]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
hw/block/nvme: handle dma errors
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * max_ioqpairs=<N[optional]>, \
24 * aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
25 * mdts=<N[optional]>
26 *
27 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
28 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
29 *
30 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
31 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
32 * both provided.
33 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
34 * For example:
35 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
36 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
37 *
38 *
39 * nvme device parameters
40 * ~~~~~~~~~~~~~~~~~~~~~~
41 * - `aerl`
42 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
43 * of concurrently outstanding Asynchronous Event Request commands suppoert
44 * by the controller. This is a 0's based value.
45 *
46 * - `aer_max_queued`
47 * This is the maximum number of events that the device will enqueue for
48 * completion when there are no oustanding AERs. When the maximum number of
49 * enqueued events are reached, subsequent events will be dropped.
50 *
51 */
52
53 #include "qemu/osdep.h"
54 #include "qemu/units.h"
55 #include "qemu/error-report.h"
56 #include "hw/block/block.h"
57 #include "hw/pci/msix.h"
58 #include "hw/pci/pci.h"
59 #include "hw/qdev-properties.h"
60 #include "migration/vmstate.h"
61 #include "sysemu/sysemu.h"
62 #include "qapi/error.h"
63 #include "qapi/visitor.h"
64 #include "sysemu/hostmem.h"
65 #include "sysemu/block-backend.h"
66 #include "exec/memory.h"
67 #include "qemu/log.h"
68 #include "qemu/module.h"
69 #include "qemu/cutils.h"
70 #include "trace.h"
71 #include "nvme.h"
72
73 #define NVME_MAX_IOQPAIRS 0xffff
74 #define NVME_DB_SIZE 4
75 #define NVME_SPEC_VER 0x00010300
76 #define NVME_CMB_BIR 2
77 #define NVME_PMR_BIR 2
78 #define NVME_TEMPERATURE 0x143
79 #define NVME_TEMPERATURE_WARNING 0x157
80 #define NVME_TEMPERATURE_CRITICAL 0x175
81 #define NVME_NUM_FW_SLOTS 1
82
83 #define NVME_GUEST_ERR(trace, fmt, ...) \
84 do { \
85 (trace_##trace)(__VA_ARGS__); \
86 qemu_log_mask(LOG_GUEST_ERROR, #trace \
87 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
88 } while (0)
89
90 static const bool nvme_feature_support[NVME_FID_MAX] = {
91 [NVME_ARBITRATION] = true,
92 [NVME_POWER_MANAGEMENT] = true,
93 [NVME_TEMPERATURE_THRESHOLD] = true,
94 [NVME_ERROR_RECOVERY] = true,
95 [NVME_VOLATILE_WRITE_CACHE] = true,
96 [NVME_NUMBER_OF_QUEUES] = true,
97 [NVME_INTERRUPT_COALESCING] = true,
98 [NVME_INTERRUPT_VECTOR_CONF] = true,
99 [NVME_WRITE_ATOMICITY] = true,
100 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
101 [NVME_TIMESTAMP] = true,
102 };
103
104 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
105 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
106 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
107 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
108 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
109 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
110 };
111
112 static void nvme_process_sq(void *opaque);
113
114 static uint16_t nvme_cid(NvmeRequest *req)
115 {
116 if (!req) {
117 return 0xffff;
118 }
119
120 return le16_to_cpu(req->cqe.cid);
121 }
122
123 static uint16_t nvme_sqid(NvmeRequest *req)
124 {
125 return le16_to_cpu(req->sq->sqid);
126 }
127
128 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
129 {
130 hwaddr low = n->ctrl_mem.addr;
131 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
132
133 return addr >= low && addr < hi;
134 }
135
136 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
137 {
138 assert(nvme_addr_is_cmb(n, addr));
139
140 return &n->cmbuf[addr - n->ctrl_mem.addr];
141 }
142
143 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
144 {
145 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr)) {
146 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
147 return 0;
148 }
149
150 return pci_dma_read(&n->parent_obj, addr, buf, size);
151 }
152
153 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
154 {
155 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
156 }
157
158 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
159 {
160 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
161 }
162
163 static void nvme_inc_cq_tail(NvmeCQueue *cq)
164 {
165 cq->tail++;
166 if (cq->tail >= cq->size) {
167 cq->tail = 0;
168 cq->phase = !cq->phase;
169 }
170 }
171
172 static void nvme_inc_sq_head(NvmeSQueue *sq)
173 {
174 sq->head = (sq->head + 1) % sq->size;
175 }
176
177 static uint8_t nvme_cq_full(NvmeCQueue *cq)
178 {
179 return (cq->tail + 1) % cq->size == cq->head;
180 }
181
182 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
183 {
184 return sq->head == sq->tail;
185 }
186
187 static void nvme_irq_check(NvmeCtrl *n)
188 {
189 if (msix_enabled(&(n->parent_obj))) {
190 return;
191 }
192 if (~n->bar.intms & n->irq_status) {
193 pci_irq_assert(&n->parent_obj);
194 } else {
195 pci_irq_deassert(&n->parent_obj);
196 }
197 }
198
199 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
200 {
201 if (cq->irq_enabled) {
202 if (msix_enabled(&(n->parent_obj))) {
203 trace_pci_nvme_irq_msix(cq->vector);
204 msix_notify(&(n->parent_obj), cq->vector);
205 } else {
206 trace_pci_nvme_irq_pin();
207 assert(cq->vector < 32);
208 n->irq_status |= 1 << cq->vector;
209 nvme_irq_check(n);
210 }
211 } else {
212 trace_pci_nvme_irq_masked();
213 }
214 }
215
216 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
217 {
218 if (cq->irq_enabled) {
219 if (msix_enabled(&(n->parent_obj))) {
220 return;
221 } else {
222 assert(cq->vector < 32);
223 n->irq_status &= ~(1 << cq->vector);
224 nvme_irq_check(n);
225 }
226 }
227 }
228
229 static void nvme_req_clear(NvmeRequest *req)
230 {
231 req->ns = NULL;
232 memset(&req->cqe, 0x0, sizeof(req->cqe));
233 }
234
235 static void nvme_req_exit(NvmeRequest *req)
236 {
237 if (req->qsg.sg) {
238 qemu_sglist_destroy(&req->qsg);
239 }
240
241 if (req->iov.iov) {
242 qemu_iovec_destroy(&req->iov);
243 }
244 }
245
246 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
247 size_t len)
248 {
249 if (!len) {
250 return NVME_SUCCESS;
251 }
252
253 trace_pci_nvme_map_addr_cmb(addr, len);
254
255 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
256 return NVME_DATA_TRAS_ERROR;
257 }
258
259 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
260
261 return NVME_SUCCESS;
262 }
263
264 static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
265 hwaddr addr, size_t len)
266 {
267 if (!len) {
268 return NVME_SUCCESS;
269 }
270
271 trace_pci_nvme_map_addr(addr, len);
272
273 if (nvme_addr_is_cmb(n, addr)) {
274 if (qsg && qsg->sg) {
275 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
276 }
277
278 assert(iov);
279
280 if (!iov->iov) {
281 qemu_iovec_init(iov, 1);
282 }
283
284 return nvme_map_addr_cmb(n, iov, addr, len);
285 }
286
287 if (iov && iov->iov) {
288 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
289 }
290
291 assert(qsg);
292
293 if (!qsg->sg) {
294 pci_dma_sglist_init(qsg, &n->parent_obj, 1);
295 }
296
297 qemu_sglist_add(qsg, addr, len);
298
299 return NVME_SUCCESS;
300 }
301
302 static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
303 uint32_t len, NvmeRequest *req)
304 {
305 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
306 trans_len = MIN(len, trans_len);
307 int num_prps = (len >> n->page_bits) + 1;
308 uint16_t status;
309 bool prp_list_in_cmb = false;
310 int ret;
311
312 QEMUSGList *qsg = &req->qsg;
313 QEMUIOVector *iov = &req->iov;
314
315 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
316
317 if (unlikely(!prp1)) {
318 trace_pci_nvme_err_invalid_prp();
319 return NVME_INVALID_FIELD | NVME_DNR;
320 }
321
322 if (nvme_addr_is_cmb(n, prp1)) {
323 qemu_iovec_init(iov, num_prps);
324 } else {
325 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
326 }
327
328 status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
329 if (status) {
330 return status;
331 }
332
333 len -= trans_len;
334 if (len) {
335 if (unlikely(!prp2)) {
336 trace_pci_nvme_err_invalid_prp2_missing();
337 return NVME_INVALID_FIELD | NVME_DNR;
338 }
339
340 if (len > n->page_size) {
341 uint64_t prp_list[n->max_prp_ents];
342 uint32_t nents, prp_trans;
343 int i = 0;
344
345 if (nvme_addr_is_cmb(n, prp2)) {
346 prp_list_in_cmb = true;
347 }
348
349 nents = (len + n->page_size - 1) >> n->page_bits;
350 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
351 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
352 if (ret) {
353 trace_pci_nvme_err_addr_read(prp2);
354 return NVME_DATA_TRAS_ERROR;
355 }
356 while (len != 0) {
357 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
358
359 if (i == n->max_prp_ents - 1 && len > n->page_size) {
360 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
361 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
362 return NVME_INVALID_FIELD | NVME_DNR;
363 }
364
365 if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
366 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
367 }
368
369 i = 0;
370 nents = (len + n->page_size - 1) >> n->page_bits;
371 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
372 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
373 prp_trans);
374 if (ret) {
375 trace_pci_nvme_err_addr_read(prp_ent);
376 return NVME_DATA_TRAS_ERROR;
377 }
378 prp_ent = le64_to_cpu(prp_list[i]);
379 }
380
381 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
382 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
383 return NVME_INVALID_FIELD | NVME_DNR;
384 }
385
386 trans_len = MIN(len, n->page_size);
387 status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
388 if (status) {
389 return status;
390 }
391
392 len -= trans_len;
393 i++;
394 }
395 } else {
396 if (unlikely(prp2 & (n->page_size - 1))) {
397 trace_pci_nvme_err_invalid_prp2_align(prp2);
398 return NVME_INVALID_FIELD | NVME_DNR;
399 }
400 status = nvme_map_addr(n, qsg, iov, prp2, len);
401 if (status) {
402 return status;
403 }
404 }
405 }
406
407 return NVME_SUCCESS;
408 }
409
410 static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
411 uint64_t prp1, uint64_t prp2, DMADirection dir,
412 NvmeRequest *req)
413 {
414 uint16_t status = NVME_SUCCESS;
415
416 status = nvme_map_prp(n, prp1, prp2, len, req);
417 if (status) {
418 return status;
419 }
420
421 /* assert that only one of qsg and iov carries data */
422 assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
423
424 if (req->qsg.nsg > 0) {
425 uint64_t residual;
426
427 if (dir == DMA_DIRECTION_TO_DEVICE) {
428 residual = dma_buf_write(ptr, len, &req->qsg);
429 } else {
430 residual = dma_buf_read(ptr, len, &req->qsg);
431 }
432
433 if (unlikely(residual)) {
434 trace_pci_nvme_err_invalid_dma();
435 status = NVME_INVALID_FIELD | NVME_DNR;
436 }
437 } else {
438 size_t bytes;
439
440 if (dir == DMA_DIRECTION_TO_DEVICE) {
441 bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
442 } else {
443 bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
444 }
445
446 if (unlikely(bytes != len)) {
447 trace_pci_nvme_err_invalid_dma();
448 status = NVME_INVALID_FIELD | NVME_DNR;
449 }
450 }
451
452 return status;
453 }
454
455 static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
456 {
457 NvmeCmd *cmd = &req->cmd;
458 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
459 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
460
461 return nvme_map_prp(n, prp1, prp2, len, req);
462 }
463
464 static void nvme_post_cqes(void *opaque)
465 {
466 NvmeCQueue *cq = opaque;
467 NvmeCtrl *n = cq->ctrl;
468 NvmeRequest *req, *next;
469 int ret;
470
471 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
472 NvmeSQueue *sq;
473 hwaddr addr;
474
475 if (nvme_cq_full(cq)) {
476 break;
477 }
478
479 sq = req->sq;
480 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
481 req->cqe.sq_id = cpu_to_le16(sq->sqid);
482 req->cqe.sq_head = cpu_to_le16(sq->head);
483 addr = cq->dma_addr + cq->tail * n->cqe_size;
484 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
485 sizeof(req->cqe));
486 if (ret) {
487 trace_pci_nvme_err_addr_write(addr);
488 trace_pci_nvme_err_cfs();
489 n->bar.csts = NVME_CSTS_FAILED;
490 break;
491 }
492 QTAILQ_REMOVE(&cq->req_list, req, entry);
493 nvme_inc_cq_tail(cq);
494 nvme_req_exit(req);
495 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
496 }
497 if (cq->tail != cq->head) {
498 nvme_irq_assert(n, cq);
499 }
500 }
501
502 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
503 {
504 assert(cq->cqid == req->sq->cqid);
505 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
506 req->status);
507 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
508 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
509 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
510 }
511
512 static void nvme_process_aers(void *opaque)
513 {
514 NvmeCtrl *n = opaque;
515 NvmeAsyncEvent *event, *next;
516
517 trace_pci_nvme_process_aers(n->aer_queued);
518
519 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
520 NvmeRequest *req;
521 NvmeAerResult *result;
522
523 /* can't post cqe if there is nothing to complete */
524 if (!n->outstanding_aers) {
525 trace_pci_nvme_no_outstanding_aers();
526 break;
527 }
528
529 /* ignore if masked (cqe posted, but event not cleared) */
530 if (n->aer_mask & (1 << event->result.event_type)) {
531 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
532 continue;
533 }
534
535 QTAILQ_REMOVE(&n->aer_queue, event, entry);
536 n->aer_queued--;
537
538 n->aer_mask |= 1 << event->result.event_type;
539 n->outstanding_aers--;
540
541 req = n->aer_reqs[n->outstanding_aers];
542
543 result = (NvmeAerResult *) &req->cqe.result;
544 result->event_type = event->result.event_type;
545 result->event_info = event->result.event_info;
546 result->log_page = event->result.log_page;
547 g_free(event);
548
549 req->status = NVME_SUCCESS;
550
551 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
552 result->log_page);
553
554 nvme_enqueue_req_completion(&n->admin_cq, req);
555 }
556 }
557
558 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
559 uint8_t event_info, uint8_t log_page)
560 {
561 NvmeAsyncEvent *event;
562
563 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
564
565 if (n->aer_queued == n->params.aer_max_queued) {
566 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
567 return;
568 }
569
570 event = g_new(NvmeAsyncEvent, 1);
571 event->result = (NvmeAerResult) {
572 .event_type = event_type,
573 .event_info = event_info,
574 .log_page = log_page,
575 };
576
577 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
578 n->aer_queued++;
579
580 nvme_process_aers(n);
581 }
582
583 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
584 {
585 n->aer_mask &= ~(1 << event_type);
586 if (!QTAILQ_EMPTY(&n->aer_queue)) {
587 nvme_process_aers(n);
588 }
589 }
590
591 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
592 {
593 uint8_t mdts = n->params.mdts;
594
595 if (mdts && len > n->page_size << mdts) {
596 return NVME_INVALID_FIELD | NVME_DNR;
597 }
598
599 return NVME_SUCCESS;
600 }
601
602 static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns,
603 uint64_t slba, uint32_t nlb)
604 {
605 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
606
607 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
608 return NVME_LBA_RANGE | NVME_DNR;
609 }
610
611 return NVME_SUCCESS;
612 }
613
614 static void nvme_rw_cb(void *opaque, int ret)
615 {
616 NvmeRequest *req = opaque;
617 NvmeSQueue *sq = req->sq;
618 NvmeCtrl *n = sq->ctrl;
619 NvmeCQueue *cq = n->cq[sq->cqid];
620
621 trace_pci_nvme_rw_cb(nvme_cid(req));
622
623 if (!ret) {
624 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
625 req->status = NVME_SUCCESS;
626 } else {
627 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
628 req->status = NVME_INTERNAL_DEV_ERROR;
629 }
630
631 nvme_enqueue_req_completion(cq, req);
632 }
633
634 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
635 {
636 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
637 BLOCK_ACCT_FLUSH);
638 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
639
640 return NVME_NO_COMPLETE;
641 }
642
643 static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
644 {
645 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
646 NvmeNamespace *ns = req->ns;
647 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
648 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
649 uint64_t slba = le64_to_cpu(rw->slba);
650 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
651 uint64_t offset = slba << data_shift;
652 uint32_t count = nlb << data_shift;
653 uint16_t status;
654
655 trace_pci_nvme_write_zeroes(nvme_cid(req), slba, nlb);
656
657 status = nvme_check_bounds(n, ns, slba, nlb);
658 if (status) {
659 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
660 return status;
661 }
662
663 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
664 BLOCK_ACCT_WRITE);
665 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
666 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
667 return NVME_NO_COMPLETE;
668 }
669
670 static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req)
671 {
672 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
673 NvmeNamespace *ns = req->ns;
674 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
675 uint64_t slba = le64_to_cpu(rw->slba);
676
677 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
678 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
679 uint64_t data_size = (uint64_t)nlb << data_shift;
680 uint64_t data_offset = slba << data_shift;
681 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
682 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
683 uint16_t status;
684
685 trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
686
687 status = nvme_check_mdts(n, data_size);
688 if (status) {
689 trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
690 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
691 return status;
692 }
693
694 status = nvme_check_bounds(n, ns, slba, nlb);
695 if (status) {
696 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
697 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
698 return status;
699 }
700
701 if (nvme_map_dptr(n, data_size, req)) {
702 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
703 return NVME_INVALID_FIELD | NVME_DNR;
704 }
705
706 if (req->qsg.nsg > 0) {
707 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, req->qsg.size,
708 acct);
709 req->aiocb = is_write ?
710 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
711 nvme_rw_cb, req) :
712 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
713 nvme_rw_cb, req);
714 } else {
715 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, req->iov.size,
716 acct);
717 req->aiocb = is_write ?
718 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
719 req) :
720 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
721 req);
722 }
723
724 return NVME_NO_COMPLETE;
725 }
726
727 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
728 {
729 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
730
731 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
732 req->cmd.opcode);
733
734 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
735 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
736 return NVME_INVALID_NSID | NVME_DNR;
737 }
738
739 req->ns = &n->namespaces[nsid - 1];
740 switch (req->cmd.opcode) {
741 case NVME_CMD_FLUSH:
742 return nvme_flush(n, req);
743 case NVME_CMD_WRITE_ZEROES:
744 return nvme_write_zeroes(n, req);
745 case NVME_CMD_WRITE:
746 case NVME_CMD_READ:
747 return nvme_rw(n, req);
748 default:
749 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
750 return NVME_INVALID_OPCODE | NVME_DNR;
751 }
752 }
753
754 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
755 {
756 n->sq[sq->sqid] = NULL;
757 timer_del(sq->timer);
758 timer_free(sq->timer);
759 g_free(sq->io_req);
760 if (sq->sqid) {
761 g_free(sq);
762 }
763 }
764
765 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
766 {
767 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
768 NvmeRequest *r, *next;
769 NvmeSQueue *sq;
770 NvmeCQueue *cq;
771 uint16_t qid = le16_to_cpu(c->qid);
772
773 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
774 trace_pci_nvme_err_invalid_del_sq(qid);
775 return NVME_INVALID_QID | NVME_DNR;
776 }
777
778 trace_pci_nvme_del_sq(qid);
779
780 sq = n->sq[qid];
781 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
782 r = QTAILQ_FIRST(&sq->out_req_list);
783 assert(r->aiocb);
784 blk_aio_cancel(r->aiocb);
785 }
786 if (!nvme_check_cqid(n, sq->cqid)) {
787 cq = n->cq[sq->cqid];
788 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
789
790 nvme_post_cqes(cq);
791 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
792 if (r->sq == sq) {
793 QTAILQ_REMOVE(&cq->req_list, r, entry);
794 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
795 }
796 }
797 }
798
799 nvme_free_sq(sq, n);
800 return NVME_SUCCESS;
801 }
802
803 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
804 uint16_t sqid, uint16_t cqid, uint16_t size)
805 {
806 int i;
807 NvmeCQueue *cq;
808
809 sq->ctrl = n;
810 sq->dma_addr = dma_addr;
811 sq->sqid = sqid;
812 sq->size = size;
813 sq->cqid = cqid;
814 sq->head = sq->tail = 0;
815 sq->io_req = g_new0(NvmeRequest, sq->size);
816
817 QTAILQ_INIT(&sq->req_list);
818 QTAILQ_INIT(&sq->out_req_list);
819 for (i = 0; i < sq->size; i++) {
820 sq->io_req[i].sq = sq;
821 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
822 }
823 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
824
825 assert(n->cq[cqid]);
826 cq = n->cq[cqid];
827 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
828 n->sq[sqid] = sq;
829 }
830
831 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
832 {
833 NvmeSQueue *sq;
834 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
835
836 uint16_t cqid = le16_to_cpu(c->cqid);
837 uint16_t sqid = le16_to_cpu(c->sqid);
838 uint16_t qsize = le16_to_cpu(c->qsize);
839 uint16_t qflags = le16_to_cpu(c->sq_flags);
840 uint64_t prp1 = le64_to_cpu(c->prp1);
841
842 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
843
844 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
845 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
846 return NVME_INVALID_CQID | NVME_DNR;
847 }
848 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
849 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
850 return NVME_INVALID_QID | NVME_DNR;
851 }
852 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
853 trace_pci_nvme_err_invalid_create_sq_size(qsize);
854 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
855 }
856 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
857 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
858 return NVME_INVALID_FIELD | NVME_DNR;
859 }
860 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
861 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
862 return NVME_INVALID_FIELD | NVME_DNR;
863 }
864 sq = g_malloc0(sizeof(*sq));
865 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
866 return NVME_SUCCESS;
867 }
868
869 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
870 uint64_t off, NvmeRequest *req)
871 {
872 NvmeCmd *cmd = &req->cmd;
873 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
874 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
875 uint32_t nsid = le32_to_cpu(cmd->nsid);
876
877 uint32_t trans_len;
878 time_t current_ms;
879 uint64_t units_read = 0, units_written = 0;
880 uint64_t read_commands = 0, write_commands = 0;
881 NvmeSmartLog smart;
882 BlockAcctStats *s;
883
884 if (nsid && nsid != 0xffffffff) {
885 return NVME_INVALID_FIELD | NVME_DNR;
886 }
887
888 s = blk_get_stats(n->conf.blk);
889
890 units_read = s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
891 units_written = s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
892 read_commands = s->nr_ops[BLOCK_ACCT_READ];
893 write_commands = s->nr_ops[BLOCK_ACCT_WRITE];
894
895 if (off > sizeof(smart)) {
896 return NVME_INVALID_FIELD | NVME_DNR;
897 }
898
899 trans_len = MIN(sizeof(smart) - off, buf_len);
900
901 memset(&smart, 0x0, sizeof(smart));
902
903 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(units_read, 1000));
904 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(units_written,
905 1000));
906 smart.host_read_commands[0] = cpu_to_le64(read_commands);
907 smart.host_write_commands[0] = cpu_to_le64(write_commands);
908
909 smart.temperature = cpu_to_le16(n->temperature);
910
911 if ((n->temperature >= n->features.temp_thresh_hi) ||
912 (n->temperature <= n->features.temp_thresh_low)) {
913 smart.critical_warning |= NVME_SMART_TEMPERATURE;
914 }
915
916 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
917 smart.power_on_hours[0] =
918 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
919
920 if (!rae) {
921 nvme_clear_events(n, NVME_AER_TYPE_SMART);
922 }
923
924 return nvme_dma_prp(n, (uint8_t *) &smart + off, trans_len, prp1, prp2,
925 DMA_DIRECTION_FROM_DEVICE, req);
926 }
927
928 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
929 NvmeRequest *req)
930 {
931 uint32_t trans_len;
932 NvmeCmd *cmd = &req->cmd;
933 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
934 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
935 NvmeFwSlotInfoLog fw_log = {
936 .afi = 0x1,
937 };
938
939 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
940
941 if (off > sizeof(fw_log)) {
942 return NVME_INVALID_FIELD | NVME_DNR;
943 }
944
945 trans_len = MIN(sizeof(fw_log) - off, buf_len);
946
947 return nvme_dma_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1, prp2,
948 DMA_DIRECTION_FROM_DEVICE, req);
949 }
950
951 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
952 uint64_t off, NvmeRequest *req)
953 {
954 uint32_t trans_len;
955 NvmeCmd *cmd = &req->cmd;
956 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
957 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
958 NvmeErrorLog errlog;
959
960 if (!rae) {
961 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
962 }
963
964 if (off > sizeof(errlog)) {
965 return NVME_INVALID_FIELD | NVME_DNR;
966 }
967
968 memset(&errlog, 0x0, sizeof(errlog));
969
970 trans_len = MIN(sizeof(errlog) - off, buf_len);
971
972 return nvme_dma_prp(n, (uint8_t *)&errlog, trans_len, prp1, prp2,
973 DMA_DIRECTION_FROM_DEVICE, req);
974 }
975
976 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
977 {
978 NvmeCmd *cmd = &req->cmd;
979
980 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
981 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
982 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
983 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
984 uint8_t lid = dw10 & 0xff;
985 uint8_t lsp = (dw10 >> 8) & 0xf;
986 uint8_t rae = (dw10 >> 15) & 0x1;
987 uint32_t numdl, numdu;
988 uint64_t off, lpol, lpou;
989 size_t len;
990 uint16_t status;
991
992 numdl = (dw10 >> 16);
993 numdu = (dw11 & 0xffff);
994 lpol = dw12;
995 lpou = dw13;
996
997 len = (((numdu << 16) | numdl) + 1) << 2;
998 off = (lpou << 32ULL) | lpol;
999
1000 if (off & 0x3) {
1001 return NVME_INVALID_FIELD | NVME_DNR;
1002 }
1003
1004 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
1005
1006 status = nvme_check_mdts(n, len);
1007 if (status) {
1008 trace_pci_nvme_err_mdts(nvme_cid(req), len);
1009 return status;
1010 }
1011
1012 switch (lid) {
1013 case NVME_LOG_ERROR_INFO:
1014 return nvme_error_info(n, rae, len, off, req);
1015 case NVME_LOG_SMART_INFO:
1016 return nvme_smart_info(n, rae, len, off, req);
1017 case NVME_LOG_FW_SLOT_INFO:
1018 return nvme_fw_log_info(n, len, off, req);
1019 default:
1020 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
1021 return NVME_INVALID_FIELD | NVME_DNR;
1022 }
1023 }
1024
1025 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
1026 {
1027 n->cq[cq->cqid] = NULL;
1028 timer_del(cq->timer);
1029 timer_free(cq->timer);
1030 msix_vector_unuse(&n->parent_obj, cq->vector);
1031 if (cq->cqid) {
1032 g_free(cq);
1033 }
1034 }
1035
1036 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
1037 {
1038 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1039 NvmeCQueue *cq;
1040 uint16_t qid = le16_to_cpu(c->qid);
1041
1042 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
1043 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
1044 return NVME_INVALID_CQID | NVME_DNR;
1045 }
1046
1047 cq = n->cq[qid];
1048 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
1049 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
1050 return NVME_INVALID_QUEUE_DEL;
1051 }
1052 nvme_irq_deassert(n, cq);
1053 trace_pci_nvme_del_cq(qid);
1054 nvme_free_cq(cq, n);
1055 return NVME_SUCCESS;
1056 }
1057
1058 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
1059 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
1060 {
1061 int ret;
1062
1063 ret = msix_vector_use(&n->parent_obj, vector);
1064 assert(ret == 0);
1065 cq->ctrl = n;
1066 cq->cqid = cqid;
1067 cq->size = size;
1068 cq->dma_addr = dma_addr;
1069 cq->phase = 1;
1070 cq->irq_enabled = irq_enabled;
1071 cq->vector = vector;
1072 cq->head = cq->tail = 0;
1073 QTAILQ_INIT(&cq->req_list);
1074 QTAILQ_INIT(&cq->sq_list);
1075 n->cq[cqid] = cq;
1076 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
1077 }
1078
1079 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
1080 {
1081 NvmeCQueue *cq;
1082 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
1083 uint16_t cqid = le16_to_cpu(c->cqid);
1084 uint16_t vector = le16_to_cpu(c->irq_vector);
1085 uint16_t qsize = le16_to_cpu(c->qsize);
1086 uint16_t qflags = le16_to_cpu(c->cq_flags);
1087 uint64_t prp1 = le64_to_cpu(c->prp1);
1088
1089 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
1090 NVME_CQ_FLAGS_IEN(qflags) != 0);
1091
1092 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
1093 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
1094 return NVME_INVALID_CQID | NVME_DNR;
1095 }
1096 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1097 trace_pci_nvme_err_invalid_create_cq_size(qsize);
1098 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1099 }
1100 if (unlikely(!prp1)) {
1101 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
1102 return NVME_INVALID_FIELD | NVME_DNR;
1103 }
1104 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
1105 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1106 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1107 }
1108 if (unlikely(vector >= n->params.msix_qsize)) {
1109 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1110 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1111 }
1112 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
1113 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
1114 return NVME_INVALID_FIELD | NVME_DNR;
1115 }
1116
1117 cq = g_malloc0(sizeof(*cq));
1118 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
1119 NVME_CQ_FLAGS_IEN(qflags));
1120
1121 /*
1122 * It is only required to set qs_created when creating a completion queue;
1123 * creating a submission queue without a matching completion queue will
1124 * fail.
1125 */
1126 n->qs_created = true;
1127 return NVME_SUCCESS;
1128 }
1129
1130 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
1131 {
1132 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1133 uint64_t prp1 = le64_to_cpu(c->prp1);
1134 uint64_t prp2 = le64_to_cpu(c->prp2);
1135
1136 trace_pci_nvme_identify_ctrl();
1137
1138 return nvme_dma_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), prp1,
1139 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1140 }
1141
1142 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
1143 {
1144 NvmeNamespace *ns;
1145 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1146 uint32_t nsid = le32_to_cpu(c->nsid);
1147 uint64_t prp1 = le64_to_cpu(c->prp1);
1148 uint64_t prp2 = le64_to_cpu(c->prp2);
1149
1150 trace_pci_nvme_identify_ns(nsid);
1151
1152 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
1153 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
1154 return NVME_INVALID_NSID | NVME_DNR;
1155 }
1156
1157 ns = &n->namespaces[nsid - 1];
1158
1159 return nvme_dma_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns), prp1,
1160 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1161 }
1162
1163 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
1164 {
1165 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1166 static const int data_len = NVME_IDENTIFY_DATA_SIZE;
1167 uint32_t min_nsid = le32_to_cpu(c->nsid);
1168 uint64_t prp1 = le64_to_cpu(c->prp1);
1169 uint64_t prp2 = le64_to_cpu(c->prp2);
1170 uint32_t *list;
1171 uint16_t ret;
1172 int i, j = 0;
1173
1174 trace_pci_nvme_identify_nslist(min_nsid);
1175
1176 /*
1177 * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1178 * since the Active Namespace ID List should return namespaces with ids
1179 * *higher* than the NSID specified in the command. This is also specified
1180 * in the spec (NVM Express v1.3d, Section 5.15.4).
1181 */
1182 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1183 return NVME_INVALID_NSID | NVME_DNR;
1184 }
1185
1186 list = g_malloc0(data_len);
1187 for (i = 0; i < n->num_namespaces; i++) {
1188 if (i < min_nsid) {
1189 continue;
1190 }
1191 list[j++] = cpu_to_le32(i + 1);
1192 if (j == data_len / sizeof(uint32_t)) {
1193 break;
1194 }
1195 }
1196 ret = nvme_dma_prp(n, (uint8_t *)list, data_len, prp1, prp2,
1197 DMA_DIRECTION_FROM_DEVICE, req);
1198 g_free(list);
1199 return ret;
1200 }
1201
1202 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
1203 {
1204 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1205 uint32_t nsid = le32_to_cpu(c->nsid);
1206 uint64_t prp1 = le64_to_cpu(c->prp1);
1207 uint64_t prp2 = le64_to_cpu(c->prp2);
1208
1209 uint8_t list[NVME_IDENTIFY_DATA_SIZE];
1210
1211 struct data {
1212 struct {
1213 NvmeIdNsDescr hdr;
1214 uint8_t v[16];
1215 } uuid;
1216 };
1217
1218 struct data *ns_descrs = (struct data *)list;
1219
1220 trace_pci_nvme_identify_ns_descr_list(nsid);
1221
1222 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
1223 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
1224 return NVME_INVALID_NSID | NVME_DNR;
1225 }
1226
1227 memset(list, 0x0, sizeof(list));
1228
1229 /*
1230 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1231 * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1232 * Namespace Identification Descriptor. Add a very basic Namespace UUID
1233 * here.
1234 */
1235 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1236 ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
1237 stl_be_p(&ns_descrs->uuid.v, nsid);
1238
1239 return nvme_dma_prp(n, list, NVME_IDENTIFY_DATA_SIZE, prp1, prp2,
1240 DMA_DIRECTION_FROM_DEVICE, req);
1241 }
1242
1243 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
1244 {
1245 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1246
1247 switch (le32_to_cpu(c->cns)) {
1248 case NVME_ID_CNS_NS:
1249 return nvme_identify_ns(n, req);
1250 case NVME_ID_CNS_CTRL:
1251 return nvme_identify_ctrl(n, req);
1252 case NVME_ID_CNS_NS_ACTIVE_LIST:
1253 return nvme_identify_nslist(n, req);
1254 case NVME_ID_CNS_NS_DESCR_LIST:
1255 return nvme_identify_ns_descr_list(n, req);
1256 default:
1257 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
1258 return NVME_INVALID_FIELD | NVME_DNR;
1259 }
1260 }
1261
1262 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
1263 {
1264 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
1265
1266 req->cqe.result = 1;
1267 if (nvme_check_sqid(n, sqid)) {
1268 return NVME_INVALID_FIELD | NVME_DNR;
1269 }
1270
1271 return NVME_SUCCESS;
1272 }
1273
1274 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
1275 {
1276 trace_pci_nvme_setfeat_timestamp(ts);
1277
1278 n->host_timestamp = le64_to_cpu(ts);
1279 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1280 }
1281
1282 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
1283 {
1284 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1285 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
1286
1287 union nvme_timestamp {
1288 struct {
1289 uint64_t timestamp:48;
1290 uint64_t sync:1;
1291 uint64_t origin:3;
1292 uint64_t rsvd1:12;
1293 };
1294 uint64_t all;
1295 };
1296
1297 union nvme_timestamp ts;
1298 ts.all = 0;
1299 ts.timestamp = n->host_timestamp + elapsed_time;
1300
1301 /* If the host timestamp is non-zero, set the timestamp origin */
1302 ts.origin = n->host_timestamp ? 0x01 : 0x00;
1303
1304 trace_pci_nvme_getfeat_timestamp(ts.all);
1305
1306 return cpu_to_le64(ts.all);
1307 }
1308
1309 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1310 {
1311 NvmeCmd *cmd = &req->cmd;
1312 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1313 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1314
1315 uint64_t timestamp = nvme_get_timestamp(n);
1316
1317 return nvme_dma_prp(n, (uint8_t *)&timestamp, sizeof(timestamp), prp1,
1318 prp2, DMA_DIRECTION_FROM_DEVICE, req);
1319 }
1320
1321 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
1322 {
1323 NvmeCmd *cmd = &req->cmd;
1324 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1325 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1326 uint32_t nsid = le32_to_cpu(cmd->nsid);
1327 uint32_t result;
1328 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1329 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
1330 uint16_t iv;
1331
1332 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
1333 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
1334 };
1335
1336 trace_pci_nvme_getfeat(nvme_cid(req), fid, sel, dw11);
1337
1338 if (!nvme_feature_support[fid]) {
1339 return NVME_INVALID_FIELD | NVME_DNR;
1340 }
1341
1342 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1343 if (!nsid || nsid > n->num_namespaces) {
1344 /*
1345 * The Reservation Notification Mask and Reservation Persistence
1346 * features require a status code of Invalid Field in Command when
1347 * NSID is 0xFFFFFFFF. Since the device does not support those
1348 * features we can always return Invalid Namespace or Format as we
1349 * should do for all other features.
1350 */
1351 return NVME_INVALID_NSID | NVME_DNR;
1352 }
1353 }
1354
1355 switch (sel) {
1356 case NVME_GETFEAT_SELECT_CURRENT:
1357 break;
1358 case NVME_GETFEAT_SELECT_SAVED:
1359 /* no features are saveable by the controller; fallthrough */
1360 case NVME_GETFEAT_SELECT_DEFAULT:
1361 goto defaults;
1362 case NVME_GETFEAT_SELECT_CAP:
1363 result = nvme_feature_cap[fid];
1364 goto out;
1365 }
1366
1367 switch (fid) {
1368 case NVME_TEMPERATURE_THRESHOLD:
1369 result = 0;
1370
1371 /*
1372 * The controller only implements the Composite Temperature sensor, so
1373 * return 0 for all other sensors.
1374 */
1375 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1376 goto out;
1377 }
1378
1379 switch (NVME_TEMP_THSEL(dw11)) {
1380 case NVME_TEMP_THSEL_OVER:
1381 result = n->features.temp_thresh_hi;
1382 goto out;
1383 case NVME_TEMP_THSEL_UNDER:
1384 result = n->features.temp_thresh_low;
1385 goto out;
1386 }
1387
1388 return NVME_INVALID_FIELD | NVME_DNR;
1389 case NVME_VOLATILE_WRITE_CACHE:
1390 result = blk_enable_write_cache(n->conf.blk);
1391 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
1392 goto out;
1393 case NVME_ASYNCHRONOUS_EVENT_CONF:
1394 result = n->features.async_config;
1395 goto out;
1396 case NVME_TIMESTAMP:
1397 return nvme_get_feature_timestamp(n, req);
1398 default:
1399 break;
1400 }
1401
1402 defaults:
1403 switch (fid) {
1404 case NVME_TEMPERATURE_THRESHOLD:
1405 result = 0;
1406
1407 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1408 break;
1409 }
1410
1411 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
1412 result = NVME_TEMPERATURE_WARNING;
1413 }
1414
1415 break;
1416 case NVME_NUMBER_OF_QUEUES:
1417 result = (n->params.max_ioqpairs - 1) |
1418 ((n->params.max_ioqpairs - 1) << 16);
1419 trace_pci_nvme_getfeat_numq(result);
1420 break;
1421 case NVME_INTERRUPT_VECTOR_CONF:
1422 iv = dw11 & 0xffff;
1423 if (iv >= n->params.max_ioqpairs + 1) {
1424 return NVME_INVALID_FIELD | NVME_DNR;
1425 }
1426
1427 result = iv;
1428 if (iv == n->admin_cq.vector) {
1429 result |= NVME_INTVC_NOCOALESCING;
1430 }
1431
1432 break;
1433 default:
1434 result = nvme_feature_default[fid];
1435 break;
1436 }
1437
1438 out:
1439 req->cqe.result = cpu_to_le32(result);
1440 return NVME_SUCCESS;
1441 }
1442
1443 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1444 {
1445 uint16_t ret;
1446 uint64_t timestamp;
1447 NvmeCmd *cmd = &req->cmd;
1448 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1449 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1450
1451 ret = nvme_dma_prp(n, (uint8_t *)&timestamp, sizeof(timestamp), prp1,
1452 prp2, DMA_DIRECTION_TO_DEVICE, req);
1453 if (ret != NVME_SUCCESS) {
1454 return ret;
1455 }
1456
1457 nvme_set_timestamp(n, timestamp);
1458
1459 return NVME_SUCCESS;
1460 }
1461
1462 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
1463 {
1464 NvmeCmd *cmd = &req->cmd;
1465 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1466 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1467 uint32_t nsid = le32_to_cpu(cmd->nsid);
1468 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1469 uint8_t save = NVME_SETFEAT_SAVE(dw10);
1470
1471 trace_pci_nvme_setfeat(nvme_cid(req), fid, save, dw11);
1472
1473 if (save) {
1474 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
1475 }
1476
1477 if (!nvme_feature_support[fid]) {
1478 return NVME_INVALID_FIELD | NVME_DNR;
1479 }
1480
1481 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1482 if (!nsid || (nsid != NVME_NSID_BROADCAST &&
1483 nsid > n->num_namespaces)) {
1484 return NVME_INVALID_NSID | NVME_DNR;
1485 }
1486 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
1487 if (nsid > n->num_namespaces) {
1488 return NVME_INVALID_NSID | NVME_DNR;
1489 }
1490
1491 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
1492 }
1493
1494 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
1495 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1496 }
1497
1498 switch (fid) {
1499 case NVME_TEMPERATURE_THRESHOLD:
1500 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1501 break;
1502 }
1503
1504 switch (NVME_TEMP_THSEL(dw11)) {
1505 case NVME_TEMP_THSEL_OVER:
1506 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
1507 break;
1508 case NVME_TEMP_THSEL_UNDER:
1509 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
1510 break;
1511 default:
1512 return NVME_INVALID_FIELD | NVME_DNR;
1513 }
1514
1515 if (((n->temperature >= n->features.temp_thresh_hi) ||
1516 (n->temperature <= n->features.temp_thresh_low)) &&
1517 NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
1518 nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
1519 NVME_AER_INFO_SMART_TEMP_THRESH,
1520 NVME_LOG_SMART_INFO);
1521 }
1522
1523 break;
1524 case NVME_VOLATILE_WRITE_CACHE:
1525 if (!(dw11 & 0x1) && blk_enable_write_cache(n->conf.blk)) {
1526 blk_flush(n->conf.blk);
1527 }
1528
1529 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
1530 break;
1531 case NVME_NUMBER_OF_QUEUES:
1532 if (n->qs_created) {
1533 return NVME_CMD_SEQ_ERROR | NVME_DNR;
1534 }
1535
1536 /*
1537 * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
1538 * and NSQR.
1539 */
1540 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
1541 return NVME_INVALID_FIELD | NVME_DNR;
1542 }
1543
1544 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
1545 ((dw11 >> 16) & 0xFFFF) + 1,
1546 n->params.max_ioqpairs,
1547 n->params.max_ioqpairs);
1548 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
1549 ((n->params.max_ioqpairs - 1) << 16));
1550 break;
1551 case NVME_ASYNCHRONOUS_EVENT_CONF:
1552 n->features.async_config = dw11;
1553 break;
1554 case NVME_TIMESTAMP:
1555 return nvme_set_feature_timestamp(n, req);
1556 default:
1557 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1558 }
1559 return NVME_SUCCESS;
1560 }
1561
1562 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
1563 {
1564 trace_pci_nvme_aer(nvme_cid(req));
1565
1566 if (n->outstanding_aers > n->params.aerl) {
1567 trace_pci_nvme_aer_aerl_exceeded();
1568 return NVME_AER_LIMIT_EXCEEDED;
1569 }
1570
1571 n->aer_reqs[n->outstanding_aers] = req;
1572 n->outstanding_aers++;
1573
1574 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1575 nvme_process_aers(n);
1576 }
1577
1578 return NVME_NO_COMPLETE;
1579 }
1580
1581 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
1582 {
1583 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode);
1584
1585 switch (req->cmd.opcode) {
1586 case NVME_ADM_CMD_DELETE_SQ:
1587 return nvme_del_sq(n, req);
1588 case NVME_ADM_CMD_CREATE_SQ:
1589 return nvme_create_sq(n, req);
1590 case NVME_ADM_CMD_GET_LOG_PAGE:
1591 return nvme_get_log(n, req);
1592 case NVME_ADM_CMD_DELETE_CQ:
1593 return nvme_del_cq(n, req);
1594 case NVME_ADM_CMD_CREATE_CQ:
1595 return nvme_create_cq(n, req);
1596 case NVME_ADM_CMD_IDENTIFY:
1597 return nvme_identify(n, req);
1598 case NVME_ADM_CMD_ABORT:
1599 return nvme_abort(n, req);
1600 case NVME_ADM_CMD_SET_FEATURES:
1601 return nvme_set_feature(n, req);
1602 case NVME_ADM_CMD_GET_FEATURES:
1603 return nvme_get_feature(n, req);
1604 case NVME_ADM_CMD_ASYNC_EV_REQ:
1605 return nvme_aer(n, req);
1606 default:
1607 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
1608 return NVME_INVALID_OPCODE | NVME_DNR;
1609 }
1610 }
1611
1612 static void nvme_process_sq(void *opaque)
1613 {
1614 NvmeSQueue *sq = opaque;
1615 NvmeCtrl *n = sq->ctrl;
1616 NvmeCQueue *cq = n->cq[sq->cqid];
1617
1618 uint16_t status;
1619 hwaddr addr;
1620 NvmeCmd cmd;
1621 NvmeRequest *req;
1622
1623 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
1624 addr = sq->dma_addr + sq->head * n->sqe_size;
1625 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
1626 trace_pci_nvme_err_addr_read(addr);
1627 trace_pci_nvme_err_cfs();
1628 n->bar.csts = NVME_CSTS_FAILED;
1629 break;
1630 }
1631 nvme_inc_sq_head(sq);
1632
1633 req = QTAILQ_FIRST(&sq->req_list);
1634 QTAILQ_REMOVE(&sq->req_list, req, entry);
1635 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
1636 nvme_req_clear(req);
1637 req->cqe.cid = cmd.cid;
1638 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
1639
1640 status = sq->sqid ? nvme_io_cmd(n, req) :
1641 nvme_admin_cmd(n, req);
1642 if (status != NVME_NO_COMPLETE) {
1643 req->status = status;
1644 nvme_enqueue_req_completion(cq, req);
1645 }
1646 }
1647 }
1648
1649 static void nvme_clear_ctrl(NvmeCtrl *n)
1650 {
1651 int i;
1652
1653 blk_drain(n->conf.blk);
1654
1655 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1656 if (n->sq[i] != NULL) {
1657 nvme_free_sq(n->sq[i], n);
1658 }
1659 }
1660 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1661 if (n->cq[i] != NULL) {
1662 nvme_free_cq(n->cq[i], n);
1663 }
1664 }
1665
1666 while (!QTAILQ_EMPTY(&n->aer_queue)) {
1667 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
1668 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1669 g_free(event);
1670 }
1671
1672 n->aer_queued = 0;
1673 n->outstanding_aers = 0;
1674 n->qs_created = false;
1675
1676 blk_flush(n->conf.blk);
1677 n->bar.cc = 0;
1678 }
1679
1680 static int nvme_start_ctrl(NvmeCtrl *n)
1681 {
1682 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
1683 uint32_t page_size = 1 << page_bits;
1684
1685 if (unlikely(n->cq[0])) {
1686 trace_pci_nvme_err_startfail_cq();
1687 return -1;
1688 }
1689 if (unlikely(n->sq[0])) {
1690 trace_pci_nvme_err_startfail_sq();
1691 return -1;
1692 }
1693 if (unlikely(!n->bar.asq)) {
1694 trace_pci_nvme_err_startfail_nbarasq();
1695 return -1;
1696 }
1697 if (unlikely(!n->bar.acq)) {
1698 trace_pci_nvme_err_startfail_nbaracq();
1699 return -1;
1700 }
1701 if (unlikely(n->bar.asq & (page_size - 1))) {
1702 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
1703 return -1;
1704 }
1705 if (unlikely(n->bar.acq & (page_size - 1))) {
1706 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
1707 return -1;
1708 }
1709 if (unlikely(NVME_CC_MPS(n->bar.cc) <
1710 NVME_CAP_MPSMIN(n->bar.cap))) {
1711 trace_pci_nvme_err_startfail_page_too_small(
1712 NVME_CC_MPS(n->bar.cc),
1713 NVME_CAP_MPSMIN(n->bar.cap));
1714 return -1;
1715 }
1716 if (unlikely(NVME_CC_MPS(n->bar.cc) >
1717 NVME_CAP_MPSMAX(n->bar.cap))) {
1718 trace_pci_nvme_err_startfail_page_too_large(
1719 NVME_CC_MPS(n->bar.cc),
1720 NVME_CAP_MPSMAX(n->bar.cap));
1721 return -1;
1722 }
1723 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
1724 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
1725 trace_pci_nvme_err_startfail_cqent_too_small(
1726 NVME_CC_IOCQES(n->bar.cc),
1727 NVME_CTRL_CQES_MIN(n->bar.cap));
1728 return -1;
1729 }
1730 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
1731 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
1732 trace_pci_nvme_err_startfail_cqent_too_large(
1733 NVME_CC_IOCQES(n->bar.cc),
1734 NVME_CTRL_CQES_MAX(n->bar.cap));
1735 return -1;
1736 }
1737 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
1738 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
1739 trace_pci_nvme_err_startfail_sqent_too_small(
1740 NVME_CC_IOSQES(n->bar.cc),
1741 NVME_CTRL_SQES_MIN(n->bar.cap));
1742 return -1;
1743 }
1744 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
1745 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
1746 trace_pci_nvme_err_startfail_sqent_too_large(
1747 NVME_CC_IOSQES(n->bar.cc),
1748 NVME_CTRL_SQES_MAX(n->bar.cap));
1749 return -1;
1750 }
1751 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1752 trace_pci_nvme_err_startfail_asqent_sz_zero();
1753 return -1;
1754 }
1755 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1756 trace_pci_nvme_err_startfail_acqent_sz_zero();
1757 return -1;
1758 }
1759
1760 n->page_bits = page_bits;
1761 n->page_size = page_size;
1762 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1763 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1764 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1765 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1766 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1767 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1768 NVME_AQA_ASQS(n->bar.aqa) + 1);
1769
1770 nvme_set_timestamp(n, 0ULL);
1771
1772 QTAILQ_INIT(&n->aer_queue);
1773
1774 return 0;
1775 }
1776
1777 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1778 unsigned size)
1779 {
1780 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1781 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1782 "MMIO write not 32-bit aligned,"
1783 " offset=0x%"PRIx64"", offset);
1784 /* should be ignored, fall through for now */
1785 }
1786
1787 if (unlikely(size < sizeof(uint32_t))) {
1788 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1789 "MMIO write smaller than 32-bits,"
1790 " offset=0x%"PRIx64", size=%u",
1791 offset, size);
1792 /* should be ignored, fall through for now */
1793 }
1794
1795 switch (offset) {
1796 case 0xc: /* INTMS */
1797 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1798 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1799 "undefined access to interrupt mask set"
1800 " when MSI-X is enabled");
1801 /* should be ignored, fall through for now */
1802 }
1803 n->bar.intms |= data & 0xffffffff;
1804 n->bar.intmc = n->bar.intms;
1805 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1806 nvme_irq_check(n);
1807 break;
1808 case 0x10: /* INTMC */
1809 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1810 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1811 "undefined access to interrupt mask clr"
1812 " when MSI-X is enabled");
1813 /* should be ignored, fall through for now */
1814 }
1815 n->bar.intms &= ~(data & 0xffffffff);
1816 n->bar.intmc = n->bar.intms;
1817 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1818 nvme_irq_check(n);
1819 break;
1820 case 0x14: /* CC */
1821 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1822 /* Windows first sends data, then sends enable bit */
1823 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1824 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1825 {
1826 n->bar.cc = data;
1827 }
1828
1829 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1830 n->bar.cc = data;
1831 if (unlikely(nvme_start_ctrl(n))) {
1832 trace_pci_nvme_err_startfail();
1833 n->bar.csts = NVME_CSTS_FAILED;
1834 } else {
1835 trace_pci_nvme_mmio_start_success();
1836 n->bar.csts = NVME_CSTS_READY;
1837 }
1838 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1839 trace_pci_nvme_mmio_stopped();
1840 nvme_clear_ctrl(n);
1841 n->bar.csts &= ~NVME_CSTS_READY;
1842 }
1843 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1844 trace_pci_nvme_mmio_shutdown_set();
1845 nvme_clear_ctrl(n);
1846 n->bar.cc = data;
1847 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1848 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1849 trace_pci_nvme_mmio_shutdown_cleared();
1850 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1851 n->bar.cc = data;
1852 }
1853 break;
1854 case 0x1C: /* CSTS */
1855 if (data & (1 << 4)) {
1856 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1857 "attempted to W1C CSTS.NSSRO"
1858 " but CAP.NSSRS is zero (not supported)");
1859 } else if (data != 0) {
1860 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1861 "attempted to set a read only bit"
1862 " of controller status");
1863 }
1864 break;
1865 case 0x20: /* NSSR */
1866 if (data == 0x4E564D65) {
1867 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1868 } else {
1869 /* The spec says that writes of other values have no effect */
1870 return;
1871 }
1872 break;
1873 case 0x24: /* AQA */
1874 n->bar.aqa = data & 0xffffffff;
1875 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1876 break;
1877 case 0x28: /* ASQ */
1878 n->bar.asq = data;
1879 trace_pci_nvme_mmio_asqaddr(data);
1880 break;
1881 case 0x2c: /* ASQ hi */
1882 n->bar.asq |= data << 32;
1883 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1884 break;
1885 case 0x30: /* ACQ */
1886 trace_pci_nvme_mmio_acqaddr(data);
1887 n->bar.acq = data;
1888 break;
1889 case 0x34: /* ACQ hi */
1890 n->bar.acq |= data << 32;
1891 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1892 break;
1893 case 0x38: /* CMBLOC */
1894 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1895 "invalid write to reserved CMBLOC"
1896 " when CMBSZ is zero, ignored");
1897 return;
1898 case 0x3C: /* CMBSZ */
1899 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1900 "invalid write to read only CMBSZ, ignored");
1901 return;
1902 case 0xE00: /* PMRCAP */
1903 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1904 "invalid write to PMRCAP register, ignored");
1905 return;
1906 case 0xE04: /* TODO PMRCTL */
1907 break;
1908 case 0xE08: /* PMRSTS */
1909 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1910 "invalid write to PMRSTS register, ignored");
1911 return;
1912 case 0xE0C: /* PMREBS */
1913 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1914 "invalid write to PMREBS register, ignored");
1915 return;
1916 case 0xE10: /* PMRSWTP */
1917 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1918 "invalid write to PMRSWTP register, ignored");
1919 return;
1920 case 0xE14: /* TODO PMRMSC */
1921 break;
1922 default:
1923 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1924 "invalid MMIO write,"
1925 " offset=0x%"PRIx64", data=%"PRIx64"",
1926 offset, data);
1927 break;
1928 }
1929 }
1930
1931 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1932 {
1933 NvmeCtrl *n = (NvmeCtrl *)opaque;
1934 uint8_t *ptr = (uint8_t *)&n->bar;
1935 uint64_t val = 0;
1936
1937 trace_pci_nvme_mmio_read(addr);
1938
1939 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1940 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
1941 "MMIO read not 32-bit aligned,"
1942 " offset=0x%"PRIx64"", addr);
1943 /* should RAZ, fall through for now */
1944 } else if (unlikely(size < sizeof(uint32_t))) {
1945 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
1946 "MMIO read smaller than 32-bits,"
1947 " offset=0x%"PRIx64"", addr);
1948 /* should RAZ, fall through for now */
1949 }
1950
1951 if (addr < sizeof(n->bar)) {
1952 /*
1953 * When PMRWBM bit 1 is set then read from
1954 * from PMRSTS should ensure prior writes
1955 * made it to persistent media
1956 */
1957 if (addr == 0xE08 &&
1958 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1959 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1960 }
1961 memcpy(&val, ptr + addr, size);
1962 } else {
1963 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
1964 "MMIO read beyond last register,"
1965 " offset=0x%"PRIx64", returning 0", addr);
1966 }
1967
1968 return val;
1969 }
1970
1971 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1972 {
1973 uint32_t qid;
1974
1975 if (unlikely(addr & ((1 << 2) - 1))) {
1976 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
1977 "doorbell write not 32-bit aligned,"
1978 " offset=0x%"PRIx64", ignoring", addr);
1979 return;
1980 }
1981
1982 if (((addr - 0x1000) >> 2) & 1) {
1983 /* Completion queue doorbell write */
1984
1985 uint16_t new_head = val & 0xffff;
1986 int start_sqs;
1987 NvmeCQueue *cq;
1988
1989 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1990 if (unlikely(nvme_check_cqid(n, qid))) {
1991 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
1992 "completion queue doorbell write"
1993 " for nonexistent queue,"
1994 " sqid=%"PRIu32", ignoring", qid);
1995
1996 /*
1997 * NVM Express v1.3d, Section 4.1 state: "If host software writes
1998 * an invalid value to the Submission Queue Tail Doorbell or
1999 * Completion Queue Head Doorbell regiter and an Asynchronous Event
2000 * Request command is outstanding, then an asynchronous event is
2001 * posted to the Admin Completion Queue with a status code of
2002 * Invalid Doorbell Write Value."
2003 *
2004 * Also note that the spec includes the "Invalid Doorbell Register"
2005 * status code, but nowhere does it specify when to use it.
2006 * However, it seems reasonable to use it here in a similar
2007 * fashion.
2008 */
2009 if (n->outstanding_aers) {
2010 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2011 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2012 NVME_LOG_ERROR_INFO);
2013 }
2014
2015 return;
2016 }
2017
2018 cq = n->cq[qid];
2019 if (unlikely(new_head >= cq->size)) {
2020 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
2021 "completion queue doorbell write value"
2022 " beyond queue size, sqid=%"PRIu32","
2023 " new_head=%"PRIu16", ignoring",
2024 qid, new_head);
2025
2026 if (n->outstanding_aers) {
2027 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2028 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2029 NVME_LOG_ERROR_INFO);
2030 }
2031
2032 return;
2033 }
2034
2035 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
2036
2037 start_sqs = nvme_cq_full(cq) ? 1 : 0;
2038 cq->head = new_head;
2039 if (start_sqs) {
2040 NvmeSQueue *sq;
2041 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
2042 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2043 }
2044 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2045 }
2046
2047 if (cq->tail == cq->head) {
2048 nvme_irq_deassert(n, cq);
2049 }
2050 } else {
2051 /* Submission queue doorbell write */
2052
2053 uint16_t new_tail = val & 0xffff;
2054 NvmeSQueue *sq;
2055
2056 qid = (addr - 0x1000) >> 3;
2057 if (unlikely(nvme_check_sqid(n, qid))) {
2058 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
2059 "submission queue doorbell write"
2060 " for nonexistent queue,"
2061 " sqid=%"PRIu32", ignoring", qid);
2062
2063 if (n->outstanding_aers) {
2064 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2065 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2066 NVME_LOG_ERROR_INFO);
2067 }
2068
2069 return;
2070 }
2071
2072 sq = n->sq[qid];
2073 if (unlikely(new_tail >= sq->size)) {
2074 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
2075 "submission queue doorbell write value"
2076 " beyond queue size, sqid=%"PRIu32","
2077 " new_tail=%"PRIu16", ignoring",
2078 qid, new_tail);
2079
2080 if (n->outstanding_aers) {
2081 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2082 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2083 NVME_LOG_ERROR_INFO);
2084 }
2085
2086 return;
2087 }
2088
2089 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
2090
2091 sq->tail = new_tail;
2092 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2093 }
2094 }
2095
2096 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
2097 unsigned size)
2098 {
2099 NvmeCtrl *n = (NvmeCtrl *)opaque;
2100
2101 trace_pci_nvme_mmio_write(addr, data);
2102
2103 if (addr < sizeof(n->bar)) {
2104 nvme_write_bar(n, addr, data, size);
2105 } else {
2106 nvme_process_db(n, addr, data);
2107 }
2108 }
2109
2110 static const MemoryRegionOps nvme_mmio_ops = {
2111 .read = nvme_mmio_read,
2112 .write = nvme_mmio_write,
2113 .endianness = DEVICE_LITTLE_ENDIAN,
2114 .impl = {
2115 .min_access_size = 2,
2116 .max_access_size = 8,
2117 },
2118 };
2119
2120 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
2121 unsigned size)
2122 {
2123 NvmeCtrl *n = (NvmeCtrl *)opaque;
2124 stn_le_p(&n->cmbuf[addr], size, data);
2125 }
2126
2127 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
2128 {
2129 NvmeCtrl *n = (NvmeCtrl *)opaque;
2130 return ldn_le_p(&n->cmbuf[addr], size);
2131 }
2132
2133 static const MemoryRegionOps nvme_cmb_ops = {
2134 .read = nvme_cmb_read,
2135 .write = nvme_cmb_write,
2136 .endianness = DEVICE_LITTLE_ENDIAN,
2137 .impl = {
2138 .min_access_size = 1,
2139 .max_access_size = 8,
2140 },
2141 };
2142
2143 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
2144 {
2145 NvmeParams *params = &n->params;
2146
2147 if (params->num_queues) {
2148 warn_report("num_queues is deprecated; please use max_ioqpairs "
2149 "instead");
2150
2151 params->max_ioqpairs = params->num_queues - 1;
2152 }
2153
2154 if (params->max_ioqpairs < 1 ||
2155 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
2156 error_setg(errp, "max_ioqpairs must be between 1 and %d",
2157 NVME_MAX_IOQPAIRS);
2158 return;
2159 }
2160
2161 if (params->msix_qsize < 1 ||
2162 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
2163 error_setg(errp, "msix_qsize must be between 1 and %d",
2164 PCI_MSIX_FLAGS_QSIZE + 1);
2165 return;
2166 }
2167
2168 if (!n->conf.blk) {
2169 error_setg(errp, "drive property not set");
2170 return;
2171 }
2172
2173 if (!params->serial) {
2174 error_setg(errp, "serial property not set");
2175 return;
2176 }
2177
2178 if (!n->params.cmb_size_mb && n->pmrdev) {
2179 if (host_memory_backend_is_mapped(n->pmrdev)) {
2180 error_setg(errp, "can't use already busy memdev: %s",
2181 object_get_canonical_path_component(OBJECT(n->pmrdev)));
2182 return;
2183 }
2184
2185 if (!is_power_of_2(n->pmrdev->size)) {
2186 error_setg(errp, "pmr backend size needs to be power of 2 in size");
2187 return;
2188 }
2189
2190 host_memory_backend_set_mapped(n->pmrdev, true);
2191 }
2192 }
2193
2194 static void nvme_init_state(NvmeCtrl *n)
2195 {
2196 n->num_namespaces = 1;
2197 /* add one to max_ioqpairs to account for the admin queue pair */
2198 n->reg_size = pow2ceil(sizeof(NvmeBar) +
2199 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
2200 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
2201 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
2202 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
2203 n->temperature = NVME_TEMPERATURE;
2204 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
2205 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2206 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
2207 }
2208
2209 static void nvme_init_blk(NvmeCtrl *n, Error **errp)
2210 {
2211 if (!blkconf_blocksizes(&n->conf, errp)) {
2212 return;
2213 }
2214 blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
2215 false, errp);
2216 }
2217
2218 static void nvme_init_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
2219 {
2220 int64_t bs_size;
2221 NvmeIdNs *id_ns = &ns->id_ns;
2222
2223 bs_size = blk_getlength(n->conf.blk);
2224 if (bs_size < 0) {
2225 error_setg_errno(errp, -bs_size, "could not get backing file size");
2226 return;
2227 }
2228
2229 n->ns_size = bs_size;
2230
2231 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
2232 id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(n, ns));
2233
2234 /* no thin provisioning */
2235 id_ns->ncap = id_ns->nsze;
2236 id_ns->nuse = id_ns->ncap;
2237 }
2238
2239 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
2240 {
2241 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
2242 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
2243
2244 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
2245 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
2246 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
2247 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
2248 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
2249 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
2250 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
2251
2252 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2253 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
2254 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2255 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
2256 PCI_BASE_ADDRESS_SPACE_MEMORY |
2257 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2258 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
2259 }
2260
2261 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
2262 {
2263 /* Controller Capabilities register */
2264 NVME_CAP_SET_PMRS(n->bar.cap, 1);
2265
2266 /* PMR Capabities register */
2267 n->bar.pmrcap = 0;
2268 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
2269 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
2270 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
2271 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
2272 /* Turn on bit 1 support */
2273 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
2274 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
2275 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
2276
2277 /* PMR Control register */
2278 n->bar.pmrctl = 0;
2279 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
2280
2281 /* PMR Status register */
2282 n->bar.pmrsts = 0;
2283 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
2284 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
2285 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
2286 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
2287
2288 /* PMR Elasticity Buffer Size register */
2289 n->bar.pmrebs = 0;
2290 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
2291 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
2292 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
2293
2294 /* PMR Sustained Write Throughput register */
2295 n->bar.pmrswtp = 0;
2296 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
2297 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
2298
2299 /* PMR Memory Space Control register */
2300 n->bar.pmrmsc = 0;
2301 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
2302 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
2303
2304 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
2305 PCI_BASE_ADDRESS_SPACE_MEMORY |
2306 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2307 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
2308 }
2309
2310 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
2311 {
2312 uint8_t *pci_conf = pci_dev->config;
2313
2314 pci_conf[PCI_INTERRUPT_PIN] = 1;
2315 pci_config_set_prog_interface(pci_conf, 0x2);
2316 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
2317 pcie_endpoint_cap_init(pci_dev, 0x80);
2318
2319 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
2320 n->reg_size);
2321 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
2322 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
2323 if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
2324 return;
2325 }
2326
2327 if (n->params.cmb_size_mb) {
2328 nvme_init_cmb(n, pci_dev);
2329 } else if (n->pmrdev) {
2330 nvme_init_pmr(n, pci_dev);
2331 }
2332 }
2333
2334 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
2335 {
2336 NvmeIdCtrl *id = &n->id_ctrl;
2337 uint8_t *pci_conf = pci_dev->config;
2338 char *subnqn;
2339
2340 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
2341 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
2342 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
2343 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
2344 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
2345 id->rab = 6;
2346 id->ieee[0] = 0x00;
2347 id->ieee[1] = 0x02;
2348 id->ieee[2] = 0xb3;
2349 id->mdts = n->params.mdts;
2350 id->ver = cpu_to_le32(NVME_SPEC_VER);
2351 id->oacs = cpu_to_le16(0);
2352
2353 /*
2354 * Because the controller always completes the Abort command immediately,
2355 * there can never be more than one concurrently executing Abort command,
2356 * so this value is never used for anything. Note that there can easily be
2357 * many Abort commands in the queues, but they are not considered
2358 * "executing" until processed by nvme_abort.
2359 *
2360 * The specification recommends a value of 3 for Abort Command Limit (four
2361 * concurrently outstanding Abort commands), so lets use that though it is
2362 * inconsequential.
2363 */
2364 id->acl = 3;
2365 id->aerl = n->params.aerl;
2366 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
2367 id->lpa = NVME_LPA_EXTENDED;
2368
2369 /* recommended default value (~70 C) */
2370 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
2371 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
2372
2373 id->sqes = (0x6 << 4) | 0x6;
2374 id->cqes = (0x4 << 4) | 0x4;
2375 id->nn = cpu_to_le32(n->num_namespaces);
2376 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
2377 NVME_ONCS_FEATURES);
2378
2379 subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
2380 strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
2381 g_free(subnqn);
2382
2383 id->psd[0].mp = cpu_to_le16(0x9c4);
2384 id->psd[0].enlat = cpu_to_le32(0x10);
2385 id->psd[0].exlat = cpu_to_le32(0x4);
2386 if (blk_enable_write_cache(n->conf.blk)) {
2387 id->vwc = 1;
2388 }
2389
2390 n->bar.cap = 0;
2391 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
2392 NVME_CAP_SET_CQR(n->bar.cap, 1);
2393 NVME_CAP_SET_TO(n->bar.cap, 0xf);
2394 NVME_CAP_SET_CSS(n->bar.cap, 1);
2395 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
2396
2397 n->bar.vs = NVME_SPEC_VER;
2398 n->bar.intmc = n->bar.intms = 0;
2399 }
2400
2401 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
2402 {
2403 NvmeCtrl *n = NVME(pci_dev);
2404 Error *local_err = NULL;
2405
2406 int i;
2407
2408 nvme_check_constraints(n, &local_err);
2409 if (local_err) {
2410 error_propagate(errp, local_err);
2411 return;
2412 }
2413
2414 nvme_init_state(n);
2415 nvme_init_blk(n, &local_err);
2416 if (local_err) {
2417 error_propagate(errp, local_err);
2418 return;
2419 }
2420
2421 nvme_init_pci(n, pci_dev, &local_err);
2422 if (local_err) {
2423 error_propagate(errp, local_err);
2424 return;
2425 }
2426
2427 nvme_init_ctrl(n, pci_dev);
2428
2429 for (i = 0; i < n->num_namespaces; i++) {
2430 nvme_init_namespace(n, &n->namespaces[i], &local_err);
2431 if (local_err) {
2432 error_propagate(errp, local_err);
2433 return;
2434 }
2435 }
2436 }
2437
2438 static void nvme_exit(PCIDevice *pci_dev)
2439 {
2440 NvmeCtrl *n = NVME(pci_dev);
2441
2442 nvme_clear_ctrl(n);
2443 g_free(n->namespaces);
2444 g_free(n->cq);
2445 g_free(n->sq);
2446 g_free(n->aer_reqs);
2447
2448 if (n->params.cmb_size_mb) {
2449 g_free(n->cmbuf);
2450 }
2451
2452 if (n->pmrdev) {
2453 host_memory_backend_set_mapped(n->pmrdev, false);
2454 }
2455 msix_uninit_exclusive_bar(pci_dev);
2456 }
2457
2458 static Property nvme_props[] = {
2459 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
2460 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
2461 HostMemoryBackend *),
2462 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
2463 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
2464 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
2465 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
2466 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
2467 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
2468 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
2469 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
2470 DEFINE_PROP_END_OF_LIST(),
2471 };
2472
2473 static const VMStateDescription nvme_vmstate = {
2474 .name = "nvme",
2475 .unmigratable = 1,
2476 };
2477
2478 static void nvme_class_init(ObjectClass *oc, void *data)
2479 {
2480 DeviceClass *dc = DEVICE_CLASS(oc);
2481 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
2482
2483 pc->realize = nvme_realize;
2484 pc->exit = nvme_exit;
2485 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
2486 pc->vendor_id = PCI_VENDOR_ID_INTEL;
2487 pc->device_id = 0x5845;
2488 pc->revision = 2;
2489
2490 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2491 dc->desc = "Non-Volatile Memory Express";
2492 device_class_set_props(dc, nvme_props);
2493 dc->vmsd = &nvme_vmstate;
2494 }
2495
2496 static void nvme_instance_init(Object *obj)
2497 {
2498 NvmeCtrl *s = NVME(obj);
2499
2500 device_add_bootindex_property(obj, &s->conf.bootindex,
2501 "bootindex", "/namespace@1,0",
2502 DEVICE(obj));
2503 }
2504
2505 static const TypeInfo nvme_info = {
2506 .name = TYPE_NVME,
2507 .parent = TYPE_PCI_DEVICE,
2508 .instance_size = sizeof(NvmeCtrl),
2509 .class_init = nvme_class_init,
2510 .instance_init = nvme_instance_init,
2511 .interfaces = (InterfaceInfo[]) {
2512 { INTERFACE_PCIE_DEVICE },
2513 { }
2514 },
2515 };
2516
2517 static void nvme_register_types(void)
2518 {
2519 type_register_static(&nvme_info);
2520 }
2521
2522 type_init(nvme_register_types)