]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
hw/block/nvme: factor out controller identify setup
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * max_ioqpairs=<N[optional]>
24 *
25 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 *
28 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
30 * both provided.
31 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
32 * For example:
33 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "qemu/error-report.h"
40 #include "hw/block/block.h"
41 #include "hw/pci/msix.h"
42 #include "hw/pci/pci.h"
43 #include "hw/qdev-properties.h"
44 #include "migration/vmstate.h"
45 #include "sysemu/sysemu.h"
46 #include "qapi/error.h"
47 #include "qapi/visitor.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/block-backend.h"
50 #include "exec/memory.h"
51 #include "qemu/log.h"
52 #include "qemu/module.h"
53 #include "qemu/cutils.h"
54 #include "trace.h"
55 #include "nvme.h"
56
57 #define NVME_REG_SIZE 0x1000
58 #define NVME_DB_SIZE 4
59 #define NVME_CMB_BIR 2
60 #define NVME_PMR_BIR 2
61
62 #define NVME_GUEST_ERR(trace, fmt, ...) \
63 do { \
64 (trace_##trace)(__VA_ARGS__); \
65 qemu_log_mask(LOG_GUEST_ERROR, #trace \
66 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
67 } while (0)
68
69 static void nvme_process_sq(void *opaque);
70
71 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
72 {
73 hwaddr low = n->ctrl_mem.addr;
74 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
75
76 return addr >= low && addr < hi;
77 }
78
79 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
80 {
81 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr)) {
82 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
83 return;
84 }
85
86 pci_dma_read(&n->parent_obj, addr, buf, size);
87 }
88
89 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
90 {
91 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
92 }
93
94 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
95 {
96 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
97 }
98
99 static void nvme_inc_cq_tail(NvmeCQueue *cq)
100 {
101 cq->tail++;
102 if (cq->tail >= cq->size) {
103 cq->tail = 0;
104 cq->phase = !cq->phase;
105 }
106 }
107
108 static void nvme_inc_sq_head(NvmeSQueue *sq)
109 {
110 sq->head = (sq->head + 1) % sq->size;
111 }
112
113 static uint8_t nvme_cq_full(NvmeCQueue *cq)
114 {
115 return (cq->tail + 1) % cq->size == cq->head;
116 }
117
118 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
119 {
120 return sq->head == sq->tail;
121 }
122
123 static void nvme_irq_check(NvmeCtrl *n)
124 {
125 if (msix_enabled(&(n->parent_obj))) {
126 return;
127 }
128 if (~n->bar.intms & n->irq_status) {
129 pci_irq_assert(&n->parent_obj);
130 } else {
131 pci_irq_deassert(&n->parent_obj);
132 }
133 }
134
135 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
136 {
137 if (cq->irq_enabled) {
138 if (msix_enabled(&(n->parent_obj))) {
139 trace_pci_nvme_irq_msix(cq->vector);
140 msix_notify(&(n->parent_obj), cq->vector);
141 } else {
142 trace_pci_nvme_irq_pin();
143 assert(cq->vector < 32);
144 n->irq_status |= 1 << cq->vector;
145 nvme_irq_check(n);
146 }
147 } else {
148 trace_pci_nvme_irq_masked();
149 }
150 }
151
152 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
153 {
154 if (cq->irq_enabled) {
155 if (msix_enabled(&(n->parent_obj))) {
156 return;
157 } else {
158 assert(cq->vector < 32);
159 n->irq_status &= ~(1 << cq->vector);
160 nvme_irq_check(n);
161 }
162 }
163 }
164
165 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
166 uint64_t prp2, uint32_t len, NvmeCtrl *n)
167 {
168 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
169 trans_len = MIN(len, trans_len);
170 int num_prps = (len >> n->page_bits) + 1;
171
172 if (unlikely(!prp1)) {
173 trace_pci_nvme_err_invalid_prp();
174 return NVME_INVALID_FIELD | NVME_DNR;
175 } else if (n->bar.cmbsz && prp1 >= n->ctrl_mem.addr &&
176 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
177 qsg->nsg = 0;
178 qemu_iovec_init(iov, num_prps);
179 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
180 } else {
181 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
182 qemu_sglist_add(qsg, prp1, trans_len);
183 }
184 len -= trans_len;
185 if (len) {
186 if (unlikely(!prp2)) {
187 trace_pci_nvme_err_invalid_prp2_missing();
188 goto unmap;
189 }
190 if (len > n->page_size) {
191 uint64_t prp_list[n->max_prp_ents];
192 uint32_t nents, prp_trans;
193 int i = 0;
194
195 nents = (len + n->page_size - 1) >> n->page_bits;
196 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
197 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
198 while (len != 0) {
199 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
200
201 if (i == n->max_prp_ents - 1 && len > n->page_size) {
202 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
203 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
204 goto unmap;
205 }
206
207 i = 0;
208 nents = (len + n->page_size - 1) >> n->page_bits;
209 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
210 nvme_addr_read(n, prp_ent, (void *)prp_list,
211 prp_trans);
212 prp_ent = le64_to_cpu(prp_list[i]);
213 }
214
215 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
216 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
217 goto unmap;
218 }
219
220 trans_len = MIN(len, n->page_size);
221 if (qsg->nsg){
222 qemu_sglist_add(qsg, prp_ent, trans_len);
223 } else {
224 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
225 }
226 len -= trans_len;
227 i++;
228 }
229 } else {
230 if (unlikely(prp2 & (n->page_size - 1))) {
231 trace_pci_nvme_err_invalid_prp2_align(prp2);
232 goto unmap;
233 }
234 if (qsg->nsg) {
235 qemu_sglist_add(qsg, prp2, len);
236 } else {
237 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
238 }
239 }
240 }
241 return NVME_SUCCESS;
242
243 unmap:
244 qemu_sglist_destroy(qsg);
245 return NVME_INVALID_FIELD | NVME_DNR;
246 }
247
248 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
249 uint64_t prp1, uint64_t prp2)
250 {
251 QEMUSGList qsg;
252 QEMUIOVector iov;
253 uint16_t status = NVME_SUCCESS;
254
255 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
256 return NVME_INVALID_FIELD | NVME_DNR;
257 }
258 if (qsg.nsg > 0) {
259 if (dma_buf_write(ptr, len, &qsg)) {
260 status = NVME_INVALID_FIELD | NVME_DNR;
261 }
262 qemu_sglist_destroy(&qsg);
263 } else {
264 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
265 status = NVME_INVALID_FIELD | NVME_DNR;
266 }
267 qemu_iovec_destroy(&iov);
268 }
269 return status;
270 }
271
272 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
273 uint64_t prp1, uint64_t prp2)
274 {
275 QEMUSGList qsg;
276 QEMUIOVector iov;
277 uint16_t status = NVME_SUCCESS;
278
279 trace_pci_nvme_dma_read(prp1, prp2);
280
281 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
282 return NVME_INVALID_FIELD | NVME_DNR;
283 }
284 if (qsg.nsg > 0) {
285 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
286 trace_pci_nvme_err_invalid_dma();
287 status = NVME_INVALID_FIELD | NVME_DNR;
288 }
289 qemu_sglist_destroy(&qsg);
290 } else {
291 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
292 trace_pci_nvme_err_invalid_dma();
293 status = NVME_INVALID_FIELD | NVME_DNR;
294 }
295 qemu_iovec_destroy(&iov);
296 }
297 return status;
298 }
299
300 static void nvme_post_cqes(void *opaque)
301 {
302 NvmeCQueue *cq = opaque;
303 NvmeCtrl *n = cq->ctrl;
304 NvmeRequest *req, *next;
305
306 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
307 NvmeSQueue *sq;
308 hwaddr addr;
309
310 if (nvme_cq_full(cq)) {
311 break;
312 }
313
314 QTAILQ_REMOVE(&cq->req_list, req, entry);
315 sq = req->sq;
316 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
317 req->cqe.sq_id = cpu_to_le16(sq->sqid);
318 req->cqe.sq_head = cpu_to_le16(sq->head);
319 addr = cq->dma_addr + cq->tail * n->cqe_size;
320 nvme_inc_cq_tail(cq);
321 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
322 sizeof(req->cqe));
323 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
324 }
325 if (cq->tail != cq->head) {
326 nvme_irq_assert(n, cq);
327 }
328 }
329
330 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
331 {
332 assert(cq->cqid == req->sq->cqid);
333 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
334 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
335 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
336 }
337
338 static void nvme_rw_cb(void *opaque, int ret)
339 {
340 NvmeRequest *req = opaque;
341 NvmeSQueue *sq = req->sq;
342 NvmeCtrl *n = sq->ctrl;
343 NvmeCQueue *cq = n->cq[sq->cqid];
344
345 if (!ret) {
346 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
347 req->status = NVME_SUCCESS;
348 } else {
349 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
350 req->status = NVME_INTERNAL_DEV_ERROR;
351 }
352 if (req->has_sg) {
353 qemu_sglist_destroy(&req->qsg);
354 }
355 nvme_enqueue_req_completion(cq, req);
356 }
357
358 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
359 NvmeRequest *req)
360 {
361 req->has_sg = false;
362 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
363 BLOCK_ACCT_FLUSH);
364 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
365
366 return NVME_NO_COMPLETE;
367 }
368
369 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
370 NvmeRequest *req)
371 {
372 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
373 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
374 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
375 uint64_t slba = le64_to_cpu(rw->slba);
376 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
377 uint64_t offset = slba << data_shift;
378 uint32_t count = nlb << data_shift;
379
380 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
381 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
382 return NVME_LBA_RANGE | NVME_DNR;
383 }
384
385 req->has_sg = false;
386 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
387 BLOCK_ACCT_WRITE);
388 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
389 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
390 return NVME_NO_COMPLETE;
391 }
392
393 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
394 NvmeRequest *req)
395 {
396 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
397 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
398 uint64_t slba = le64_to_cpu(rw->slba);
399 uint64_t prp1 = le64_to_cpu(rw->prp1);
400 uint64_t prp2 = le64_to_cpu(rw->prp2);
401
402 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
403 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
404 uint64_t data_size = (uint64_t)nlb << data_shift;
405 uint64_t data_offset = slba << data_shift;
406 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
407 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
408
409 trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
410
411 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
412 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
413 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
414 return NVME_LBA_RANGE | NVME_DNR;
415 }
416
417 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
418 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
419 return NVME_INVALID_FIELD | NVME_DNR;
420 }
421
422 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
423 if (req->qsg.nsg > 0) {
424 req->has_sg = true;
425 req->aiocb = is_write ?
426 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
427 nvme_rw_cb, req) :
428 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
429 nvme_rw_cb, req);
430 } else {
431 req->has_sg = false;
432 req->aiocb = is_write ?
433 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
434 req) :
435 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
436 req);
437 }
438
439 return NVME_NO_COMPLETE;
440 }
441
442 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
443 {
444 NvmeNamespace *ns;
445 uint32_t nsid = le32_to_cpu(cmd->nsid);
446
447 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
448 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
449 return NVME_INVALID_NSID | NVME_DNR;
450 }
451
452 ns = &n->namespaces[nsid - 1];
453 switch (cmd->opcode) {
454 case NVME_CMD_FLUSH:
455 return nvme_flush(n, ns, cmd, req);
456 case NVME_CMD_WRITE_ZEROS:
457 return nvme_write_zeros(n, ns, cmd, req);
458 case NVME_CMD_WRITE:
459 case NVME_CMD_READ:
460 return nvme_rw(n, ns, cmd, req);
461 default:
462 trace_pci_nvme_err_invalid_opc(cmd->opcode);
463 return NVME_INVALID_OPCODE | NVME_DNR;
464 }
465 }
466
467 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
468 {
469 n->sq[sq->sqid] = NULL;
470 timer_del(sq->timer);
471 timer_free(sq->timer);
472 g_free(sq->io_req);
473 if (sq->sqid) {
474 g_free(sq);
475 }
476 }
477
478 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
479 {
480 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
481 NvmeRequest *req, *next;
482 NvmeSQueue *sq;
483 NvmeCQueue *cq;
484 uint16_t qid = le16_to_cpu(c->qid);
485
486 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
487 trace_pci_nvme_err_invalid_del_sq(qid);
488 return NVME_INVALID_QID | NVME_DNR;
489 }
490
491 trace_pci_nvme_del_sq(qid);
492
493 sq = n->sq[qid];
494 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
495 req = QTAILQ_FIRST(&sq->out_req_list);
496 assert(req->aiocb);
497 blk_aio_cancel(req->aiocb);
498 }
499 if (!nvme_check_cqid(n, sq->cqid)) {
500 cq = n->cq[sq->cqid];
501 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
502
503 nvme_post_cqes(cq);
504 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
505 if (req->sq == sq) {
506 QTAILQ_REMOVE(&cq->req_list, req, entry);
507 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
508 }
509 }
510 }
511
512 nvme_free_sq(sq, n);
513 return NVME_SUCCESS;
514 }
515
516 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
517 uint16_t sqid, uint16_t cqid, uint16_t size)
518 {
519 int i;
520 NvmeCQueue *cq;
521
522 sq->ctrl = n;
523 sq->dma_addr = dma_addr;
524 sq->sqid = sqid;
525 sq->size = size;
526 sq->cqid = cqid;
527 sq->head = sq->tail = 0;
528 sq->io_req = g_new(NvmeRequest, sq->size);
529
530 QTAILQ_INIT(&sq->req_list);
531 QTAILQ_INIT(&sq->out_req_list);
532 for (i = 0; i < sq->size; i++) {
533 sq->io_req[i].sq = sq;
534 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
535 }
536 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
537
538 assert(n->cq[cqid]);
539 cq = n->cq[cqid];
540 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
541 n->sq[sqid] = sq;
542 }
543
544 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
545 {
546 NvmeSQueue *sq;
547 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
548
549 uint16_t cqid = le16_to_cpu(c->cqid);
550 uint16_t sqid = le16_to_cpu(c->sqid);
551 uint16_t qsize = le16_to_cpu(c->qsize);
552 uint16_t qflags = le16_to_cpu(c->sq_flags);
553 uint64_t prp1 = le64_to_cpu(c->prp1);
554
555 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
556
557 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
558 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
559 return NVME_INVALID_CQID | NVME_DNR;
560 }
561 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
562 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
563 return NVME_INVALID_QID | NVME_DNR;
564 }
565 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
566 trace_pci_nvme_err_invalid_create_sq_size(qsize);
567 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
568 }
569 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
570 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
571 return NVME_INVALID_FIELD | NVME_DNR;
572 }
573 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
574 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
575 return NVME_INVALID_FIELD | NVME_DNR;
576 }
577 sq = g_malloc0(sizeof(*sq));
578 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
579 return NVME_SUCCESS;
580 }
581
582 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
583 {
584 n->cq[cq->cqid] = NULL;
585 timer_del(cq->timer);
586 timer_free(cq->timer);
587 msix_vector_unuse(&n->parent_obj, cq->vector);
588 if (cq->cqid) {
589 g_free(cq);
590 }
591 }
592
593 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
594 {
595 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
596 NvmeCQueue *cq;
597 uint16_t qid = le16_to_cpu(c->qid);
598
599 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
600 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
601 return NVME_INVALID_CQID | NVME_DNR;
602 }
603
604 cq = n->cq[qid];
605 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
606 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
607 return NVME_INVALID_QUEUE_DEL;
608 }
609 nvme_irq_deassert(n, cq);
610 trace_pci_nvme_del_cq(qid);
611 nvme_free_cq(cq, n);
612 return NVME_SUCCESS;
613 }
614
615 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
616 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
617 {
618 cq->ctrl = n;
619 cq->cqid = cqid;
620 cq->size = size;
621 cq->dma_addr = dma_addr;
622 cq->phase = 1;
623 cq->irq_enabled = irq_enabled;
624 cq->vector = vector;
625 cq->head = cq->tail = 0;
626 QTAILQ_INIT(&cq->req_list);
627 QTAILQ_INIT(&cq->sq_list);
628 msix_vector_use(&n->parent_obj, cq->vector);
629 n->cq[cqid] = cq;
630 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
631 }
632
633 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
634 {
635 NvmeCQueue *cq;
636 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
637 uint16_t cqid = le16_to_cpu(c->cqid);
638 uint16_t vector = le16_to_cpu(c->irq_vector);
639 uint16_t qsize = le16_to_cpu(c->qsize);
640 uint16_t qflags = le16_to_cpu(c->cq_flags);
641 uint64_t prp1 = le64_to_cpu(c->prp1);
642
643 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
644 NVME_CQ_FLAGS_IEN(qflags) != 0);
645
646 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
647 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
648 return NVME_INVALID_CQID | NVME_DNR;
649 }
650 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
651 trace_pci_nvme_err_invalid_create_cq_size(qsize);
652 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
653 }
654 if (unlikely(!prp1)) {
655 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
656 return NVME_INVALID_FIELD | NVME_DNR;
657 }
658 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
659 trace_pci_nvme_err_invalid_create_cq_vector(vector);
660 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
661 }
662 if (unlikely(vector > n->params.max_ioqpairs)) {
663 trace_pci_nvme_err_invalid_create_cq_vector(vector);
664 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
665 }
666 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
667 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
668 return NVME_INVALID_FIELD | NVME_DNR;
669 }
670
671 cq = g_malloc0(sizeof(*cq));
672 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
673 NVME_CQ_FLAGS_IEN(qflags));
674 return NVME_SUCCESS;
675 }
676
677 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
678 {
679 uint64_t prp1 = le64_to_cpu(c->prp1);
680 uint64_t prp2 = le64_to_cpu(c->prp2);
681
682 trace_pci_nvme_identify_ctrl();
683
684 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
685 prp1, prp2);
686 }
687
688 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
689 {
690 NvmeNamespace *ns;
691 uint32_t nsid = le32_to_cpu(c->nsid);
692 uint64_t prp1 = le64_to_cpu(c->prp1);
693 uint64_t prp2 = le64_to_cpu(c->prp2);
694
695 trace_pci_nvme_identify_ns(nsid);
696
697 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
698 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
699 return NVME_INVALID_NSID | NVME_DNR;
700 }
701
702 ns = &n->namespaces[nsid - 1];
703
704 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
705 prp1, prp2);
706 }
707
708 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
709 {
710 static const int data_len = NVME_IDENTIFY_DATA_SIZE;
711 uint32_t min_nsid = le32_to_cpu(c->nsid);
712 uint64_t prp1 = le64_to_cpu(c->prp1);
713 uint64_t prp2 = le64_to_cpu(c->prp2);
714 uint32_t *list;
715 uint16_t ret;
716 int i, j = 0;
717
718 trace_pci_nvme_identify_nslist(min_nsid);
719
720 list = g_malloc0(data_len);
721 for (i = 0; i < n->num_namespaces; i++) {
722 if (i < min_nsid) {
723 continue;
724 }
725 list[j++] = cpu_to_le32(i + 1);
726 if (j == data_len / sizeof(uint32_t)) {
727 break;
728 }
729 }
730 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
731 g_free(list);
732 return ret;
733 }
734
735 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
736 {
737 NvmeIdentify *c = (NvmeIdentify *)cmd;
738
739 switch (le32_to_cpu(c->cns)) {
740 case NVME_ID_CNS_NS:
741 return nvme_identify_ns(n, c);
742 case NVME_ID_CNS_CTRL:
743 return nvme_identify_ctrl(n, c);
744 case NVME_ID_CNS_NS_ACTIVE_LIST:
745 return nvme_identify_nslist(n, c);
746 default:
747 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
748 return NVME_INVALID_FIELD | NVME_DNR;
749 }
750 }
751
752 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
753 {
754 trace_pci_nvme_setfeat_timestamp(ts);
755
756 n->host_timestamp = le64_to_cpu(ts);
757 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
758 }
759
760 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
761 {
762 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
763 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
764
765 union nvme_timestamp {
766 struct {
767 uint64_t timestamp:48;
768 uint64_t sync:1;
769 uint64_t origin:3;
770 uint64_t rsvd1:12;
771 };
772 uint64_t all;
773 };
774
775 union nvme_timestamp ts;
776 ts.all = 0;
777
778 /*
779 * If the sum of the Timestamp value set by the host and the elapsed
780 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
781 */
782 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
783
784 /* If the host timestamp is non-zero, set the timestamp origin */
785 ts.origin = n->host_timestamp ? 0x01 : 0x00;
786
787 trace_pci_nvme_getfeat_timestamp(ts.all);
788
789 return cpu_to_le64(ts.all);
790 }
791
792 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
793 {
794 uint64_t prp1 = le64_to_cpu(cmd->prp1);
795 uint64_t prp2 = le64_to_cpu(cmd->prp2);
796
797 uint64_t timestamp = nvme_get_timestamp(n);
798
799 return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
800 sizeof(timestamp), prp1, prp2);
801 }
802
803 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
804 {
805 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
806 uint32_t result;
807
808 switch (dw10) {
809 case NVME_VOLATILE_WRITE_CACHE:
810 result = blk_enable_write_cache(n->conf.blk);
811 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
812 break;
813 case NVME_NUMBER_OF_QUEUES:
814 result = cpu_to_le32((n->params.max_ioqpairs - 1) |
815 ((n->params.max_ioqpairs - 1) << 16));
816 trace_pci_nvme_getfeat_numq(result);
817 break;
818 case NVME_TIMESTAMP:
819 return nvme_get_feature_timestamp(n, cmd);
820 default:
821 trace_pci_nvme_err_invalid_getfeat(dw10);
822 return NVME_INVALID_FIELD | NVME_DNR;
823 }
824
825 req->cqe.result = result;
826 return NVME_SUCCESS;
827 }
828
829 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
830 {
831 uint16_t ret;
832 uint64_t timestamp;
833 uint64_t prp1 = le64_to_cpu(cmd->prp1);
834 uint64_t prp2 = le64_to_cpu(cmd->prp2);
835
836 ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
837 sizeof(timestamp), prp1, prp2);
838 if (ret != NVME_SUCCESS) {
839 return ret;
840 }
841
842 nvme_set_timestamp(n, timestamp);
843
844 return NVME_SUCCESS;
845 }
846
847 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
848 {
849 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
850 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
851
852 switch (dw10) {
853 case NVME_VOLATILE_WRITE_CACHE:
854 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
855 break;
856 case NVME_NUMBER_OF_QUEUES:
857 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
858 ((dw11 >> 16) & 0xFFFF) + 1,
859 n->params.max_ioqpairs,
860 n->params.max_ioqpairs);
861 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
862 ((n->params.max_ioqpairs - 1) << 16));
863 break;
864 case NVME_TIMESTAMP:
865 return nvme_set_feature_timestamp(n, cmd);
866 default:
867 trace_pci_nvme_err_invalid_setfeat(dw10);
868 return NVME_INVALID_FIELD | NVME_DNR;
869 }
870 return NVME_SUCCESS;
871 }
872
873 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
874 {
875 switch (cmd->opcode) {
876 case NVME_ADM_CMD_DELETE_SQ:
877 return nvme_del_sq(n, cmd);
878 case NVME_ADM_CMD_CREATE_SQ:
879 return nvme_create_sq(n, cmd);
880 case NVME_ADM_CMD_DELETE_CQ:
881 return nvme_del_cq(n, cmd);
882 case NVME_ADM_CMD_CREATE_CQ:
883 return nvme_create_cq(n, cmd);
884 case NVME_ADM_CMD_IDENTIFY:
885 return nvme_identify(n, cmd);
886 case NVME_ADM_CMD_SET_FEATURES:
887 return nvme_set_feature(n, cmd, req);
888 case NVME_ADM_CMD_GET_FEATURES:
889 return nvme_get_feature(n, cmd, req);
890 default:
891 trace_pci_nvme_err_invalid_admin_opc(cmd->opcode);
892 return NVME_INVALID_OPCODE | NVME_DNR;
893 }
894 }
895
896 static void nvme_process_sq(void *opaque)
897 {
898 NvmeSQueue *sq = opaque;
899 NvmeCtrl *n = sq->ctrl;
900 NvmeCQueue *cq = n->cq[sq->cqid];
901
902 uint16_t status;
903 hwaddr addr;
904 NvmeCmd cmd;
905 NvmeRequest *req;
906
907 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
908 addr = sq->dma_addr + sq->head * n->sqe_size;
909 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
910 nvme_inc_sq_head(sq);
911
912 req = QTAILQ_FIRST(&sq->req_list);
913 QTAILQ_REMOVE(&sq->req_list, req, entry);
914 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
915 memset(&req->cqe, 0, sizeof(req->cqe));
916 req->cqe.cid = cmd.cid;
917
918 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
919 nvme_admin_cmd(n, &cmd, req);
920 if (status != NVME_NO_COMPLETE) {
921 req->status = status;
922 nvme_enqueue_req_completion(cq, req);
923 }
924 }
925 }
926
927 static void nvme_clear_ctrl(NvmeCtrl *n)
928 {
929 int i;
930
931 blk_drain(n->conf.blk);
932
933 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
934 if (n->sq[i] != NULL) {
935 nvme_free_sq(n->sq[i], n);
936 }
937 }
938 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
939 if (n->cq[i] != NULL) {
940 nvme_free_cq(n->cq[i], n);
941 }
942 }
943
944 blk_flush(n->conf.blk);
945 n->bar.cc = 0;
946 }
947
948 static int nvme_start_ctrl(NvmeCtrl *n)
949 {
950 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
951 uint32_t page_size = 1 << page_bits;
952
953 if (unlikely(n->cq[0])) {
954 trace_pci_nvme_err_startfail_cq();
955 return -1;
956 }
957 if (unlikely(n->sq[0])) {
958 trace_pci_nvme_err_startfail_sq();
959 return -1;
960 }
961 if (unlikely(!n->bar.asq)) {
962 trace_pci_nvme_err_startfail_nbarasq();
963 return -1;
964 }
965 if (unlikely(!n->bar.acq)) {
966 trace_pci_nvme_err_startfail_nbaracq();
967 return -1;
968 }
969 if (unlikely(n->bar.asq & (page_size - 1))) {
970 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
971 return -1;
972 }
973 if (unlikely(n->bar.acq & (page_size - 1))) {
974 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
975 return -1;
976 }
977 if (unlikely(NVME_CC_MPS(n->bar.cc) <
978 NVME_CAP_MPSMIN(n->bar.cap))) {
979 trace_pci_nvme_err_startfail_page_too_small(
980 NVME_CC_MPS(n->bar.cc),
981 NVME_CAP_MPSMIN(n->bar.cap));
982 return -1;
983 }
984 if (unlikely(NVME_CC_MPS(n->bar.cc) >
985 NVME_CAP_MPSMAX(n->bar.cap))) {
986 trace_pci_nvme_err_startfail_page_too_large(
987 NVME_CC_MPS(n->bar.cc),
988 NVME_CAP_MPSMAX(n->bar.cap));
989 return -1;
990 }
991 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
992 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
993 trace_pci_nvme_err_startfail_cqent_too_small(
994 NVME_CC_IOCQES(n->bar.cc),
995 NVME_CTRL_CQES_MIN(n->bar.cap));
996 return -1;
997 }
998 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
999 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
1000 trace_pci_nvme_err_startfail_cqent_too_large(
1001 NVME_CC_IOCQES(n->bar.cc),
1002 NVME_CTRL_CQES_MAX(n->bar.cap));
1003 return -1;
1004 }
1005 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
1006 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
1007 trace_pci_nvme_err_startfail_sqent_too_small(
1008 NVME_CC_IOSQES(n->bar.cc),
1009 NVME_CTRL_SQES_MIN(n->bar.cap));
1010 return -1;
1011 }
1012 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
1013 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
1014 trace_pci_nvme_err_startfail_sqent_too_large(
1015 NVME_CC_IOSQES(n->bar.cc),
1016 NVME_CTRL_SQES_MAX(n->bar.cap));
1017 return -1;
1018 }
1019 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1020 trace_pci_nvme_err_startfail_asqent_sz_zero();
1021 return -1;
1022 }
1023 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1024 trace_pci_nvme_err_startfail_acqent_sz_zero();
1025 return -1;
1026 }
1027
1028 n->page_bits = page_bits;
1029 n->page_size = page_size;
1030 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1031 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1032 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1033 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1034 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1035 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1036 NVME_AQA_ASQS(n->bar.aqa) + 1);
1037
1038 nvme_set_timestamp(n, 0ULL);
1039
1040 return 0;
1041 }
1042
1043 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1044 unsigned size)
1045 {
1046 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1047 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1048 "MMIO write not 32-bit aligned,"
1049 " offset=0x%"PRIx64"", offset);
1050 /* should be ignored, fall through for now */
1051 }
1052
1053 if (unlikely(size < sizeof(uint32_t))) {
1054 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1055 "MMIO write smaller than 32-bits,"
1056 " offset=0x%"PRIx64", size=%u",
1057 offset, size);
1058 /* should be ignored, fall through for now */
1059 }
1060
1061 switch (offset) {
1062 case 0xc: /* INTMS */
1063 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1064 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1065 "undefined access to interrupt mask set"
1066 " when MSI-X is enabled");
1067 /* should be ignored, fall through for now */
1068 }
1069 n->bar.intms |= data & 0xffffffff;
1070 n->bar.intmc = n->bar.intms;
1071 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1072 nvme_irq_check(n);
1073 break;
1074 case 0x10: /* INTMC */
1075 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1076 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1077 "undefined access to interrupt mask clr"
1078 " when MSI-X is enabled");
1079 /* should be ignored, fall through for now */
1080 }
1081 n->bar.intms &= ~(data & 0xffffffff);
1082 n->bar.intmc = n->bar.intms;
1083 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1084 nvme_irq_check(n);
1085 break;
1086 case 0x14: /* CC */
1087 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1088 /* Windows first sends data, then sends enable bit */
1089 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1090 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1091 {
1092 n->bar.cc = data;
1093 }
1094
1095 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1096 n->bar.cc = data;
1097 if (unlikely(nvme_start_ctrl(n))) {
1098 trace_pci_nvme_err_startfail();
1099 n->bar.csts = NVME_CSTS_FAILED;
1100 } else {
1101 trace_pci_nvme_mmio_start_success();
1102 n->bar.csts = NVME_CSTS_READY;
1103 }
1104 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1105 trace_pci_nvme_mmio_stopped();
1106 nvme_clear_ctrl(n);
1107 n->bar.csts &= ~NVME_CSTS_READY;
1108 }
1109 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1110 trace_pci_nvme_mmio_shutdown_set();
1111 nvme_clear_ctrl(n);
1112 n->bar.cc = data;
1113 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1114 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1115 trace_pci_nvme_mmio_shutdown_cleared();
1116 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1117 n->bar.cc = data;
1118 }
1119 break;
1120 case 0x1C: /* CSTS */
1121 if (data & (1 << 4)) {
1122 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1123 "attempted to W1C CSTS.NSSRO"
1124 " but CAP.NSSRS is zero (not supported)");
1125 } else if (data != 0) {
1126 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1127 "attempted to set a read only bit"
1128 " of controller status");
1129 }
1130 break;
1131 case 0x20: /* NSSR */
1132 if (data == 0x4E564D65) {
1133 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1134 } else {
1135 /* The spec says that writes of other values have no effect */
1136 return;
1137 }
1138 break;
1139 case 0x24: /* AQA */
1140 n->bar.aqa = data & 0xffffffff;
1141 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1142 break;
1143 case 0x28: /* ASQ */
1144 n->bar.asq = data;
1145 trace_pci_nvme_mmio_asqaddr(data);
1146 break;
1147 case 0x2c: /* ASQ hi */
1148 n->bar.asq |= data << 32;
1149 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1150 break;
1151 case 0x30: /* ACQ */
1152 trace_pci_nvme_mmio_acqaddr(data);
1153 n->bar.acq = data;
1154 break;
1155 case 0x34: /* ACQ hi */
1156 n->bar.acq |= data << 32;
1157 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1158 break;
1159 case 0x38: /* CMBLOC */
1160 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1161 "invalid write to reserved CMBLOC"
1162 " when CMBSZ is zero, ignored");
1163 return;
1164 case 0x3C: /* CMBSZ */
1165 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1166 "invalid write to read only CMBSZ, ignored");
1167 return;
1168 case 0xE00: /* PMRCAP */
1169 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1170 "invalid write to PMRCAP register, ignored");
1171 return;
1172 case 0xE04: /* TODO PMRCTL */
1173 break;
1174 case 0xE08: /* PMRSTS */
1175 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1176 "invalid write to PMRSTS register, ignored");
1177 return;
1178 case 0xE0C: /* PMREBS */
1179 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1180 "invalid write to PMREBS register, ignored");
1181 return;
1182 case 0xE10: /* PMRSWTP */
1183 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1184 "invalid write to PMRSWTP register, ignored");
1185 return;
1186 case 0xE14: /* TODO PMRMSC */
1187 break;
1188 default:
1189 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1190 "invalid MMIO write,"
1191 " offset=0x%"PRIx64", data=%"PRIx64"",
1192 offset, data);
1193 break;
1194 }
1195 }
1196
1197 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1198 {
1199 NvmeCtrl *n = (NvmeCtrl *)opaque;
1200 uint8_t *ptr = (uint8_t *)&n->bar;
1201 uint64_t val = 0;
1202
1203 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1204 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
1205 "MMIO read not 32-bit aligned,"
1206 " offset=0x%"PRIx64"", addr);
1207 /* should RAZ, fall through for now */
1208 } else if (unlikely(size < sizeof(uint32_t))) {
1209 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
1210 "MMIO read smaller than 32-bits,"
1211 " offset=0x%"PRIx64"", addr);
1212 /* should RAZ, fall through for now */
1213 }
1214
1215 if (addr < sizeof(n->bar)) {
1216 /*
1217 * When PMRWBM bit 1 is set then read from
1218 * from PMRSTS should ensure prior writes
1219 * made it to persistent media
1220 */
1221 if (addr == 0xE08 &&
1222 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1223 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1224 }
1225 memcpy(&val, ptr + addr, size);
1226 } else {
1227 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
1228 "MMIO read beyond last register,"
1229 " offset=0x%"PRIx64", returning 0", addr);
1230 }
1231
1232 return val;
1233 }
1234
1235 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1236 {
1237 uint32_t qid;
1238
1239 if (unlikely(addr & ((1 << 2) - 1))) {
1240 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
1241 "doorbell write not 32-bit aligned,"
1242 " offset=0x%"PRIx64", ignoring", addr);
1243 return;
1244 }
1245
1246 if (((addr - 0x1000) >> 2) & 1) {
1247 /* Completion queue doorbell write */
1248
1249 uint16_t new_head = val & 0xffff;
1250 int start_sqs;
1251 NvmeCQueue *cq;
1252
1253 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1254 if (unlikely(nvme_check_cqid(n, qid))) {
1255 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
1256 "completion queue doorbell write"
1257 " for nonexistent queue,"
1258 " sqid=%"PRIu32", ignoring", qid);
1259 return;
1260 }
1261
1262 cq = n->cq[qid];
1263 if (unlikely(new_head >= cq->size)) {
1264 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
1265 "completion queue doorbell write value"
1266 " beyond queue size, sqid=%"PRIu32","
1267 " new_head=%"PRIu16", ignoring",
1268 qid, new_head);
1269 return;
1270 }
1271
1272 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1273 cq->head = new_head;
1274 if (start_sqs) {
1275 NvmeSQueue *sq;
1276 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1277 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1278 }
1279 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1280 }
1281
1282 if (cq->tail == cq->head) {
1283 nvme_irq_deassert(n, cq);
1284 }
1285 } else {
1286 /* Submission queue doorbell write */
1287
1288 uint16_t new_tail = val & 0xffff;
1289 NvmeSQueue *sq;
1290
1291 qid = (addr - 0x1000) >> 3;
1292 if (unlikely(nvme_check_sqid(n, qid))) {
1293 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
1294 "submission queue doorbell write"
1295 " for nonexistent queue,"
1296 " sqid=%"PRIu32", ignoring", qid);
1297 return;
1298 }
1299
1300 sq = n->sq[qid];
1301 if (unlikely(new_tail >= sq->size)) {
1302 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
1303 "submission queue doorbell write value"
1304 " beyond queue size, sqid=%"PRIu32","
1305 " new_tail=%"PRIu16", ignoring",
1306 qid, new_tail);
1307 return;
1308 }
1309
1310 sq->tail = new_tail;
1311 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1312 }
1313 }
1314
1315 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1316 unsigned size)
1317 {
1318 NvmeCtrl *n = (NvmeCtrl *)opaque;
1319 if (addr < sizeof(n->bar)) {
1320 nvme_write_bar(n, addr, data, size);
1321 } else if (addr >= 0x1000) {
1322 nvme_process_db(n, addr, data);
1323 }
1324 }
1325
1326 static const MemoryRegionOps nvme_mmio_ops = {
1327 .read = nvme_mmio_read,
1328 .write = nvme_mmio_write,
1329 .endianness = DEVICE_LITTLE_ENDIAN,
1330 .impl = {
1331 .min_access_size = 2,
1332 .max_access_size = 8,
1333 },
1334 };
1335
1336 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1337 unsigned size)
1338 {
1339 NvmeCtrl *n = (NvmeCtrl *)opaque;
1340 stn_le_p(&n->cmbuf[addr], size, data);
1341 }
1342
1343 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1344 {
1345 NvmeCtrl *n = (NvmeCtrl *)opaque;
1346 return ldn_le_p(&n->cmbuf[addr], size);
1347 }
1348
1349 static const MemoryRegionOps nvme_cmb_ops = {
1350 .read = nvme_cmb_read,
1351 .write = nvme_cmb_write,
1352 .endianness = DEVICE_LITTLE_ENDIAN,
1353 .impl = {
1354 .min_access_size = 1,
1355 .max_access_size = 8,
1356 },
1357 };
1358
1359 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
1360 {
1361 NvmeParams *params = &n->params;
1362
1363 if (params->num_queues) {
1364 warn_report("num_queues is deprecated; please use max_ioqpairs "
1365 "instead");
1366
1367 params->max_ioqpairs = params->num_queues - 1;
1368 }
1369
1370 if (params->max_ioqpairs < 1 ||
1371 params->max_ioqpairs > PCI_MSIX_FLAGS_QSIZE) {
1372 error_setg(errp, "max_ioqpairs must be between 1 and %d",
1373 PCI_MSIX_FLAGS_QSIZE);
1374 return;
1375 }
1376
1377 if (!n->conf.blk) {
1378 error_setg(errp, "drive property not set");
1379 return;
1380 }
1381
1382 if (!params->serial) {
1383 error_setg(errp, "serial property not set");
1384 return;
1385 }
1386
1387 if (!n->params.cmb_size_mb && n->pmrdev) {
1388 if (host_memory_backend_is_mapped(n->pmrdev)) {
1389 char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1390 error_setg(errp, "can't use already busy memdev: %s", path);
1391 g_free(path);
1392 return;
1393 }
1394
1395 if (!is_power_of_2(n->pmrdev->size)) {
1396 error_setg(errp, "pmr backend size needs to be power of 2 in size");
1397 return;
1398 }
1399
1400 host_memory_backend_set_mapped(n->pmrdev, true);
1401 }
1402 }
1403
1404 static void nvme_init_state(NvmeCtrl *n)
1405 {
1406 n->num_namespaces = 1;
1407 /* add one to max_ioqpairs to account for the admin queue pair */
1408 n->reg_size = pow2ceil(NVME_REG_SIZE +
1409 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
1410 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1411 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
1412 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
1413 }
1414
1415 static void nvme_init_blk(NvmeCtrl *n, Error **errp)
1416 {
1417 blkconf_blocksizes(&n->conf);
1418 blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1419 false, errp);
1420 }
1421
1422 static void nvme_init_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
1423 {
1424 int64_t bs_size;
1425 NvmeIdNs *id_ns = &ns->id_ns;
1426
1427 bs_size = blk_getlength(n->conf.blk);
1428 if (bs_size < 0) {
1429 error_setg_errno(errp, -bs_size, "could not get backing file size");
1430 return;
1431 }
1432
1433 n->ns_size = bs_size;
1434
1435 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1436 id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(n, ns));
1437
1438 /* no thin provisioning */
1439 id_ns->ncap = id_ns->nsze;
1440 id_ns->nuse = id_ns->ncap;
1441 }
1442
1443 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
1444 {
1445 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
1446 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1447
1448 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1449 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1450 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1451 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1452 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1453 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1454 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
1455
1456 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1457 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1458 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1459 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1460 PCI_BASE_ADDRESS_SPACE_MEMORY |
1461 PCI_BASE_ADDRESS_MEM_TYPE_64 |
1462 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1463 }
1464
1465 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
1466 {
1467 /* Controller Capabilities register */
1468 NVME_CAP_SET_PMRS(n->bar.cap, 1);
1469
1470 /* PMR Capabities register */
1471 n->bar.pmrcap = 0;
1472 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1473 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1474 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
1475 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1476 /* Turn on bit 1 support */
1477 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1478 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1479 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1480
1481 /* PMR Control register */
1482 n->bar.pmrctl = 0;
1483 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1484
1485 /* PMR Status register */
1486 n->bar.pmrsts = 0;
1487 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1488 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1489 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1490 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1491
1492 /* PMR Elasticity Buffer Size register */
1493 n->bar.pmrebs = 0;
1494 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1495 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1496 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1497
1498 /* PMR Sustained Write Throughput register */
1499 n->bar.pmrswtp = 0;
1500 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1501 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1502
1503 /* PMR Memory Space Control register */
1504 n->bar.pmrmsc = 0;
1505 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1506 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1507
1508 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1509 PCI_BASE_ADDRESS_SPACE_MEMORY |
1510 PCI_BASE_ADDRESS_MEM_TYPE_64 |
1511 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1512 }
1513
1514 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev)
1515 {
1516 uint8_t *pci_conf = pci_dev->config;
1517
1518 pci_conf[PCI_INTERRUPT_PIN] = 1;
1519 pci_config_set_prog_interface(pci_conf, 0x2);
1520 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
1521 pcie_endpoint_cap_init(pci_dev, 0x80);
1522
1523 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
1524 n->reg_size);
1525 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
1526 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
1527 msix_init_exclusive_bar(pci_dev, n->params.max_ioqpairs + 1, 4, NULL);
1528
1529 if (n->params.cmb_size_mb) {
1530 nvme_init_cmb(n, pci_dev);
1531 } else if (n->pmrdev) {
1532 nvme_init_pmr(n, pci_dev);
1533 }
1534 }
1535
1536 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
1537 {
1538 NvmeIdCtrl *id = &n->id_ctrl;
1539 uint8_t *pci_conf = pci_dev->config;
1540
1541 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1542 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1543 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1544 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1545 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
1546 id->rab = 6;
1547 id->ieee[0] = 0x00;
1548 id->ieee[1] = 0x02;
1549 id->ieee[2] = 0xb3;
1550 id->oacs = cpu_to_le16(0);
1551 id->frmw = 7 << 1;
1552 id->lpa = 1 << 0;
1553 id->sqes = (0x6 << 4) | 0x6;
1554 id->cqes = (0x4 << 4) | 0x4;
1555 id->nn = cpu_to_le32(n->num_namespaces);
1556 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1557 id->psd[0].mp = cpu_to_le16(0x9c4);
1558 id->psd[0].enlat = cpu_to_le32(0x10);
1559 id->psd[0].exlat = cpu_to_le32(0x4);
1560 if (blk_enable_write_cache(n->conf.blk)) {
1561 id->vwc = 1;
1562 }
1563
1564 n->bar.cap = 0;
1565 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1566 NVME_CAP_SET_CQR(n->bar.cap, 1);
1567 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1568 NVME_CAP_SET_CSS(n->bar.cap, 1);
1569 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1570
1571 n->bar.vs = 0x00010200;
1572 n->bar.intmc = n->bar.intms = 0;
1573 }
1574
1575 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1576 {
1577 NvmeCtrl *n = NVME(pci_dev);
1578 Error *local_err = NULL;
1579
1580 int i;
1581
1582 nvme_check_constraints(n, &local_err);
1583 if (local_err) {
1584 error_propagate(errp, local_err);
1585 return;
1586 }
1587
1588 nvme_init_state(n);
1589 nvme_init_blk(n, &local_err);
1590 if (local_err) {
1591 error_propagate(errp, local_err);
1592 return;
1593 }
1594
1595 nvme_init_pci(n, pci_dev);
1596 nvme_init_ctrl(n, pci_dev);
1597
1598 for (i = 0; i < n->num_namespaces; i++) {
1599 nvme_init_namespace(n, &n->namespaces[i], &local_err);
1600 if (local_err) {
1601 error_propagate(errp, local_err);
1602 return;
1603 }
1604 }
1605 }
1606
1607 static void nvme_exit(PCIDevice *pci_dev)
1608 {
1609 NvmeCtrl *n = NVME(pci_dev);
1610
1611 nvme_clear_ctrl(n);
1612 g_free(n->namespaces);
1613 g_free(n->cq);
1614 g_free(n->sq);
1615
1616 if (n->params.cmb_size_mb) {
1617 g_free(n->cmbuf);
1618 }
1619
1620 if (n->pmrdev) {
1621 host_memory_backend_set_mapped(n->pmrdev, false);
1622 }
1623 msix_uninit_exclusive_bar(pci_dev);
1624 }
1625
1626 static Property nvme_props[] = {
1627 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1628 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1629 HostMemoryBackend *),
1630 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
1631 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
1632 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
1633 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
1634 DEFINE_PROP_END_OF_LIST(),
1635 };
1636
1637 static const VMStateDescription nvme_vmstate = {
1638 .name = "nvme",
1639 .unmigratable = 1,
1640 };
1641
1642 static void nvme_class_init(ObjectClass *oc, void *data)
1643 {
1644 DeviceClass *dc = DEVICE_CLASS(oc);
1645 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1646
1647 pc->realize = nvme_realize;
1648 pc->exit = nvme_exit;
1649 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1650 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1651 pc->device_id = 0x5845;
1652 pc->revision = 2;
1653
1654 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1655 dc->desc = "Non-Volatile Memory Express";
1656 device_class_set_props(dc, nvme_props);
1657 dc->vmsd = &nvme_vmstate;
1658 }
1659
1660 static void nvme_instance_init(Object *obj)
1661 {
1662 NvmeCtrl *s = NVME(obj);
1663
1664 device_add_bootindex_property(obj, &s->conf.bootindex,
1665 "bootindex", "/namespace@1,0",
1666 DEVICE(obj));
1667 }
1668
1669 static const TypeInfo nvme_info = {
1670 .name = TYPE_NVME,
1671 .parent = TYPE_PCI_DEVICE,
1672 .instance_size = sizeof(NvmeCtrl),
1673 .class_init = nvme_class_init,
1674 .instance_init = nvme_instance_init,
1675 .interfaces = (InterfaceInfo[]) {
1676 { INTERFACE_PCIE_DEVICE },
1677 { }
1678 },
1679 };
1680
1681 static void nvme_register_types(void)
1682 {
1683 type_register_static(&nvme_info);
1684 }
1685
1686 type_init(nvme_register_types)