137 trace_pci_nvme_mmio_acqaddr(data);
1138 n->bar.acq = data;
1139 break;
1140 case 0x34: /* ACQ hi */
1141 n->bar.acq |= data << 32;
1142 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1143 break;
1144 case 0x38: /* CMBLOC */
1145 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1146 "invalid write to reserved CMBLOC"
1147 " when CMBSZ is zero, ignored");
1148 return;
1149 case 0x3C: /* CMBSZ */
1150 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1151 "invalid write to read only CMBSZ, ignored");
1152 return;
1153 case 0xE00: /* PMRCAP */
1154 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1155 "invalid write to PMRCAP register, ignored");
1156 return;
1157 case 0xE04: /* TODO PMRCTL */
1158 break;
1159 case 0xE08: /* PMRSTS */
1160 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1161 "invalid write to PMRSTS register, ignored");
1162 return;
1163 case 0xE0C: /* PMREBS */
1164 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1165 "invalid write to PMREBS register, ignored");
1166 return;
1167 case 0xE10: /* PMRSWTP */
1168 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1169 "invalid write to PMRSWTP register, ignored");
1170 return;
1171 case 0xE14: /* TODO PMRMSC */
1172 break;
1173 default:
1174 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1175 "invalid MMIO write,"
1176 " offset=0x%"PRIx64", data=%"PRIx64"",
1177 offset, data);
1178 break;
1179 }
1180 }
1181
1182 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1183 {
1184 NvmeCtrl *n = (NvmeCtrl *)opaque;
1185 uint8_t *ptr = (uint8_t *)&n->bar;
1186 uint64_t val = 0;
1187
1188 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1189 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
1190 "MMIO read not 32-bit aligned,"
1191 " offset=0x%"PRIx64"", addr);
1192 /* should RAZ, fall through for now */
1193 } else if (unlikely(size < sizeof(uint32_t))) {
1194 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
1195 "MMIO read smaller than 32-bits,"
1196 " offset=0x%"PRIx64"", addr);
1197 /* should RAZ, fall through for now */
1198 }
1199
1200 if (addr < sizeof(n->bar)) {
1201 /*
1202 * When PMRWBM bit 1 is set then read from
1203 * from PMRSTS should ensure prior writes
1204 * made it to persistent media
1205 */
1206 if (addr == 0xE08 &&
1207 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1208 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1209 }
1210 memcpy(&val, ptr + addr, size);
1211 } else {
1212 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
1213 "MMIO read beyond last register,"
1214 " offset=0x%"PRIx64", returning 0", addr);
1215 }
1216
1217 return val;
1218 }
1219
1220 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1221 {
1222 uint32_t qid;
1223
1224 if (unlikely(addr & ((1 << 2) - 1))) {
1225 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
1226 "doorbell write not 32-bit aligned,"
1227 " offset=0x%"PRIx64", ignoring", addr);
1228 return;
1229 }
1230
1231 if (((addr - 0x1000) >> 2) & 1) {
1232 /* Completion queue doorbell write */
1233
1234 uint16_t new_head = val & 0xffff;
1235 int start_sqs;
1236 NvmeCQueue *cq;
1237
1238 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1239 if (unlikely(nvme_check_cqid(n, qid))) {
1240 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
1241 "completion queue doorbell write"
1242 " for nonexistent queue,"
1243 " sqid=%"PRIu32", ignoring", qid);
1244 return;
1245 }
1246
1247 cq = n->cq[qid];
1248 if (unlikely(new_head >= cq->size)) {
1249 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
1250 "completion queue doorbell write value"
1251 " beyond queue size, sqid=%"PRIu32","
1252 " new_head=%"PRIu16", ignoring",
1253 qid, new_head);
1254 return;
1255 }
1256
1257 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1258 cq->head = new_head;
1259 if (start_sqs) {
1260 NvmeSQueue *sq;
1261 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1262 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1263 }
1264 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1265 }
1266
1267 if (cq->tail == cq->head) {
1268 nvme_irq_deassert(n, cq);
1269 }
1270 } else {
1271 /* Submission queue doorbell write */
1272
1273 uint16_t new_tail = val & 0xffff;
1274 NvmeSQueue *sq;
1275
1276 qid = (addr - 0x1000) >> 3;
1277 if (unlikely(nvme_check_sqid(n, qid))) {
1278 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
1279 "submission queue doorbell write"
1280 " for nonexistent queue,"
1281 " sqid=%"PRIu32", ignoring", qid);
1282 return;
1283 }
1284
1285 sq = n->sq[qid];
1286 if (unlikely(new_tail >= sq->size)) {
1287 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
1288 "submission queue doorbell write value"
1289 " beyond queue size, sqid=%"PRIu32","
1290 " new_tail=%"PRIu16", ignoring",
1291 qid, new_tail);
1292 return;
1293 }
1294
1295 sq->tail = new_tail;
1296 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1297 }
1298 }
1299
1300 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1301 unsigned size)
1302 {
1303 NvmeCtrl *n = (NvmeCtrl *)opaque;
1304 if (addr < sizeof(n->bar)) {
1305 nvme_write_bar(n, addr, data, size);
1306 } else if (addr >= 0x1000) {
1307 nvme_process_db(n, addr, data);
1308 }
1309 }
1310
1311 static const MemoryRegionOps nvme_mmio_ops = {
1312 .read = nvme_mmio_read,
1313 .write = nvme_mmio_write,
1314 .endianness = DEVICE_LITTLE_ENDIAN,
1315 .impl = {
1316 .min_access_size = 2,
1317 .max_access_size = 8,
1318 },
1319 };
1320
1321 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1322 unsigned size)
1323 {
1324 NvmeCtrl *n = (NvmeCtrl *)opaque;
1325 stn_le_p(&n->cmbuf[addr], size, data);
1326 }
1327
1328 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1329 {
1330 NvmeCtrl *n = (NvmeCtrl *)opaque;
1331 return ldn_le_p(&n->cmbuf[addr], size);
1332 }
1333
1334 static const MemoryRegionOps nvme_cmb_ops = {
1335 .read = nvme_cmb_read,
1336 .write = nvme_cmb_write,
1337 .endianness = DEVICE_LITTLE_ENDIAN,
1338 .impl = {
1339 .min_access_size = 1,
1340 .max_access_size = 8,
1341 },
1342 };
1343
1344 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1345 {
1346 NvmeCtrl *n = NVME(pci_dev);
1347 NvmeIdCtrl *id = &n->id_ctrl;
1348
1349 int i;
1350 int64_t bs_size;
1351 uint8_t *pci_conf;
1352
1353 if (!n->params.num_queues) {
1354 error_setg(errp, "num_queues can't be zero");
1355 return;
1356 }
1357
1358 if (!n->conf.blk) {
1359 error_setg(errp, "drive property not set");
1360 return;
1361 }
1362
1363 bs_size = blk_getlength(n->conf.blk);
1364 if (bs_size < 0) {
1365 error_setg(errp, "could not get backing file size");
1366 return;
1367 }
1368
1369 if (!n->params.serial) {
1370 error_setg(errp, "serial property not set");
1371 return;
1372 }
1373
1374 if (!n->params.cmb_size_mb && n->pmrdev) {
1375 if (host_memory_backend_is_mapped(n->pmrdev)) {
1376 char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1377 error_setg(errp, "can't use already busy memdev: %s", path);
1378 g_free(path);
1379 return;
1380 }
1381
1382 if (!is_power_of_2(n->pmrdev->size)) {
1383 error_setg(errp, "pmr backend size needs to be power of 2 in size");
1384 return;
1385 }
1386
1387 host_memory_backend_set_mapped(n->pmrdev, true);
1388 }
1389
1390 blkconf_blocksizes(&n->conf);
1391 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1392 false, errp)) {
1393 return;
1394 }
1395
1396 pci_conf = pci_dev->config;
1397 pci_conf[PCI_INTERRUPT_PIN] = 1;
1398 pci_config_set_prog_interface(pci_dev->config, 0x2);
1399 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1400 pcie_endpoint_cap_init(pci_dev, 0x80);
1401
1402 n->num_namespaces = 1;
1403
1404 /* num_queues is really number of pairs, so each has two doorbells */
1405 n->reg_size = pow2ceil(NVME_REG_SIZE +
1406 2 * n->params.num_queues * NVME_DB_SIZE);
1407 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1408
1409 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1410 n->sq = g_new0(NvmeSQueue *, n->params.num_queues);
1411 n->cq = g_new0(NvmeCQueue *, n->params.num_queues);
1412
1413 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1414 "nvme", n->reg_size);
1415 pci_register_bar(pci_dev, 0,
1416 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1417 &n->iomem);
1418 msix_init_exclusive_bar(pci_dev, n->params.num_queues, 4, NULL);
1419
1420 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1421 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1422 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1423 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1424 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
1425 id->rab = 6;
1426 id->ieee[0] = 0x00;
1427 id->ieee[1] = 0x02;
1428 id->ieee[2] = 0xb3;
1429 id->oacs = cpu_to_le16(0);
1430 id->frmw = 7 << 1;
1431 id->lpa = 1 << 0;
1432 id->sqes = (0x6 << 4) | 0x6;
1433 id->cqes = (0x4 << 4) | 0x4;
1434 id->nn = cpu_to_le32(n->num_namespaces);
1435 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1436 id->psd[0].mp = cpu_to_le16(0x9c4);
1437 id->psd[0].enlat = cpu_to_le32(0x10);
1438 id->psd[0].exlat = cpu_to_le32(0x4);
1439 if (blk_enable_write_cache(n->conf.blk)) {
1440 id->vwc = 1;
1441 }
1442
1443 n->bar.cap = 0;
1444 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1445 NVME_CAP_SET_CQR(n->bar.cap, 1);
1446 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1447 NVME_CAP_SET_CSS(n->bar.cap, 1);
1448 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1449
1450 n->bar.vs = 0x00010200;
1451 n->bar.intmc = n->bar.intms = 0;
1452
1453 if (n->params.cmb_size_mb) {
1454
1455 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1456 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1457
1458 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1459 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1460 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1461 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1462 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1463 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1464 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
1465
1466 n->cmbloc = n->bar.cmbloc;
1467 n->cmbsz = n->bar.cmbsz;
1468
1469 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1470 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1471 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1472 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1473 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1474 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1475
1476 } else if (n->pmrdev) {
1477 /* Controller Capabilities register */
1478 NVME_CAP_SET_PMRS(n->bar.cap, 1);
1479
1480 /* PMR Capabities register */
1481 n->bar.pmrcap = 0;
1482 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1483 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1484 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2);
1485 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1486 /* Turn on bit 1 support */
1487 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1488 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1489 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1490
1491 /* PMR Control register */
1492 n->bar.pmrctl = 0;
1493 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1494
1495 /* PMR Status register */
1496 n->bar.pmrsts = 0;
1497 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1498 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1499 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1500 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1501
1502 /* PMR Elasticity Buffer Size register */
1503 n->bar.pmrebs = 0;
1504 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1505 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1506 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1507
1508 /* PMR Sustained Write Throughput register */
1509 n->bar.pmrswtp = 0;
1510 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1511 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1512
1513 /* PMR Memory Space Control register */
1514 n->bar.pmrmsc = 0;
1515 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1516 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1517
1518 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1519 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1520 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1521 }
1522
1523 for (i = 0; i < n->num_namespaces; i++) {
1524 NvmeNamespace *ns = &n->namespaces[i];
1525 NvmeIdNs *id_ns = &ns->id_ns;
1526 id_ns->nsfeat = 0;
1527 id_ns->nlbaf = 0;
1528 id_ns->flbas = 0;
1529 id_ns->mc = 0;
1530 id_ns->dpc = 0;
1531 id_ns->dps = 0;
1532 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1533 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1534 cpu_to_le64(n->ns_size >>
1535 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1536 }
1537 }
1538
1539 static void nvme_exit(PCIDevice *pci_dev)
1540 {
1541 NvmeCtrl *n = NVME(pci_dev);
1542
1543 nvme_clear_ctrl(n);
1544 g_free(n->namespaces);
1545 g_free(n->cq);
1546 g_free(n->sq);
1547
1548 if (n->params.cmb_size_mb) {
1549 g_free(n->cmbuf);
1550 }
1551
1552 if (n->pmrdev) {
1553 host_memory_backend_set_mapped(n->pmrdev, false);
1554 }
1555 msix_uninit_exclusive_bar(pci_dev);
1556 }
1557
1558 static Property nvme_props[] = {
1559 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1560 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1561 HostMemoryBackend *),
1562 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
1563 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
1564 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 64),
1565 DEFINE_PROP_END_OF_LIST(),
1566 };
1567
1568 static const VMStateDescription nvme_vmstate = {
1569 .name = "nvme",
1570 .unmigratable = 1,
1571 };
1572
1573 static void nvme_class_init(ObjectClass *oc, void *data)
1574 {
1575 DeviceClass *dc = DEVICE_CLASS(oc);
1576 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1577
1578 pc->realize = nvme_realize;
1579 pc->exit = nvme_exit;
1580 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1581 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1582 pc->device_id = 0x5845;
1583 pc->revision = 2;
1584
1585 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1586 dc->desc = "Non-Volatile Memory Express";
1587 device_class_set_props(dc, nvme_props);
1588 dc->vmsd = &nvme_vmstate;
1589 }
1590
1591 static void nvme_instance_init(Object *obj)
1592 {
1593 NvmeCtrl *s = NVME(obj);
1594
1595 device_add_bootindex_property(obj, &s->conf.bootindex,
1596 "bootindex", "/namespace@1,0",
1597 DEVICE(obj));
1598 }
1599
1600 static const TypeInfo nvme_info = {
1601 .name = TYPE_NVME,
1602 .parent = TYPE_PCI_DEVICE,
1603 .instance_size = sizeof(NvmeCtrl),
1604 .class_init = nvme_class_init,
1605 .instance_init = nvme_instance_init,
1606 .interfaces = (InterfaceInfo[]) {
1607 { INTERFACE_PCIE_DEVICE },
1608 { }
1609 },
1610 };
1611
1612 static void nvme_register_types(void)
1613 {
1614 type_register_static(&nvme_info);
1615 }
1616
1617 type_init(nvme_register_types)