]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
hw/block/nvme: enforce valid queue creation sequence
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * max_ioqpairs=<N[optional]>, \
24 * aerl=<N[optional]>, aer_max_queued=<N[optional]>
25 *
26 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
27 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
28 *
29 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
30 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
31 * both provided.
32 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
33 * For example:
34 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
35 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
36 *
37 *
38 * nvme device parameters
39 * ~~~~~~~~~~~~~~~~~~~~~~
40 * - `aerl`
41 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
42 * of concurrently outstanding Asynchronous Event Request commands suppoert
43 * by the controller. This is a 0's based value.
44 *
45 * - `aer_max_queued`
46 * This is the maximum number of events that the device will enqueue for
47 * completion when there are no oustanding AERs. When the maximum number of
48 * enqueued events are reached, subsequent events will be dropped.
49 *
50 */
51
52 #include "qemu/osdep.h"
53 #include "qemu/units.h"
54 #include "qemu/error-report.h"
55 #include "hw/block/block.h"
56 #include "hw/pci/msix.h"
57 #include "hw/pci/pci.h"
58 #include "hw/qdev-properties.h"
59 #include "migration/vmstate.h"
60 #include "sysemu/sysemu.h"
61 #include "qapi/error.h"
62 #include "qapi/visitor.h"
63 #include "sysemu/hostmem.h"
64 #include "sysemu/block-backend.h"
65 #include "exec/memory.h"
66 #include "qemu/log.h"
67 #include "qemu/module.h"
68 #include "qemu/cutils.h"
69 #include "trace.h"
70 #include "nvme.h"
71
72 #define NVME_MAX_IOQPAIRS 0xffff
73 #define NVME_DB_SIZE 4
74 #define NVME_CMB_BIR 2
75 #define NVME_PMR_BIR 2
76 #define NVME_TEMPERATURE 0x143
77 #define NVME_TEMPERATURE_WARNING 0x157
78 #define NVME_TEMPERATURE_CRITICAL 0x175
79 #define NVME_NUM_FW_SLOTS 1
80
81 #define NVME_GUEST_ERR(trace, fmt, ...) \
82 do { \
83 (trace_##trace)(__VA_ARGS__); \
84 qemu_log_mask(LOG_GUEST_ERROR, #trace \
85 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
86 } while (0)
87
88 static const bool nvme_feature_support[NVME_FID_MAX] = {
89 [NVME_ARBITRATION] = true,
90 [NVME_POWER_MANAGEMENT] = true,
91 [NVME_TEMPERATURE_THRESHOLD] = true,
92 [NVME_ERROR_RECOVERY] = true,
93 [NVME_VOLATILE_WRITE_CACHE] = true,
94 [NVME_NUMBER_OF_QUEUES] = true,
95 [NVME_INTERRUPT_COALESCING] = true,
96 [NVME_INTERRUPT_VECTOR_CONF] = true,
97 [NVME_WRITE_ATOMICITY] = true,
98 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
99 [NVME_TIMESTAMP] = true,
100 };
101
102 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
103 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
104 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
105 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
106 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
107 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
108 };
109
110 static void nvme_process_sq(void *opaque);
111
112 static uint16_t nvme_cid(NvmeRequest *req)
113 {
114 if (!req) {
115 return 0xffff;
116 }
117
118 return le16_to_cpu(req->cqe.cid);
119 }
120
121 static uint16_t nvme_sqid(NvmeRequest *req)
122 {
123 return le16_to_cpu(req->sq->sqid);
124 }
125
126 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
127 {
128 hwaddr low = n->ctrl_mem.addr;
129 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
130
131 return addr >= low && addr < hi;
132 }
133
134 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
135 {
136 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr)) {
137 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
138 return;
139 }
140
141 pci_dma_read(&n->parent_obj, addr, buf, size);
142 }
143
144 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
145 {
146 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
147 }
148
149 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
150 {
151 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
152 }
153
154 static void nvme_inc_cq_tail(NvmeCQueue *cq)
155 {
156 cq->tail++;
157 if (cq->tail >= cq->size) {
158 cq->tail = 0;
159 cq->phase = !cq->phase;
160 }
161 }
162
163 static void nvme_inc_sq_head(NvmeSQueue *sq)
164 {
165 sq->head = (sq->head + 1) % sq->size;
166 }
167
168 static uint8_t nvme_cq_full(NvmeCQueue *cq)
169 {
170 return (cq->tail + 1) % cq->size == cq->head;
171 }
172
173 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
174 {
175 return sq->head == sq->tail;
176 }
177
178 static void nvme_irq_check(NvmeCtrl *n)
179 {
180 if (msix_enabled(&(n->parent_obj))) {
181 return;
182 }
183 if (~n->bar.intms & n->irq_status) {
184 pci_irq_assert(&n->parent_obj);
185 } else {
186 pci_irq_deassert(&n->parent_obj);
187 }
188 }
189
190 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
191 {
192 if (cq->irq_enabled) {
193 if (msix_enabled(&(n->parent_obj))) {
194 trace_pci_nvme_irq_msix(cq->vector);
195 msix_notify(&(n->parent_obj), cq->vector);
196 } else {
197 trace_pci_nvme_irq_pin();
198 assert(cq->vector < 32);
199 n->irq_status |= 1 << cq->vector;
200 nvme_irq_check(n);
201 }
202 } else {
203 trace_pci_nvme_irq_masked();
204 }
205 }
206
207 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
208 {
209 if (cq->irq_enabled) {
210 if (msix_enabled(&(n->parent_obj))) {
211 return;
212 } else {
213 assert(cq->vector < 32);
214 n->irq_status &= ~(1 << cq->vector);
215 nvme_irq_check(n);
216 }
217 }
218 }
219
220 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
221 uint64_t prp2, uint32_t len, NvmeCtrl *n)
222 {
223 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
224 trans_len = MIN(len, trans_len);
225 int num_prps = (len >> n->page_bits) + 1;
226
227 if (unlikely(!prp1)) {
228 trace_pci_nvme_err_invalid_prp();
229 return NVME_INVALID_FIELD | NVME_DNR;
230 } else if (n->bar.cmbsz && prp1 >= n->ctrl_mem.addr &&
231 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
232 qsg->nsg = 0;
233 qemu_iovec_init(iov, num_prps);
234 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
235 } else {
236 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
237 qemu_sglist_add(qsg, prp1, trans_len);
238 }
239 len -= trans_len;
240 if (len) {
241 if (unlikely(!prp2)) {
242 trace_pci_nvme_err_invalid_prp2_missing();
243 goto unmap;
244 }
245 if (len > n->page_size) {
246 uint64_t prp_list[n->max_prp_ents];
247 uint32_t nents, prp_trans;
248 int i = 0;
249
250 nents = (len + n->page_size - 1) >> n->page_bits;
251 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
252 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
253 while (len != 0) {
254 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
255
256 if (i == n->max_prp_ents - 1 && len > n->page_size) {
257 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
258 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
259 goto unmap;
260 }
261
262 i = 0;
263 nents = (len + n->page_size - 1) >> n->page_bits;
264 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
265 nvme_addr_read(n, prp_ent, (void *)prp_list,
266 prp_trans);
267 prp_ent = le64_to_cpu(prp_list[i]);
268 }
269
270 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
271 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
272 goto unmap;
273 }
274
275 trans_len = MIN(len, n->page_size);
276 if (qsg->nsg){
277 qemu_sglist_add(qsg, prp_ent, trans_len);
278 } else {
279 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
280 }
281 len -= trans_len;
282 i++;
283 }
284 } else {
285 if (unlikely(prp2 & (n->page_size - 1))) {
286 trace_pci_nvme_err_invalid_prp2_align(prp2);
287 goto unmap;
288 }
289 if (qsg->nsg) {
290 qemu_sglist_add(qsg, prp2, len);
291 } else {
292 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
293 }
294 }
295 }
296 return NVME_SUCCESS;
297
298 unmap:
299 qemu_sglist_destroy(qsg);
300 return NVME_INVALID_FIELD | NVME_DNR;
301 }
302
303 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
304 uint64_t prp1, uint64_t prp2)
305 {
306 QEMUSGList qsg;
307 QEMUIOVector iov;
308 uint16_t status = NVME_SUCCESS;
309
310 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
311 return NVME_INVALID_FIELD | NVME_DNR;
312 }
313 if (qsg.nsg > 0) {
314 if (dma_buf_write(ptr, len, &qsg)) {
315 status = NVME_INVALID_FIELD | NVME_DNR;
316 }
317 qemu_sglist_destroy(&qsg);
318 } else {
319 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
320 status = NVME_INVALID_FIELD | NVME_DNR;
321 }
322 qemu_iovec_destroy(&iov);
323 }
324 return status;
325 }
326
327 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
328 uint64_t prp1, uint64_t prp2)
329 {
330 QEMUSGList qsg;
331 QEMUIOVector iov;
332 uint16_t status = NVME_SUCCESS;
333
334 trace_pci_nvme_dma_read(prp1, prp2);
335
336 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
337 return NVME_INVALID_FIELD | NVME_DNR;
338 }
339 if (qsg.nsg > 0) {
340 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
341 trace_pci_nvme_err_invalid_dma();
342 status = NVME_INVALID_FIELD | NVME_DNR;
343 }
344 qemu_sglist_destroy(&qsg);
345 } else {
346 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
347 trace_pci_nvme_err_invalid_dma();
348 status = NVME_INVALID_FIELD | NVME_DNR;
349 }
350 qemu_iovec_destroy(&iov);
351 }
352 return status;
353 }
354
355 static void nvme_post_cqes(void *opaque)
356 {
357 NvmeCQueue *cq = opaque;
358 NvmeCtrl *n = cq->ctrl;
359 NvmeRequest *req, *next;
360
361 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
362 NvmeSQueue *sq;
363 hwaddr addr;
364
365 if (nvme_cq_full(cq)) {
366 break;
367 }
368
369 QTAILQ_REMOVE(&cq->req_list, req, entry);
370 sq = req->sq;
371 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
372 req->cqe.sq_id = cpu_to_le16(sq->sqid);
373 req->cqe.sq_head = cpu_to_le16(sq->head);
374 addr = cq->dma_addr + cq->tail * n->cqe_size;
375 nvme_inc_cq_tail(cq);
376 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
377 sizeof(req->cqe));
378 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
379 }
380 if (cq->tail != cq->head) {
381 nvme_irq_assert(n, cq);
382 }
383 }
384
385 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
386 {
387 assert(cq->cqid == req->sq->cqid);
388 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
389 req->status);
390 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
391 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
392 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
393 }
394
395 static void nvme_process_aers(void *opaque)
396 {
397 NvmeCtrl *n = opaque;
398 NvmeAsyncEvent *event, *next;
399
400 trace_pci_nvme_process_aers(n->aer_queued);
401
402 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
403 NvmeRequest *req;
404 NvmeAerResult *result;
405
406 /* can't post cqe if there is nothing to complete */
407 if (!n->outstanding_aers) {
408 trace_pci_nvme_no_outstanding_aers();
409 break;
410 }
411
412 /* ignore if masked (cqe posted, but event not cleared) */
413 if (n->aer_mask & (1 << event->result.event_type)) {
414 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
415 continue;
416 }
417
418 QTAILQ_REMOVE(&n->aer_queue, event, entry);
419 n->aer_queued--;
420
421 n->aer_mask |= 1 << event->result.event_type;
422 n->outstanding_aers--;
423
424 req = n->aer_reqs[n->outstanding_aers];
425
426 result = (NvmeAerResult *) &req->cqe.result;
427 result->event_type = event->result.event_type;
428 result->event_info = event->result.event_info;
429 result->log_page = event->result.log_page;
430 g_free(event);
431
432 req->status = NVME_SUCCESS;
433
434 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
435 result->log_page);
436
437 nvme_enqueue_req_completion(&n->admin_cq, req);
438 }
439 }
440
441 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
442 uint8_t event_info, uint8_t log_page)
443 {
444 NvmeAsyncEvent *event;
445
446 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
447
448 if (n->aer_queued == n->params.aer_max_queued) {
449 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
450 return;
451 }
452
453 event = g_new(NvmeAsyncEvent, 1);
454 event->result = (NvmeAerResult) {
455 .event_type = event_type,
456 .event_info = event_info,
457 .log_page = log_page,
458 };
459
460 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
461 n->aer_queued++;
462
463 nvme_process_aers(n);
464 }
465
466 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
467 {
468 n->aer_mask &= ~(1 << event_type);
469 if (!QTAILQ_EMPTY(&n->aer_queue)) {
470 nvme_process_aers(n);
471 }
472 }
473
474 static void nvme_rw_cb(void *opaque, int ret)
475 {
476 NvmeRequest *req = opaque;
477 NvmeSQueue *sq = req->sq;
478 NvmeCtrl *n = sq->ctrl;
479 NvmeCQueue *cq = n->cq[sq->cqid];
480
481 trace_pci_nvme_rw_cb(nvme_cid(req));
482
483 if (!ret) {
484 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
485 req->status = NVME_SUCCESS;
486 } else {
487 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
488 req->status = NVME_INTERNAL_DEV_ERROR;
489 }
490 if (req->has_sg) {
491 qemu_sglist_destroy(&req->qsg);
492 }
493 nvme_enqueue_req_completion(cq, req);
494 }
495
496 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
497 NvmeRequest *req)
498 {
499 req->has_sg = false;
500 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
501 BLOCK_ACCT_FLUSH);
502 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
503
504 return NVME_NO_COMPLETE;
505 }
506
507 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
508 NvmeRequest *req)
509 {
510 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
511 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
512 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
513 uint64_t slba = le64_to_cpu(rw->slba);
514 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
515 uint64_t offset = slba << data_shift;
516 uint32_t count = nlb << data_shift;
517
518 trace_pci_nvme_write_zeroes(nvme_cid(req), slba, nlb);
519
520 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
521 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
522 return NVME_LBA_RANGE | NVME_DNR;
523 }
524
525 req->has_sg = false;
526 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
527 BLOCK_ACCT_WRITE);
528 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
529 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
530 return NVME_NO_COMPLETE;
531 }
532
533 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
534 NvmeRequest *req)
535 {
536 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
537 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
538 uint64_t slba = le64_to_cpu(rw->slba);
539 uint64_t prp1 = le64_to_cpu(rw->dptr.prp1);
540 uint64_t prp2 = le64_to_cpu(rw->dptr.prp2);
541
542 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
543 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
544 uint64_t data_size = (uint64_t)nlb << data_shift;
545 uint64_t data_offset = slba << data_shift;
546 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
547 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
548
549 trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
550
551 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
552 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
553 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
554 return NVME_LBA_RANGE | NVME_DNR;
555 }
556
557 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
558 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
559 return NVME_INVALID_FIELD | NVME_DNR;
560 }
561
562 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
563 if (req->qsg.nsg > 0) {
564 req->has_sg = true;
565 req->aiocb = is_write ?
566 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
567 nvme_rw_cb, req) :
568 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
569 nvme_rw_cb, req);
570 } else {
571 req->has_sg = false;
572 req->aiocb = is_write ?
573 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
574 req) :
575 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
576 req);
577 }
578
579 return NVME_NO_COMPLETE;
580 }
581
582 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
583 {
584 NvmeNamespace *ns;
585 uint32_t nsid = le32_to_cpu(cmd->nsid);
586
587 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), cmd->opcode);
588
589 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
590 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
591 return NVME_INVALID_NSID | NVME_DNR;
592 }
593
594 ns = &n->namespaces[nsid - 1];
595 switch (cmd->opcode) {
596 case NVME_CMD_FLUSH:
597 return nvme_flush(n, ns, cmd, req);
598 case NVME_CMD_WRITE_ZEROS:
599 return nvme_write_zeros(n, ns, cmd, req);
600 case NVME_CMD_WRITE:
601 case NVME_CMD_READ:
602 return nvme_rw(n, ns, cmd, req);
603 default:
604 trace_pci_nvme_err_invalid_opc(cmd->opcode);
605 return NVME_INVALID_OPCODE | NVME_DNR;
606 }
607 }
608
609 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
610 {
611 n->sq[sq->sqid] = NULL;
612 timer_del(sq->timer);
613 timer_free(sq->timer);
614 g_free(sq->io_req);
615 if (sq->sqid) {
616 g_free(sq);
617 }
618 }
619
620 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
621 {
622 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
623 NvmeRequest *req, *next;
624 NvmeSQueue *sq;
625 NvmeCQueue *cq;
626 uint16_t qid = le16_to_cpu(c->qid);
627
628 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
629 trace_pci_nvme_err_invalid_del_sq(qid);
630 return NVME_INVALID_QID | NVME_DNR;
631 }
632
633 trace_pci_nvme_del_sq(qid);
634
635 sq = n->sq[qid];
636 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
637 req = QTAILQ_FIRST(&sq->out_req_list);
638 assert(req->aiocb);
639 blk_aio_cancel(req->aiocb);
640 }
641 if (!nvme_check_cqid(n, sq->cqid)) {
642 cq = n->cq[sq->cqid];
643 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
644
645 nvme_post_cqes(cq);
646 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
647 if (req->sq == sq) {
648 QTAILQ_REMOVE(&cq->req_list, req, entry);
649 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
650 }
651 }
652 }
653
654 nvme_free_sq(sq, n);
655 return NVME_SUCCESS;
656 }
657
658 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
659 uint16_t sqid, uint16_t cqid, uint16_t size)
660 {
661 int i;
662 NvmeCQueue *cq;
663
664 sq->ctrl = n;
665 sq->dma_addr = dma_addr;
666 sq->sqid = sqid;
667 sq->size = size;
668 sq->cqid = cqid;
669 sq->head = sq->tail = 0;
670 sq->io_req = g_new(NvmeRequest, sq->size);
671
672 QTAILQ_INIT(&sq->req_list);
673 QTAILQ_INIT(&sq->out_req_list);
674 for (i = 0; i < sq->size; i++) {
675 sq->io_req[i].sq = sq;
676 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
677 }
678 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
679
680 assert(n->cq[cqid]);
681 cq = n->cq[cqid];
682 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
683 n->sq[sqid] = sq;
684 }
685
686 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
687 {
688 NvmeSQueue *sq;
689 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
690
691 uint16_t cqid = le16_to_cpu(c->cqid);
692 uint16_t sqid = le16_to_cpu(c->sqid);
693 uint16_t qsize = le16_to_cpu(c->qsize);
694 uint16_t qflags = le16_to_cpu(c->sq_flags);
695 uint64_t prp1 = le64_to_cpu(c->prp1);
696
697 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
698
699 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
700 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
701 return NVME_INVALID_CQID | NVME_DNR;
702 }
703 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
704 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
705 return NVME_INVALID_QID | NVME_DNR;
706 }
707 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
708 trace_pci_nvme_err_invalid_create_sq_size(qsize);
709 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
710 }
711 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
712 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
713 return NVME_INVALID_FIELD | NVME_DNR;
714 }
715 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
716 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
717 return NVME_INVALID_FIELD | NVME_DNR;
718 }
719 sq = g_malloc0(sizeof(*sq));
720 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
721 return NVME_SUCCESS;
722 }
723
724 static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae,
725 uint32_t buf_len, uint64_t off,
726 NvmeRequest *req)
727 {
728 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
729 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
730 uint32_t nsid = le32_to_cpu(cmd->nsid);
731
732 uint32_t trans_len;
733 time_t current_ms;
734 uint64_t units_read = 0, units_written = 0;
735 uint64_t read_commands = 0, write_commands = 0;
736 NvmeSmartLog smart;
737 BlockAcctStats *s;
738
739 if (nsid && nsid != 0xffffffff) {
740 return NVME_INVALID_FIELD | NVME_DNR;
741 }
742
743 s = blk_get_stats(n->conf.blk);
744
745 units_read = s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
746 units_written = s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
747 read_commands = s->nr_ops[BLOCK_ACCT_READ];
748 write_commands = s->nr_ops[BLOCK_ACCT_WRITE];
749
750 if (off > sizeof(smart)) {
751 return NVME_INVALID_FIELD | NVME_DNR;
752 }
753
754 trans_len = MIN(sizeof(smart) - off, buf_len);
755
756 memset(&smart, 0x0, sizeof(smart));
757
758 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(units_read, 1000));
759 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(units_written,
760 1000));
761 smart.host_read_commands[0] = cpu_to_le64(read_commands);
762 smart.host_write_commands[0] = cpu_to_le64(write_commands);
763
764 smart.temperature = cpu_to_le16(n->temperature);
765
766 if ((n->temperature >= n->features.temp_thresh_hi) ||
767 (n->temperature <= n->features.temp_thresh_low)) {
768 smart.critical_warning |= NVME_SMART_TEMPERATURE;
769 }
770
771 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
772 smart.power_on_hours[0] =
773 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
774
775 if (!rae) {
776 nvme_clear_events(n, NVME_AER_TYPE_SMART);
777 }
778
779 return nvme_dma_read_prp(n, (uint8_t *) &smart + off, trans_len, prp1,
780 prp2);
781 }
782
783 static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len,
784 uint64_t off, NvmeRequest *req)
785 {
786 uint32_t trans_len;
787 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
788 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
789 NvmeFwSlotInfoLog fw_log = {
790 .afi = 0x1,
791 };
792
793 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
794
795 if (off > sizeof(fw_log)) {
796 return NVME_INVALID_FIELD | NVME_DNR;
797 }
798
799 trans_len = MIN(sizeof(fw_log) - off, buf_len);
800
801 return nvme_dma_read_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1,
802 prp2);
803 }
804
805 static uint16_t nvme_error_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae,
806 uint32_t buf_len, uint64_t off,
807 NvmeRequest *req)
808 {
809 uint32_t trans_len;
810 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
811 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
812 NvmeErrorLog errlog;
813
814 if (!rae) {
815 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
816 }
817
818 if (off > sizeof(errlog)) {
819 return NVME_INVALID_FIELD | NVME_DNR;
820 }
821
822 memset(&errlog, 0x0, sizeof(errlog));
823
824 trans_len = MIN(sizeof(errlog) - off, buf_len);
825
826 return nvme_dma_read_prp(n, (uint8_t *)&errlog, trans_len, prp1, prp2);
827 }
828
829 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
830 {
831 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
832 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
833 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
834 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
835 uint8_t lid = dw10 & 0xff;
836 uint8_t lsp = (dw10 >> 8) & 0xf;
837 uint8_t rae = (dw10 >> 15) & 0x1;
838 uint32_t numdl, numdu;
839 uint64_t off, lpol, lpou;
840 size_t len;
841
842 numdl = (dw10 >> 16);
843 numdu = (dw11 & 0xffff);
844 lpol = dw12;
845 lpou = dw13;
846
847 len = (((numdu << 16) | numdl) + 1) << 2;
848 off = (lpou << 32ULL) | lpol;
849
850 if (off & 0x3) {
851 return NVME_INVALID_FIELD | NVME_DNR;
852 }
853
854 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
855
856 switch (lid) {
857 case NVME_LOG_ERROR_INFO:
858 return nvme_error_info(n, cmd, rae, len, off, req);
859 case NVME_LOG_SMART_INFO:
860 return nvme_smart_info(n, cmd, rae, len, off, req);
861 case NVME_LOG_FW_SLOT_INFO:
862 return nvme_fw_log_info(n, cmd, len, off, req);
863 default:
864 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
865 return NVME_INVALID_FIELD | NVME_DNR;
866 }
867 }
868
869 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
870 {
871 n->cq[cq->cqid] = NULL;
872 timer_del(cq->timer);
873 timer_free(cq->timer);
874 msix_vector_unuse(&n->parent_obj, cq->vector);
875 if (cq->cqid) {
876 g_free(cq);
877 }
878 }
879
880 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
881 {
882 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
883 NvmeCQueue *cq;
884 uint16_t qid = le16_to_cpu(c->qid);
885
886 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
887 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
888 return NVME_INVALID_CQID | NVME_DNR;
889 }
890
891 cq = n->cq[qid];
892 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
893 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
894 return NVME_INVALID_QUEUE_DEL;
895 }
896 nvme_irq_deassert(n, cq);
897 trace_pci_nvme_del_cq(qid);
898 nvme_free_cq(cq, n);
899 return NVME_SUCCESS;
900 }
901
902 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
903 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
904 {
905 int ret;
906
907 ret = msix_vector_use(&n->parent_obj, vector);
908 assert(ret == 0);
909 cq->ctrl = n;
910 cq->cqid = cqid;
911 cq->size = size;
912 cq->dma_addr = dma_addr;
913 cq->phase = 1;
914 cq->irq_enabled = irq_enabled;
915 cq->vector = vector;
916 cq->head = cq->tail = 0;
917 QTAILQ_INIT(&cq->req_list);
918 QTAILQ_INIT(&cq->sq_list);
919 n->cq[cqid] = cq;
920 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
921 }
922
923 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
924 {
925 NvmeCQueue *cq;
926 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
927 uint16_t cqid = le16_to_cpu(c->cqid);
928 uint16_t vector = le16_to_cpu(c->irq_vector);
929 uint16_t qsize = le16_to_cpu(c->qsize);
930 uint16_t qflags = le16_to_cpu(c->cq_flags);
931 uint64_t prp1 = le64_to_cpu(c->prp1);
932
933 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
934 NVME_CQ_FLAGS_IEN(qflags) != 0);
935
936 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
937 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
938 return NVME_INVALID_CQID | NVME_DNR;
939 }
940 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
941 trace_pci_nvme_err_invalid_create_cq_size(qsize);
942 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
943 }
944 if (unlikely(!prp1)) {
945 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
946 return NVME_INVALID_FIELD | NVME_DNR;
947 }
948 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
949 trace_pci_nvme_err_invalid_create_cq_vector(vector);
950 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
951 }
952 if (unlikely(vector >= n->params.msix_qsize)) {
953 trace_pci_nvme_err_invalid_create_cq_vector(vector);
954 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
955 }
956 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
957 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
958 return NVME_INVALID_FIELD | NVME_DNR;
959 }
960
961 cq = g_malloc0(sizeof(*cq));
962 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
963 NVME_CQ_FLAGS_IEN(qflags));
964
965 /*
966 * It is only required to set qs_created when creating a completion queue;
967 * creating a submission queue without a matching completion queue will
968 * fail.
969 */
970 n->qs_created = true;
971 return NVME_SUCCESS;
972 }
973
974 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
975 {
976 uint64_t prp1 = le64_to_cpu(c->prp1);
977 uint64_t prp2 = le64_to_cpu(c->prp2);
978
979 trace_pci_nvme_identify_ctrl();
980
981 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
982 prp1, prp2);
983 }
984
985 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
986 {
987 NvmeNamespace *ns;
988 uint32_t nsid = le32_to_cpu(c->nsid);
989 uint64_t prp1 = le64_to_cpu(c->prp1);
990 uint64_t prp2 = le64_to_cpu(c->prp2);
991
992 trace_pci_nvme_identify_ns(nsid);
993
994 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
995 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
996 return NVME_INVALID_NSID | NVME_DNR;
997 }
998
999 ns = &n->namespaces[nsid - 1];
1000
1001 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
1002 prp1, prp2);
1003 }
1004
1005 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
1006 {
1007 static const int data_len = NVME_IDENTIFY_DATA_SIZE;
1008 uint32_t min_nsid = le32_to_cpu(c->nsid);
1009 uint64_t prp1 = le64_to_cpu(c->prp1);
1010 uint64_t prp2 = le64_to_cpu(c->prp2);
1011 uint32_t *list;
1012 uint16_t ret;
1013 int i, j = 0;
1014
1015 trace_pci_nvme_identify_nslist(min_nsid);
1016
1017 /*
1018 * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1019 * since the Active Namespace ID List should return namespaces with ids
1020 * *higher* than the NSID specified in the command. This is also specified
1021 * in the spec (NVM Express v1.3d, Section 5.15.4).
1022 */
1023 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1024 return NVME_INVALID_NSID | NVME_DNR;
1025 }
1026
1027 list = g_malloc0(data_len);
1028 for (i = 0; i < n->num_namespaces; i++) {
1029 if (i < min_nsid) {
1030 continue;
1031 }
1032 list[j++] = cpu_to_le32(i + 1);
1033 if (j == data_len / sizeof(uint32_t)) {
1034 break;
1035 }
1036 }
1037 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
1038 g_free(list);
1039 return ret;
1040 }
1041
1042 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c)
1043 {
1044 uint32_t nsid = le32_to_cpu(c->nsid);
1045 uint64_t prp1 = le64_to_cpu(c->prp1);
1046 uint64_t prp2 = le64_to_cpu(c->prp2);
1047
1048 uint8_t list[NVME_IDENTIFY_DATA_SIZE];
1049
1050 struct data {
1051 struct {
1052 NvmeIdNsDescr hdr;
1053 uint8_t v[16];
1054 } uuid;
1055 };
1056
1057 struct data *ns_descrs = (struct data *)list;
1058
1059 trace_pci_nvme_identify_ns_descr_list(nsid);
1060
1061 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
1062 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
1063 return NVME_INVALID_NSID | NVME_DNR;
1064 }
1065
1066 memset(list, 0x0, sizeof(list));
1067
1068 /*
1069 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1070 * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1071 * Namespace Identification Descriptor. Add a very basic Namespace UUID
1072 * here.
1073 */
1074 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1075 ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
1076 stl_be_p(&ns_descrs->uuid.v, nsid);
1077
1078 return nvme_dma_read_prp(n, list, NVME_IDENTIFY_DATA_SIZE, prp1, prp2);
1079 }
1080
1081 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
1082 {
1083 NvmeIdentify *c = (NvmeIdentify *)cmd;
1084
1085 switch (le32_to_cpu(c->cns)) {
1086 case NVME_ID_CNS_NS:
1087 return nvme_identify_ns(n, c);
1088 case NVME_ID_CNS_CTRL:
1089 return nvme_identify_ctrl(n, c);
1090 case NVME_ID_CNS_NS_ACTIVE_LIST:
1091 return nvme_identify_nslist(n, c);
1092 case NVME_ID_CNS_NS_DESCR_LIST:
1093 return nvme_identify_ns_descr_list(n, c);
1094 default:
1095 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
1096 return NVME_INVALID_FIELD | NVME_DNR;
1097 }
1098 }
1099
1100 static uint16_t nvme_abort(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
1101 {
1102 uint16_t sqid = le32_to_cpu(cmd->cdw10) & 0xffff;
1103
1104 req->cqe.result = 1;
1105 if (nvme_check_sqid(n, sqid)) {
1106 return NVME_INVALID_FIELD | NVME_DNR;
1107 }
1108
1109 return NVME_SUCCESS;
1110 }
1111
1112 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
1113 {
1114 trace_pci_nvme_setfeat_timestamp(ts);
1115
1116 n->host_timestamp = le64_to_cpu(ts);
1117 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1118 }
1119
1120 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
1121 {
1122 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1123 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
1124
1125 union nvme_timestamp {
1126 struct {
1127 uint64_t timestamp:48;
1128 uint64_t sync:1;
1129 uint64_t origin:3;
1130 uint64_t rsvd1:12;
1131 };
1132 uint64_t all;
1133 };
1134
1135 union nvme_timestamp ts;
1136 ts.all = 0;
1137
1138 /*
1139 * If the sum of the Timestamp value set by the host and the elapsed
1140 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
1141 */
1142 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
1143
1144 /* If the host timestamp is non-zero, set the timestamp origin */
1145 ts.origin = n->host_timestamp ? 0x01 : 0x00;
1146
1147 trace_pci_nvme_getfeat_timestamp(ts.all);
1148
1149 return cpu_to_le64(ts.all);
1150 }
1151
1152 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
1153 {
1154 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1155 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1156
1157 uint64_t timestamp = nvme_get_timestamp(n);
1158
1159 return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
1160 sizeof(timestamp), prp1, prp2);
1161 }
1162
1163 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
1164 {
1165 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1166 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1167 uint32_t nsid = le32_to_cpu(cmd->nsid);
1168 uint32_t result;
1169 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1170 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
1171 uint16_t iv;
1172
1173 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
1174 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
1175 };
1176
1177 trace_pci_nvme_getfeat(nvme_cid(req), fid, sel, dw11);
1178
1179 if (!nvme_feature_support[fid]) {
1180 return NVME_INVALID_FIELD | NVME_DNR;
1181 }
1182
1183 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1184 if (!nsid || nsid > n->num_namespaces) {
1185 /*
1186 * The Reservation Notification Mask and Reservation Persistence
1187 * features require a status code of Invalid Field in Command when
1188 * NSID is 0xFFFFFFFF. Since the device does not support those
1189 * features we can always return Invalid Namespace or Format as we
1190 * should do for all other features.
1191 */
1192 return NVME_INVALID_NSID | NVME_DNR;
1193 }
1194 }
1195
1196 switch (sel) {
1197 case NVME_GETFEAT_SELECT_CURRENT:
1198 break;
1199 case NVME_GETFEAT_SELECT_SAVED:
1200 /* no features are saveable by the controller; fallthrough */
1201 case NVME_GETFEAT_SELECT_DEFAULT:
1202 goto defaults;
1203 case NVME_GETFEAT_SELECT_CAP:
1204 result = nvme_feature_cap[fid];
1205 goto out;
1206 }
1207
1208 switch (fid) {
1209 case NVME_TEMPERATURE_THRESHOLD:
1210 result = 0;
1211
1212 /*
1213 * The controller only implements the Composite Temperature sensor, so
1214 * return 0 for all other sensors.
1215 */
1216 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1217 goto out;
1218 }
1219
1220 switch (NVME_TEMP_THSEL(dw11)) {
1221 case NVME_TEMP_THSEL_OVER:
1222 result = n->features.temp_thresh_hi;
1223 goto out;
1224 case NVME_TEMP_THSEL_UNDER:
1225 result = n->features.temp_thresh_low;
1226 goto out;
1227 }
1228
1229 return NVME_INVALID_FIELD | NVME_DNR;
1230 case NVME_VOLATILE_WRITE_CACHE:
1231 result = blk_enable_write_cache(n->conf.blk);
1232 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
1233 goto out;
1234 case NVME_ASYNCHRONOUS_EVENT_CONF:
1235 result = n->features.async_config;
1236 goto out;
1237 case NVME_TIMESTAMP:
1238 return nvme_get_feature_timestamp(n, cmd);
1239 default:
1240 break;
1241 }
1242
1243 defaults:
1244 switch (fid) {
1245 case NVME_TEMPERATURE_THRESHOLD:
1246 result = 0;
1247
1248 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1249 break;
1250 }
1251
1252 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
1253 result = NVME_TEMPERATURE_WARNING;
1254 }
1255
1256 break;
1257 case NVME_NUMBER_OF_QUEUES:
1258 result = (n->params.max_ioqpairs - 1) |
1259 ((n->params.max_ioqpairs - 1) << 16);
1260 trace_pci_nvme_getfeat_numq(result);
1261 break;
1262 case NVME_INTERRUPT_VECTOR_CONF:
1263 iv = dw11 & 0xffff;
1264 if (iv >= n->params.max_ioqpairs + 1) {
1265 return NVME_INVALID_FIELD | NVME_DNR;
1266 }
1267
1268 result = iv;
1269 if (iv == n->admin_cq.vector) {
1270 result |= NVME_INTVC_NOCOALESCING;
1271 }
1272
1273 break;
1274 default:
1275 result = nvme_feature_default[fid];
1276 break;
1277 }
1278
1279 out:
1280 req->cqe.result = cpu_to_le32(result);
1281 return NVME_SUCCESS;
1282 }
1283
1284 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
1285 {
1286 uint16_t ret;
1287 uint64_t timestamp;
1288 uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
1289 uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
1290
1291 ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
1292 sizeof(timestamp), prp1, prp2);
1293 if (ret != NVME_SUCCESS) {
1294 return ret;
1295 }
1296
1297 nvme_set_timestamp(n, timestamp);
1298
1299 return NVME_SUCCESS;
1300 }
1301
1302 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
1303 {
1304 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1305 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1306 uint32_t nsid = le32_to_cpu(cmd->nsid);
1307 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1308 uint8_t save = NVME_SETFEAT_SAVE(dw10);
1309
1310 trace_pci_nvme_setfeat(nvme_cid(req), fid, save, dw11);
1311
1312 if (save) {
1313 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
1314 }
1315
1316 if (!nvme_feature_support[fid]) {
1317 return NVME_INVALID_FIELD | NVME_DNR;
1318 }
1319
1320 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1321 if (!nsid || (nsid != NVME_NSID_BROADCAST &&
1322 nsid > n->num_namespaces)) {
1323 return NVME_INVALID_NSID | NVME_DNR;
1324 }
1325 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
1326 if (nsid > n->num_namespaces) {
1327 return NVME_INVALID_NSID | NVME_DNR;
1328 }
1329
1330 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
1331 }
1332
1333 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
1334 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1335 }
1336
1337 switch (fid) {
1338 case NVME_TEMPERATURE_THRESHOLD:
1339 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1340 break;
1341 }
1342
1343 switch (NVME_TEMP_THSEL(dw11)) {
1344 case NVME_TEMP_THSEL_OVER:
1345 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
1346 break;
1347 case NVME_TEMP_THSEL_UNDER:
1348 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
1349 break;
1350 default:
1351 return NVME_INVALID_FIELD | NVME_DNR;
1352 }
1353
1354 if (((n->temperature >= n->features.temp_thresh_hi) ||
1355 (n->temperature <= n->features.temp_thresh_low)) &&
1356 NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
1357 nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
1358 NVME_AER_INFO_SMART_TEMP_THRESH,
1359 NVME_LOG_SMART_INFO);
1360 }
1361
1362 break;
1363 case NVME_VOLATILE_WRITE_CACHE:
1364 if (!(dw11 & 0x1) && blk_enable_write_cache(n->conf.blk)) {
1365 blk_flush(n->conf.blk);
1366 }
1367
1368 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
1369 break;
1370 case NVME_NUMBER_OF_QUEUES:
1371 if (n->qs_created) {
1372 return NVME_CMD_SEQ_ERROR | NVME_DNR;
1373 }
1374
1375 /*
1376 * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
1377 * and NSQR.
1378 */
1379 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
1380 return NVME_INVALID_FIELD | NVME_DNR;
1381 }
1382
1383 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
1384 ((dw11 >> 16) & 0xFFFF) + 1,
1385 n->params.max_ioqpairs,
1386 n->params.max_ioqpairs);
1387 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
1388 ((n->params.max_ioqpairs - 1) << 16));
1389 break;
1390 case NVME_ASYNCHRONOUS_EVENT_CONF:
1391 n->features.async_config = dw11;
1392 break;
1393 case NVME_TIMESTAMP:
1394 return nvme_set_feature_timestamp(n, cmd);
1395 default:
1396 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1397 }
1398 return NVME_SUCCESS;
1399 }
1400
1401 static uint16_t nvme_aer(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
1402 {
1403 trace_pci_nvme_aer(nvme_cid(req));
1404
1405 if (n->outstanding_aers > n->params.aerl) {
1406 trace_pci_nvme_aer_aerl_exceeded();
1407 return NVME_AER_LIMIT_EXCEEDED;
1408 }
1409
1410 n->aer_reqs[n->outstanding_aers] = req;
1411 n->outstanding_aers++;
1412
1413 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1414 nvme_process_aers(n);
1415 }
1416
1417 return NVME_NO_COMPLETE;
1418 }
1419
1420 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
1421 {
1422 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), cmd->opcode);
1423
1424 switch (cmd->opcode) {
1425 case NVME_ADM_CMD_DELETE_SQ:
1426 return nvme_del_sq(n, cmd);
1427 case NVME_ADM_CMD_CREATE_SQ:
1428 return nvme_create_sq(n, cmd);
1429 case NVME_ADM_CMD_GET_LOG_PAGE:
1430 return nvme_get_log(n, cmd, req);
1431 case NVME_ADM_CMD_DELETE_CQ:
1432 return nvme_del_cq(n, cmd);
1433 case NVME_ADM_CMD_CREATE_CQ:
1434 return nvme_create_cq(n, cmd);
1435 case NVME_ADM_CMD_IDENTIFY:
1436 return nvme_identify(n, cmd);
1437 case NVME_ADM_CMD_ABORT:
1438 return nvme_abort(n, cmd, req);
1439 case NVME_ADM_CMD_SET_FEATURES:
1440 return nvme_set_feature(n, cmd, req);
1441 case NVME_ADM_CMD_GET_FEATURES:
1442 return nvme_get_feature(n, cmd, req);
1443 case NVME_ADM_CMD_ASYNC_EV_REQ:
1444 return nvme_aer(n, cmd, req);
1445 default:
1446 trace_pci_nvme_err_invalid_admin_opc(cmd->opcode);
1447 return NVME_INVALID_OPCODE | NVME_DNR;
1448 }
1449 }
1450
1451 static void nvme_process_sq(void *opaque)
1452 {
1453 NvmeSQueue *sq = opaque;
1454 NvmeCtrl *n = sq->ctrl;
1455 NvmeCQueue *cq = n->cq[sq->cqid];
1456
1457 uint16_t status;
1458 hwaddr addr;
1459 NvmeCmd cmd;
1460 NvmeRequest *req;
1461
1462 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
1463 addr = sq->dma_addr + sq->head * n->sqe_size;
1464 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
1465 nvme_inc_sq_head(sq);
1466
1467 req = QTAILQ_FIRST(&sq->req_list);
1468 QTAILQ_REMOVE(&sq->req_list, req, entry);
1469 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
1470 memset(&req->cqe, 0, sizeof(req->cqe));
1471 req->cqe.cid = cmd.cid;
1472
1473 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
1474 nvme_admin_cmd(n, &cmd, req);
1475 if (status != NVME_NO_COMPLETE) {
1476 req->status = status;
1477 nvme_enqueue_req_completion(cq, req);
1478 }
1479 }
1480 }
1481
1482 static void nvme_clear_ctrl(NvmeCtrl *n)
1483 {
1484 int i;
1485
1486 blk_drain(n->conf.blk);
1487
1488 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1489 if (n->sq[i] != NULL) {
1490 nvme_free_sq(n->sq[i], n);
1491 }
1492 }
1493 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1494 if (n->cq[i] != NULL) {
1495 nvme_free_cq(n->cq[i], n);
1496 }
1497 }
1498
1499 while (!QTAILQ_EMPTY(&n->aer_queue)) {
1500 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
1501 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1502 g_free(event);
1503 }
1504
1505 n->aer_queued = 0;
1506 n->outstanding_aers = 0;
1507 n->qs_created = false;
1508
1509 blk_flush(n->conf.blk);
1510 n->bar.cc = 0;
1511 }
1512
1513 static int nvme_start_ctrl(NvmeCtrl *n)
1514 {
1515 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
1516 uint32_t page_size = 1 << page_bits;
1517
1518 if (unlikely(n->cq[0])) {
1519 trace_pci_nvme_err_startfail_cq();
1520 return -1;
1521 }
1522 if (unlikely(n->sq[0])) {
1523 trace_pci_nvme_err_startfail_sq();
1524 return -1;
1525 }
1526 if (unlikely(!n->bar.asq)) {
1527 trace_pci_nvme_err_startfail_nbarasq();
1528 return -1;
1529 }
1530 if (unlikely(!n->bar.acq)) {
1531 trace_pci_nvme_err_startfail_nbaracq();
1532 return -1;
1533 }
1534 if (unlikely(n->bar.asq & (page_size - 1))) {
1535 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
1536 return -1;
1537 }
1538 if (unlikely(n->bar.acq & (page_size - 1))) {
1539 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
1540 return -1;
1541 }
1542 if (unlikely(NVME_CC_MPS(n->bar.cc) <
1543 NVME_CAP_MPSMIN(n->bar.cap))) {
1544 trace_pci_nvme_err_startfail_page_too_small(
1545 NVME_CC_MPS(n->bar.cc),
1546 NVME_CAP_MPSMIN(n->bar.cap));
1547 return -1;
1548 }
1549 if (unlikely(NVME_CC_MPS(n->bar.cc) >
1550 NVME_CAP_MPSMAX(n->bar.cap))) {
1551 trace_pci_nvme_err_startfail_page_too_large(
1552 NVME_CC_MPS(n->bar.cc),
1553 NVME_CAP_MPSMAX(n->bar.cap));
1554 return -1;
1555 }
1556 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
1557 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
1558 trace_pci_nvme_err_startfail_cqent_too_small(
1559 NVME_CC_IOCQES(n->bar.cc),
1560 NVME_CTRL_CQES_MIN(n->bar.cap));
1561 return -1;
1562 }
1563 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
1564 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
1565 trace_pci_nvme_err_startfail_cqent_too_large(
1566 NVME_CC_IOCQES(n->bar.cc),
1567 NVME_CTRL_CQES_MAX(n->bar.cap));
1568 return -1;
1569 }
1570 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
1571 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
1572 trace_pci_nvme_err_startfail_sqent_too_small(
1573 NVME_CC_IOSQES(n->bar.cc),
1574 NVME_CTRL_SQES_MIN(n->bar.cap));
1575 return -1;
1576 }
1577 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
1578 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
1579 trace_pci_nvme_err_startfail_sqent_too_large(
1580 NVME_CC_IOSQES(n->bar.cc),
1581 NVME_CTRL_SQES_MAX(n->bar.cap));
1582 return -1;
1583 }
1584 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1585 trace_pci_nvme_err_startfail_asqent_sz_zero();
1586 return -1;
1587 }
1588 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1589 trace_pci_nvme_err_startfail_acqent_sz_zero();
1590 return -1;
1591 }
1592
1593 n->page_bits = page_bits;
1594 n->page_size = page_size;
1595 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1596 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1597 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1598 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1599 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1600 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1601 NVME_AQA_ASQS(n->bar.aqa) + 1);
1602
1603 nvme_set_timestamp(n, 0ULL);
1604
1605 QTAILQ_INIT(&n->aer_queue);
1606
1607 return 0;
1608 }
1609
1610 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1611 unsigned size)
1612 {
1613 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1614 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1615 "MMIO write not 32-bit aligned,"
1616 " offset=0x%"PRIx64"", offset);
1617 /* should be ignored, fall through for now */
1618 }
1619
1620 if (unlikely(size < sizeof(uint32_t))) {
1621 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1622 "MMIO write smaller than 32-bits,"
1623 " offset=0x%"PRIx64", size=%u",
1624 offset, size);
1625 /* should be ignored, fall through for now */
1626 }
1627
1628 switch (offset) {
1629 case 0xc: /* INTMS */
1630 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1631 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1632 "undefined access to interrupt mask set"
1633 " when MSI-X is enabled");
1634 /* should be ignored, fall through for now */
1635 }
1636 n->bar.intms |= data & 0xffffffff;
1637 n->bar.intmc = n->bar.intms;
1638 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1639 nvme_irq_check(n);
1640 break;
1641 case 0x10: /* INTMC */
1642 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1643 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1644 "undefined access to interrupt mask clr"
1645 " when MSI-X is enabled");
1646 /* should be ignored, fall through for now */
1647 }
1648 n->bar.intms &= ~(data & 0xffffffff);
1649 n->bar.intmc = n->bar.intms;
1650 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1651 nvme_irq_check(n);
1652 break;
1653 case 0x14: /* CC */
1654 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1655 /* Windows first sends data, then sends enable bit */
1656 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1657 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1658 {
1659 n->bar.cc = data;
1660 }
1661
1662 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1663 n->bar.cc = data;
1664 if (unlikely(nvme_start_ctrl(n))) {
1665 trace_pci_nvme_err_startfail();
1666 n->bar.csts = NVME_CSTS_FAILED;
1667 } else {
1668 trace_pci_nvme_mmio_start_success();
1669 n->bar.csts = NVME_CSTS_READY;
1670 }
1671 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1672 trace_pci_nvme_mmio_stopped();
1673 nvme_clear_ctrl(n);
1674 n->bar.csts &= ~NVME_CSTS_READY;
1675 }
1676 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1677 trace_pci_nvme_mmio_shutdown_set();
1678 nvme_clear_ctrl(n);
1679 n->bar.cc = data;
1680 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1681 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1682 trace_pci_nvme_mmio_shutdown_cleared();
1683 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1684 n->bar.cc = data;
1685 }
1686 break;
1687 case 0x1C: /* CSTS */
1688 if (data & (1 << 4)) {
1689 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1690 "attempted to W1C CSTS.NSSRO"
1691 " but CAP.NSSRS is zero (not supported)");
1692 } else if (data != 0) {
1693 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1694 "attempted to set a read only bit"
1695 " of controller status");
1696 }
1697 break;
1698 case 0x20: /* NSSR */
1699 if (data == 0x4E564D65) {
1700 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1701 } else {
1702 /* The spec says that writes of other values have no effect */
1703 return;
1704 }
1705 break;
1706 case 0x24: /* AQA */
1707 n->bar.aqa = data & 0xffffffff;
1708 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1709 break;
1710 case 0x28: /* ASQ */
1711 n->bar.asq = data;
1712 trace_pci_nvme_mmio_asqaddr(data);
1713 break;
1714 case 0x2c: /* ASQ hi */
1715 n->bar.asq |= data << 32;
1716 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1717 break;
1718 case 0x30: /* ACQ */
1719 trace_pci_nvme_mmio_acqaddr(data);
1720 n->bar.acq = data;
1721 break;
1722 case 0x34: /* ACQ hi */
1723 n->bar.acq |= data << 32;
1724 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1725 break;
1726 case 0x38: /* CMBLOC */
1727 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1728 "invalid write to reserved CMBLOC"
1729 " when CMBSZ is zero, ignored");
1730 return;
1731 case 0x3C: /* CMBSZ */
1732 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1733 "invalid write to read only CMBSZ, ignored");
1734 return;
1735 case 0xE00: /* PMRCAP */
1736 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1737 "invalid write to PMRCAP register, ignored");
1738 return;
1739 case 0xE04: /* TODO PMRCTL */
1740 break;
1741 case 0xE08: /* PMRSTS */
1742 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1743 "invalid write to PMRSTS register, ignored");
1744 return;
1745 case 0xE0C: /* PMREBS */
1746 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1747 "invalid write to PMREBS register, ignored");
1748 return;
1749 case 0xE10: /* PMRSWTP */
1750 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1751 "invalid write to PMRSWTP register, ignored");
1752 return;
1753 case 0xE14: /* TODO PMRMSC */
1754 break;
1755 default:
1756 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1757 "invalid MMIO write,"
1758 " offset=0x%"PRIx64", data=%"PRIx64"",
1759 offset, data);
1760 break;
1761 }
1762 }
1763
1764 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1765 {
1766 NvmeCtrl *n = (NvmeCtrl *)opaque;
1767 uint8_t *ptr = (uint8_t *)&n->bar;
1768 uint64_t val = 0;
1769
1770 trace_pci_nvme_mmio_read(addr);
1771
1772 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1773 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
1774 "MMIO read not 32-bit aligned,"
1775 " offset=0x%"PRIx64"", addr);
1776 /* should RAZ, fall through for now */
1777 } else if (unlikely(size < sizeof(uint32_t))) {
1778 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
1779 "MMIO read smaller than 32-bits,"
1780 " offset=0x%"PRIx64"", addr);
1781 /* should RAZ, fall through for now */
1782 }
1783
1784 if (addr < sizeof(n->bar)) {
1785 /*
1786 * When PMRWBM bit 1 is set then read from
1787 * from PMRSTS should ensure prior writes
1788 * made it to persistent media
1789 */
1790 if (addr == 0xE08 &&
1791 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1792 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1793 }
1794 memcpy(&val, ptr + addr, size);
1795 } else {
1796 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
1797 "MMIO read beyond last register,"
1798 " offset=0x%"PRIx64", returning 0", addr);
1799 }
1800
1801 return val;
1802 }
1803
1804 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1805 {
1806 uint32_t qid;
1807
1808 if (unlikely(addr & ((1 << 2) - 1))) {
1809 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
1810 "doorbell write not 32-bit aligned,"
1811 " offset=0x%"PRIx64", ignoring", addr);
1812 return;
1813 }
1814
1815 if (((addr - 0x1000) >> 2) & 1) {
1816 /* Completion queue doorbell write */
1817
1818 uint16_t new_head = val & 0xffff;
1819 int start_sqs;
1820 NvmeCQueue *cq;
1821
1822 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1823 if (unlikely(nvme_check_cqid(n, qid))) {
1824 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
1825 "completion queue doorbell write"
1826 " for nonexistent queue,"
1827 " sqid=%"PRIu32", ignoring", qid);
1828
1829 /*
1830 * NVM Express v1.3d, Section 4.1 state: "If host software writes
1831 * an invalid value to the Submission Queue Tail Doorbell or
1832 * Completion Queue Head Doorbell regiter and an Asynchronous Event
1833 * Request command is outstanding, then an asynchronous event is
1834 * posted to the Admin Completion Queue with a status code of
1835 * Invalid Doorbell Write Value."
1836 *
1837 * Also note that the spec includes the "Invalid Doorbell Register"
1838 * status code, but nowhere does it specify when to use it.
1839 * However, it seems reasonable to use it here in a similar
1840 * fashion.
1841 */
1842 if (n->outstanding_aers) {
1843 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
1844 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
1845 NVME_LOG_ERROR_INFO);
1846 }
1847
1848 return;
1849 }
1850
1851 cq = n->cq[qid];
1852 if (unlikely(new_head >= cq->size)) {
1853 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
1854 "completion queue doorbell write value"
1855 " beyond queue size, sqid=%"PRIu32","
1856 " new_head=%"PRIu16", ignoring",
1857 qid, new_head);
1858
1859 if (n->outstanding_aers) {
1860 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
1861 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
1862 NVME_LOG_ERROR_INFO);
1863 }
1864
1865 return;
1866 }
1867
1868 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
1869
1870 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1871 cq->head = new_head;
1872 if (start_sqs) {
1873 NvmeSQueue *sq;
1874 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1875 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1876 }
1877 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1878 }
1879
1880 if (cq->tail == cq->head) {
1881 nvme_irq_deassert(n, cq);
1882 }
1883 } else {
1884 /* Submission queue doorbell write */
1885
1886 uint16_t new_tail = val & 0xffff;
1887 NvmeSQueue *sq;
1888
1889 qid = (addr - 0x1000) >> 3;
1890 if (unlikely(nvme_check_sqid(n, qid))) {
1891 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
1892 "submission queue doorbell write"
1893 " for nonexistent queue,"
1894 " sqid=%"PRIu32", ignoring", qid);
1895
1896 if (n->outstanding_aers) {
1897 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
1898 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
1899 NVME_LOG_ERROR_INFO);
1900 }
1901
1902 return;
1903 }
1904
1905 sq = n->sq[qid];
1906 if (unlikely(new_tail >= sq->size)) {
1907 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
1908 "submission queue doorbell write value"
1909 " beyond queue size, sqid=%"PRIu32","
1910 " new_tail=%"PRIu16", ignoring",
1911 qid, new_tail);
1912
1913 if (n->outstanding_aers) {
1914 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
1915 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
1916 NVME_LOG_ERROR_INFO);
1917 }
1918
1919 return;
1920 }
1921
1922 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
1923
1924 sq->tail = new_tail;
1925 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1926 }
1927 }
1928
1929 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1930 unsigned size)
1931 {
1932 NvmeCtrl *n = (NvmeCtrl *)opaque;
1933
1934 trace_pci_nvme_mmio_write(addr, data);
1935
1936 if (addr < sizeof(n->bar)) {
1937 nvme_write_bar(n, addr, data, size);
1938 } else {
1939 nvme_process_db(n, addr, data);
1940 }
1941 }
1942
1943 static const MemoryRegionOps nvme_mmio_ops = {
1944 .read = nvme_mmio_read,
1945 .write = nvme_mmio_write,
1946 .endianness = DEVICE_LITTLE_ENDIAN,
1947 .impl = {
1948 .min_access_size = 2,
1949 .max_access_size = 8,
1950 },
1951 };
1952
1953 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1954 unsigned size)
1955 {
1956 NvmeCtrl *n = (NvmeCtrl *)opaque;
1957 stn_le_p(&n->cmbuf[addr], size, data);
1958 }
1959
1960 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1961 {
1962 NvmeCtrl *n = (NvmeCtrl *)opaque;
1963 return ldn_le_p(&n->cmbuf[addr], size);
1964 }
1965
1966 static const MemoryRegionOps nvme_cmb_ops = {
1967 .read = nvme_cmb_read,
1968 .write = nvme_cmb_write,
1969 .endianness = DEVICE_LITTLE_ENDIAN,
1970 .impl = {
1971 .min_access_size = 1,
1972 .max_access_size = 8,
1973 },
1974 };
1975
1976 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
1977 {
1978 NvmeParams *params = &n->params;
1979
1980 if (params->num_queues) {
1981 warn_report("num_queues is deprecated; please use max_ioqpairs "
1982 "instead");
1983
1984 params->max_ioqpairs = params->num_queues - 1;
1985 }
1986
1987 if (params->max_ioqpairs < 1 ||
1988 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
1989 error_setg(errp, "max_ioqpairs must be between 1 and %d",
1990 NVME_MAX_IOQPAIRS);
1991 return;
1992 }
1993
1994 if (params->msix_qsize < 1 ||
1995 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
1996 error_setg(errp, "msix_qsize must be between 1 and %d",
1997 PCI_MSIX_FLAGS_QSIZE + 1);
1998 return;
1999 }
2000
2001 if (!n->conf.blk) {
2002 error_setg(errp, "drive property not set");
2003 return;
2004 }
2005
2006 if (!params->serial) {
2007 error_setg(errp, "serial property not set");
2008 return;
2009 }
2010
2011 if (!n->params.cmb_size_mb && n->pmrdev) {
2012 if (host_memory_backend_is_mapped(n->pmrdev)) {
2013 error_setg(errp, "can't use already busy memdev: %s",
2014 object_get_canonical_path_component(OBJECT(n->pmrdev)));
2015 return;
2016 }
2017
2018 if (!is_power_of_2(n->pmrdev->size)) {
2019 error_setg(errp, "pmr backend size needs to be power of 2 in size");
2020 return;
2021 }
2022
2023 host_memory_backend_set_mapped(n->pmrdev, true);
2024 }
2025 }
2026
2027 static void nvme_init_state(NvmeCtrl *n)
2028 {
2029 n->num_namespaces = 1;
2030 /* add one to max_ioqpairs to account for the admin queue pair */
2031 n->reg_size = pow2ceil(sizeof(NvmeBar) +
2032 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
2033 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
2034 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
2035 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
2036 n->temperature = NVME_TEMPERATURE;
2037 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
2038 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2039 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
2040 }
2041
2042 static void nvme_init_blk(NvmeCtrl *n, Error **errp)
2043 {
2044 if (!blkconf_blocksizes(&n->conf, errp)) {
2045 return;
2046 }
2047 blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
2048 false, errp);
2049 }
2050
2051 static void nvme_init_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
2052 {
2053 int64_t bs_size;
2054 NvmeIdNs *id_ns = &ns->id_ns;
2055
2056 bs_size = blk_getlength(n->conf.blk);
2057 if (bs_size < 0) {
2058 error_setg_errno(errp, -bs_size, "could not get backing file size");
2059 return;
2060 }
2061
2062 n->ns_size = bs_size;
2063
2064 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
2065 id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(n, ns));
2066
2067 /* no thin provisioning */
2068 id_ns->ncap = id_ns->nsze;
2069 id_ns->nuse = id_ns->ncap;
2070 }
2071
2072 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
2073 {
2074 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
2075 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
2076
2077 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
2078 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
2079 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
2080 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
2081 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
2082 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
2083 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
2084
2085 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2086 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
2087 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2088 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
2089 PCI_BASE_ADDRESS_SPACE_MEMORY |
2090 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2091 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
2092 }
2093
2094 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
2095 {
2096 /* Controller Capabilities register */
2097 NVME_CAP_SET_PMRS(n->bar.cap, 1);
2098
2099 /* PMR Capabities register */
2100 n->bar.pmrcap = 0;
2101 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
2102 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
2103 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
2104 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
2105 /* Turn on bit 1 support */
2106 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
2107 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
2108 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
2109
2110 /* PMR Control register */
2111 n->bar.pmrctl = 0;
2112 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
2113
2114 /* PMR Status register */
2115 n->bar.pmrsts = 0;
2116 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
2117 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
2118 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
2119 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
2120
2121 /* PMR Elasticity Buffer Size register */
2122 n->bar.pmrebs = 0;
2123 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
2124 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
2125 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
2126
2127 /* PMR Sustained Write Throughput register */
2128 n->bar.pmrswtp = 0;
2129 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
2130 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
2131
2132 /* PMR Memory Space Control register */
2133 n->bar.pmrmsc = 0;
2134 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
2135 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
2136
2137 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
2138 PCI_BASE_ADDRESS_SPACE_MEMORY |
2139 PCI_BASE_ADDRESS_MEM_TYPE_64 |
2140 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
2141 }
2142
2143 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
2144 {
2145 uint8_t *pci_conf = pci_dev->config;
2146
2147 pci_conf[PCI_INTERRUPT_PIN] = 1;
2148 pci_config_set_prog_interface(pci_conf, 0x2);
2149 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
2150 pcie_endpoint_cap_init(pci_dev, 0x80);
2151
2152 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
2153 n->reg_size);
2154 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
2155 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
2156 if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
2157 return;
2158 }
2159
2160 if (n->params.cmb_size_mb) {
2161 nvme_init_cmb(n, pci_dev);
2162 } else if (n->pmrdev) {
2163 nvme_init_pmr(n, pci_dev);
2164 }
2165 }
2166
2167 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
2168 {
2169 NvmeIdCtrl *id = &n->id_ctrl;
2170 uint8_t *pci_conf = pci_dev->config;
2171
2172 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
2173 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
2174 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
2175 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
2176 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
2177 id->rab = 6;
2178 id->ieee[0] = 0x00;
2179 id->ieee[1] = 0x02;
2180 id->ieee[2] = 0xb3;
2181 id->oacs = cpu_to_le16(0);
2182
2183 /*
2184 * Because the controller always completes the Abort command immediately,
2185 * there can never be more than one concurrently executing Abort command,
2186 * so this value is never used for anything. Note that there can easily be
2187 * many Abort commands in the queues, but they are not considered
2188 * "executing" until processed by nvme_abort.
2189 *
2190 * The specification recommends a value of 3 for Abort Command Limit (four
2191 * concurrently outstanding Abort commands), so lets use that though it is
2192 * inconsequential.
2193 */
2194 id->acl = 3;
2195 id->aerl = n->params.aerl;
2196 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
2197 id->lpa = NVME_LPA_EXTENDED;
2198
2199 /* recommended default value (~70 C) */
2200 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
2201 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
2202
2203 id->sqes = (0x6 << 4) | 0x6;
2204 id->cqes = (0x4 << 4) | 0x4;
2205 id->nn = cpu_to_le32(n->num_namespaces);
2206 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP |
2207 NVME_ONCS_FEATURES);
2208
2209 id->psd[0].mp = cpu_to_le16(0x9c4);
2210 id->psd[0].enlat = cpu_to_le32(0x10);
2211 id->psd[0].exlat = cpu_to_le32(0x4);
2212 if (blk_enable_write_cache(n->conf.blk)) {
2213 id->vwc = 1;
2214 }
2215
2216 n->bar.cap = 0;
2217 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
2218 NVME_CAP_SET_CQR(n->bar.cap, 1);
2219 NVME_CAP_SET_TO(n->bar.cap, 0xf);
2220 NVME_CAP_SET_CSS(n->bar.cap, 1);
2221 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
2222
2223 n->bar.vs = 0x00010200;
2224 n->bar.intmc = n->bar.intms = 0;
2225 }
2226
2227 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
2228 {
2229 NvmeCtrl *n = NVME(pci_dev);
2230 Error *local_err = NULL;
2231
2232 int i;
2233
2234 nvme_check_constraints(n, &local_err);
2235 if (local_err) {
2236 error_propagate(errp, local_err);
2237 return;
2238 }
2239
2240 nvme_init_state(n);
2241 nvme_init_blk(n, &local_err);
2242 if (local_err) {
2243 error_propagate(errp, local_err);
2244 return;
2245 }
2246
2247 nvme_init_pci(n, pci_dev, &local_err);
2248 if (local_err) {
2249 error_propagate(errp, local_err);
2250 return;
2251 }
2252
2253 nvme_init_ctrl(n, pci_dev);
2254
2255 for (i = 0; i < n->num_namespaces; i++) {
2256 nvme_init_namespace(n, &n->namespaces[i], &local_err);
2257 if (local_err) {
2258 error_propagate(errp, local_err);
2259 return;
2260 }
2261 }
2262 }
2263
2264 static void nvme_exit(PCIDevice *pci_dev)
2265 {
2266 NvmeCtrl *n = NVME(pci_dev);
2267
2268 nvme_clear_ctrl(n);
2269 g_free(n->namespaces);
2270 g_free(n->cq);
2271 g_free(n->sq);
2272 g_free(n->aer_reqs);
2273
2274 if (n->params.cmb_size_mb) {
2275 g_free(n->cmbuf);
2276 }
2277
2278 if (n->pmrdev) {
2279 host_memory_backend_set_mapped(n->pmrdev, false);
2280 }
2281 msix_uninit_exclusive_bar(pci_dev);
2282 }
2283
2284 static Property nvme_props[] = {
2285 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
2286 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
2287 HostMemoryBackend *),
2288 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
2289 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
2290 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
2291 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
2292 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
2293 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
2294 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
2295 DEFINE_PROP_END_OF_LIST(),
2296 };
2297
2298 static const VMStateDescription nvme_vmstate = {
2299 .name = "nvme",
2300 .unmigratable = 1,
2301 };
2302
2303 static void nvme_class_init(ObjectClass *oc, void *data)
2304 {
2305 DeviceClass *dc = DEVICE_CLASS(oc);
2306 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
2307
2308 pc->realize = nvme_realize;
2309 pc->exit = nvme_exit;
2310 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
2311 pc->vendor_id = PCI_VENDOR_ID_INTEL;
2312 pc->device_id = 0x5845;
2313 pc->revision = 2;
2314
2315 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2316 dc->desc = "Non-Volatile Memory Express";
2317 device_class_set_props(dc, nvme_props);
2318 dc->vmsd = &nvme_vmstate;
2319 }
2320
2321 static void nvme_instance_init(Object *obj)
2322 {
2323 NvmeCtrl *s = NVME(obj);
2324
2325 device_add_bootindex_property(obj, &s->conf.bootindex,
2326 "bootindex", "/namespace@1,0",
2327 DEVICE(obj));
2328 }
2329
2330 static const TypeInfo nvme_info = {
2331 .name = TYPE_NVME,
2332 .parent = TYPE_PCI_DEVICE,
2333 .instance_size = sizeof(NvmeCtrl),
2334 .class_init = nvme_class_init,
2335 .instance_init = nvme_instance_init,
2336 .interfaces = (InterfaceInfo[]) {
2337 { INTERFACE_PCIE_DEVICE },
2338 { }
2339 },
2340 };
2341
2342 static void nvme_register_types(void)
2343 {
2344 type_register_static(&nvme_info);
2345 }
2346
2347 type_init(nvme_register_types)