]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/nvme.c
hw/block/nvme: refactor nvme_addr_read
[mirror_qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * num_queues=<N[optional]>
24 *
25 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 *
28 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
30 * both provided.
31 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
32 * For example:
33 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "hw/block/block.h"
40 #include "hw/pci/msix.h"
41 #include "hw/pci/pci.h"
42 #include "hw/qdev-properties.h"
43 #include "migration/vmstate.h"
44 #include "sysemu/sysemu.h"
45 #include "qapi/error.h"
46 #include "qapi/visitor.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/block-backend.h"
49 #include "exec/memory.h"
50 #include "qemu/log.h"
51 #include "qemu/module.h"
52 #include "qemu/cutils.h"
53 #include "trace.h"
54 #include "nvme.h"
55
56 #define NVME_REG_SIZE 0x1000
57 #define NVME_DB_SIZE 4
58
59 #define NVME_GUEST_ERR(trace, fmt, ...) \
60 do { \
61 (trace_##trace)(__VA_ARGS__); \
62 qemu_log_mask(LOG_GUEST_ERROR, #trace \
63 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
64 } while (0)
65
66 static void nvme_process_sq(void *opaque);
67
68 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
69 {
70 hwaddr low = n->ctrl_mem.addr;
71 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
72
73 return addr >= low && addr < hi;
74 }
75
76 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
77 {
78 if (n->cmbsz && nvme_addr_is_cmb(n, addr)) {
79 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
80 return;
81 }
82
83 pci_dma_read(&n->parent_obj, addr, buf, size);
84 }
85
86 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
87 {
88 return sqid < n->params.num_queues && n->sq[sqid] != NULL ? 0 : -1;
89 }
90
91 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
92 {
93 return cqid < n->params.num_queues && n->cq[cqid] != NULL ? 0 : -1;
94 }
95
96 static void nvme_inc_cq_tail(NvmeCQueue *cq)
97 {
98 cq->tail++;
99 if (cq->tail >= cq->size) {
100 cq->tail = 0;
101 cq->phase = !cq->phase;
102 }
103 }
104
105 static void nvme_inc_sq_head(NvmeSQueue *sq)
106 {
107 sq->head = (sq->head + 1) % sq->size;
108 }
109
110 static uint8_t nvme_cq_full(NvmeCQueue *cq)
111 {
112 return (cq->tail + 1) % cq->size == cq->head;
113 }
114
115 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
116 {
117 return sq->head == sq->tail;
118 }
119
120 static void nvme_irq_check(NvmeCtrl *n)
121 {
122 if (msix_enabled(&(n->parent_obj))) {
123 return;
124 }
125 if (~n->bar.intms & n->irq_status) {
126 pci_irq_assert(&n->parent_obj);
127 } else {
128 pci_irq_deassert(&n->parent_obj);
129 }
130 }
131
132 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
133 {
134 if (cq->irq_enabled) {
135 if (msix_enabled(&(n->parent_obj))) {
136 trace_pci_nvme_irq_msix(cq->vector);
137 msix_notify(&(n->parent_obj), cq->vector);
138 } else {
139 trace_pci_nvme_irq_pin();
140 assert(cq->cqid < 64);
141 n->irq_status |= 1 << cq->cqid;
142 nvme_irq_check(n);
143 }
144 } else {
145 trace_pci_nvme_irq_masked();
146 }
147 }
148
149 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
150 {
151 if (cq->irq_enabled) {
152 if (msix_enabled(&(n->parent_obj))) {
153 return;
154 } else {
155 assert(cq->cqid < 64);
156 n->irq_status &= ~(1 << cq->cqid);
157 nvme_irq_check(n);
158 }
159 }
160 }
161
162 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
163 uint64_t prp2, uint32_t len, NvmeCtrl *n)
164 {
165 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
166 trans_len = MIN(len, trans_len);
167 int num_prps = (len >> n->page_bits) + 1;
168
169 if (unlikely(!prp1)) {
170 trace_pci_nvme_err_invalid_prp();
171 return NVME_INVALID_FIELD | NVME_DNR;
172 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
173 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
174 qsg->nsg = 0;
175 qemu_iovec_init(iov, num_prps);
176 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
177 } else {
178 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
179 qemu_sglist_add(qsg, prp1, trans_len);
180 }
181 len -= trans_len;
182 if (len) {
183 if (unlikely(!prp2)) {
184 trace_pci_nvme_err_invalid_prp2_missing();
185 goto unmap;
186 }
187 if (len > n->page_size) {
188 uint64_t prp_list[n->max_prp_ents];
189 uint32_t nents, prp_trans;
190 int i = 0;
191
192 nents = (len + n->page_size - 1) >> n->page_bits;
193 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
194 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
195 while (len != 0) {
196 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
197
198 if (i == n->max_prp_ents - 1 && len > n->page_size) {
199 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
200 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
201 goto unmap;
202 }
203
204 i = 0;
205 nents = (len + n->page_size - 1) >> n->page_bits;
206 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
207 nvme_addr_read(n, prp_ent, (void *)prp_list,
208 prp_trans);
209 prp_ent = le64_to_cpu(prp_list[i]);
210 }
211
212 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
213 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
214 goto unmap;
215 }
216
217 trans_len = MIN(len, n->page_size);
218 if (qsg->nsg){
219 qemu_sglist_add(qsg, prp_ent, trans_len);
220 } else {
221 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
222 }
223 len -= trans_len;
224 i++;
225 }
226 } else {
227 if (unlikely(prp2 & (n->page_size - 1))) {
228 trace_pci_nvme_err_invalid_prp2_align(prp2);
229 goto unmap;
230 }
231 if (qsg->nsg) {
232 qemu_sglist_add(qsg, prp2, len);
233 } else {
234 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
235 }
236 }
237 }
238 return NVME_SUCCESS;
239
240 unmap:
241 qemu_sglist_destroy(qsg);
242 return NVME_INVALID_FIELD | NVME_DNR;
243 }
244
245 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
246 uint64_t prp1, uint64_t prp2)
247 {
248 QEMUSGList qsg;
249 QEMUIOVector iov;
250 uint16_t status = NVME_SUCCESS;
251
252 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
253 return NVME_INVALID_FIELD | NVME_DNR;
254 }
255 if (qsg.nsg > 0) {
256 if (dma_buf_write(ptr, len, &qsg)) {
257 status = NVME_INVALID_FIELD | NVME_DNR;
258 }
259 qemu_sglist_destroy(&qsg);
260 } else {
261 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
262 status = NVME_INVALID_FIELD | NVME_DNR;
263 }
264 qemu_iovec_destroy(&iov);
265 }
266 return status;
267 }
268
269 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
270 uint64_t prp1, uint64_t prp2)
271 {
272 QEMUSGList qsg;
273 QEMUIOVector iov;
274 uint16_t status = NVME_SUCCESS;
275
276 trace_pci_nvme_dma_read(prp1, prp2);
277
278 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
279 return NVME_INVALID_FIELD | NVME_DNR;
280 }
281 if (qsg.nsg > 0) {
282 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
283 trace_pci_nvme_err_invalid_dma();
284 status = NVME_INVALID_FIELD | NVME_DNR;
285 }
286 qemu_sglist_destroy(&qsg);
287 } else {
288 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
289 trace_pci_nvme_err_invalid_dma();
290 status = NVME_INVALID_FIELD | NVME_DNR;
291 }
292 qemu_iovec_destroy(&iov);
293 }
294 return status;
295 }
296
297 static void nvme_post_cqes(void *opaque)
298 {
299 NvmeCQueue *cq = opaque;
300 NvmeCtrl *n = cq->ctrl;
301 NvmeRequest *req, *next;
302
303 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
304 NvmeSQueue *sq;
305 hwaddr addr;
306
307 if (nvme_cq_full(cq)) {
308 break;
309 }
310
311 QTAILQ_REMOVE(&cq->req_list, req, entry);
312 sq = req->sq;
313 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
314 req->cqe.sq_id = cpu_to_le16(sq->sqid);
315 req->cqe.sq_head = cpu_to_le16(sq->head);
316 addr = cq->dma_addr + cq->tail * n->cqe_size;
317 nvme_inc_cq_tail(cq);
318 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
319 sizeof(req->cqe));
320 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
321 }
322 if (cq->tail != cq->head) {
323 nvme_irq_assert(n, cq);
324 }
325 }
326
327 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
328 {
329 assert(cq->cqid == req->sq->cqid);
330 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
331 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
332 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
333 }
334
335 static void nvme_rw_cb(void *opaque, int ret)
336 {
337 NvmeRequest *req = opaque;
338 NvmeSQueue *sq = req->sq;
339 NvmeCtrl *n = sq->ctrl;
340 NvmeCQueue *cq = n->cq[sq->cqid];
341
342 if (!ret) {
343 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
344 req->status = NVME_SUCCESS;
345 } else {
346 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
347 req->status = NVME_INTERNAL_DEV_ERROR;
348 }
349 if (req->has_sg) {
350 qemu_sglist_destroy(&req->qsg);
351 }
352 nvme_enqueue_req_completion(cq, req);
353 }
354
355 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
356 NvmeRequest *req)
357 {
358 req->has_sg = false;
359 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
360 BLOCK_ACCT_FLUSH);
361 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
362
363 return NVME_NO_COMPLETE;
364 }
365
366 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
367 NvmeRequest *req)
368 {
369 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
370 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
371 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
372 uint64_t slba = le64_to_cpu(rw->slba);
373 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
374 uint64_t offset = slba << data_shift;
375 uint32_t count = nlb << data_shift;
376
377 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
378 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
379 return NVME_LBA_RANGE | NVME_DNR;
380 }
381
382 req->has_sg = false;
383 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
384 BLOCK_ACCT_WRITE);
385 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
386 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
387 return NVME_NO_COMPLETE;
388 }
389
390 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
391 NvmeRequest *req)
392 {
393 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
394 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
395 uint64_t slba = le64_to_cpu(rw->slba);
396 uint64_t prp1 = le64_to_cpu(rw->prp1);
397 uint64_t prp2 = le64_to_cpu(rw->prp2);
398
399 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
400 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
401 uint64_t data_size = (uint64_t)nlb << data_shift;
402 uint64_t data_offset = slba << data_shift;
403 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
404 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
405
406 trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
407
408 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
409 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
410 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
411 return NVME_LBA_RANGE | NVME_DNR;
412 }
413
414 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
415 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
416 return NVME_INVALID_FIELD | NVME_DNR;
417 }
418
419 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
420 if (req->qsg.nsg > 0) {
421 req->has_sg = true;
422 req->aiocb = is_write ?
423 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
424 nvme_rw_cb, req) :
425 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
426 nvme_rw_cb, req);
427 } else {
428 req->has_sg = false;
429 req->aiocb = is_write ?
430 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
431 req) :
432 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
433 req);
434 }
435
436 return NVME_NO_COMPLETE;
437 }
438
439 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
440 {
441 NvmeNamespace *ns;
442 uint32_t nsid = le32_to_cpu(cmd->nsid);
443
444 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
445 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
446 return NVME_INVALID_NSID | NVME_DNR;
447 }
448
449 ns = &n->namespaces[nsid - 1];
450 switch (cmd->opcode) {
451 case NVME_CMD_FLUSH:
452 return nvme_flush(n, ns, cmd, req);
453 case NVME_CMD_WRITE_ZEROS:
454 return nvme_write_zeros(n, ns, cmd, req);
455 case NVME_CMD_WRITE:
456 case NVME_CMD_READ:
457 return nvme_rw(n, ns, cmd, req);
458 default:
459 trace_pci_nvme_err_invalid_opc(cmd->opcode);
460 return NVME_INVALID_OPCODE | NVME_DNR;
461 }
462 }
463
464 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
465 {
466 n->sq[sq->sqid] = NULL;
467 timer_del(sq->timer);
468 timer_free(sq->timer);
469 g_free(sq->io_req);
470 if (sq->sqid) {
471 g_free(sq);
472 }
473 }
474
475 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
476 {
477 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
478 NvmeRequest *req, *next;
479 NvmeSQueue *sq;
480 NvmeCQueue *cq;
481 uint16_t qid = le16_to_cpu(c->qid);
482
483 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
484 trace_pci_nvme_err_invalid_del_sq(qid);
485 return NVME_INVALID_QID | NVME_DNR;
486 }
487
488 trace_pci_nvme_del_sq(qid);
489
490 sq = n->sq[qid];
491 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
492 req = QTAILQ_FIRST(&sq->out_req_list);
493 assert(req->aiocb);
494 blk_aio_cancel(req->aiocb);
495 }
496 if (!nvme_check_cqid(n, sq->cqid)) {
497 cq = n->cq[sq->cqid];
498 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
499
500 nvme_post_cqes(cq);
501 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
502 if (req->sq == sq) {
503 QTAILQ_REMOVE(&cq->req_list, req, entry);
504 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
505 }
506 }
507 }
508
509 nvme_free_sq(sq, n);
510 return NVME_SUCCESS;
511 }
512
513 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
514 uint16_t sqid, uint16_t cqid, uint16_t size)
515 {
516 int i;
517 NvmeCQueue *cq;
518
519 sq->ctrl = n;
520 sq->dma_addr = dma_addr;
521 sq->sqid = sqid;
522 sq->size = size;
523 sq->cqid = cqid;
524 sq->head = sq->tail = 0;
525 sq->io_req = g_new(NvmeRequest, sq->size);
526
527 QTAILQ_INIT(&sq->req_list);
528 QTAILQ_INIT(&sq->out_req_list);
529 for (i = 0; i < sq->size; i++) {
530 sq->io_req[i].sq = sq;
531 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
532 }
533 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
534
535 assert(n->cq[cqid]);
536 cq = n->cq[cqid];
537 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
538 n->sq[sqid] = sq;
539 }
540
541 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
542 {
543 NvmeSQueue *sq;
544 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
545
546 uint16_t cqid = le16_to_cpu(c->cqid);
547 uint16_t sqid = le16_to_cpu(c->sqid);
548 uint16_t qsize = le16_to_cpu(c->qsize);
549 uint16_t qflags = le16_to_cpu(c->sq_flags);
550 uint64_t prp1 = le64_to_cpu(c->prp1);
551
552 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
553
554 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
555 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
556 return NVME_INVALID_CQID | NVME_DNR;
557 }
558 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
559 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
560 return NVME_INVALID_QID | NVME_DNR;
561 }
562 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
563 trace_pci_nvme_err_invalid_create_sq_size(qsize);
564 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
565 }
566 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
567 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
568 return NVME_INVALID_FIELD | NVME_DNR;
569 }
570 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
571 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
572 return NVME_INVALID_FIELD | NVME_DNR;
573 }
574 sq = g_malloc0(sizeof(*sq));
575 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
576 return NVME_SUCCESS;
577 }
578
579 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
580 {
581 n->cq[cq->cqid] = NULL;
582 timer_del(cq->timer);
583 timer_free(cq->timer);
584 msix_vector_unuse(&n->parent_obj, cq->vector);
585 if (cq->cqid) {
586 g_free(cq);
587 }
588 }
589
590 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
591 {
592 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
593 NvmeCQueue *cq;
594 uint16_t qid = le16_to_cpu(c->qid);
595
596 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
597 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
598 return NVME_INVALID_CQID | NVME_DNR;
599 }
600
601 cq = n->cq[qid];
602 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
603 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
604 return NVME_INVALID_QUEUE_DEL;
605 }
606 nvme_irq_deassert(n, cq);
607 trace_pci_nvme_del_cq(qid);
608 nvme_free_cq(cq, n);
609 return NVME_SUCCESS;
610 }
611
612 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
613 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
614 {
615 cq->ctrl = n;
616 cq->cqid = cqid;
617 cq->size = size;
618 cq->dma_addr = dma_addr;
619 cq->phase = 1;
620 cq->irq_enabled = irq_enabled;
621 cq->vector = vector;
622 cq->head = cq->tail = 0;
623 QTAILQ_INIT(&cq->req_list);
624 QTAILQ_INIT(&cq->sq_list);
625 msix_vector_use(&n->parent_obj, cq->vector);
626 n->cq[cqid] = cq;
627 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
628 }
629
630 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
631 {
632 NvmeCQueue *cq;
633 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
634 uint16_t cqid = le16_to_cpu(c->cqid);
635 uint16_t vector = le16_to_cpu(c->irq_vector);
636 uint16_t qsize = le16_to_cpu(c->qsize);
637 uint16_t qflags = le16_to_cpu(c->cq_flags);
638 uint64_t prp1 = le64_to_cpu(c->prp1);
639
640 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
641 NVME_CQ_FLAGS_IEN(qflags) != 0);
642
643 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
644 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
645 return NVME_INVALID_CQID | NVME_DNR;
646 }
647 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
648 trace_pci_nvme_err_invalid_create_cq_size(qsize);
649 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
650 }
651 if (unlikely(!prp1)) {
652 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
653 return NVME_INVALID_FIELD | NVME_DNR;
654 }
655 if (unlikely(vector > n->params.num_queues)) {
656 trace_pci_nvme_err_invalid_create_cq_vector(vector);
657 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
658 }
659 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
660 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
661 return NVME_INVALID_FIELD | NVME_DNR;
662 }
663
664 cq = g_malloc0(sizeof(*cq));
665 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
666 NVME_CQ_FLAGS_IEN(qflags));
667 return NVME_SUCCESS;
668 }
669
670 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
671 {
672 uint64_t prp1 = le64_to_cpu(c->prp1);
673 uint64_t prp2 = le64_to_cpu(c->prp2);
674
675 trace_pci_nvme_identify_ctrl();
676
677 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
678 prp1, prp2);
679 }
680
681 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
682 {
683 NvmeNamespace *ns;
684 uint32_t nsid = le32_to_cpu(c->nsid);
685 uint64_t prp1 = le64_to_cpu(c->prp1);
686 uint64_t prp2 = le64_to_cpu(c->prp2);
687
688 trace_pci_nvme_identify_ns(nsid);
689
690 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
691 trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
692 return NVME_INVALID_NSID | NVME_DNR;
693 }
694
695 ns = &n->namespaces[nsid - 1];
696
697 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
698 prp1, prp2);
699 }
700
701 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
702 {
703 static const int data_len = NVME_IDENTIFY_DATA_SIZE;
704 uint32_t min_nsid = le32_to_cpu(c->nsid);
705 uint64_t prp1 = le64_to_cpu(c->prp1);
706 uint64_t prp2 = le64_to_cpu(c->prp2);
707 uint32_t *list;
708 uint16_t ret;
709 int i, j = 0;
710
711 trace_pci_nvme_identify_nslist(min_nsid);
712
713 list = g_malloc0(data_len);
714 for (i = 0; i < n->num_namespaces; i++) {
715 if (i < min_nsid) {
716 continue;
717 }
718 list[j++] = cpu_to_le32(i + 1);
719 if (j == data_len / sizeof(uint32_t)) {
720 break;
721 }
722 }
723 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
724 g_free(list);
725 return ret;
726 }
727
728 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
729 {
730 NvmeIdentify *c = (NvmeIdentify *)cmd;
731
732 switch (le32_to_cpu(c->cns)) {
733 case NVME_ID_CNS_NS:
734 return nvme_identify_ns(n, c);
735 case NVME_ID_CNS_CTRL:
736 return nvme_identify_ctrl(n, c);
737 case NVME_ID_CNS_NS_ACTIVE_LIST:
738 return nvme_identify_nslist(n, c);
739 default:
740 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
741 return NVME_INVALID_FIELD | NVME_DNR;
742 }
743 }
744
745 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
746 {
747 trace_pci_nvme_setfeat_timestamp(ts);
748
749 n->host_timestamp = le64_to_cpu(ts);
750 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
751 }
752
753 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
754 {
755 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
756 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
757
758 union nvme_timestamp {
759 struct {
760 uint64_t timestamp:48;
761 uint64_t sync:1;
762 uint64_t origin:3;
763 uint64_t rsvd1:12;
764 };
765 uint64_t all;
766 };
767
768 union nvme_timestamp ts;
769 ts.all = 0;
770
771 /*
772 * If the sum of the Timestamp value set by the host and the elapsed
773 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
774 */
775 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
776
777 /* If the host timestamp is non-zero, set the timestamp origin */
778 ts.origin = n->host_timestamp ? 0x01 : 0x00;
779
780 trace_pci_nvme_getfeat_timestamp(ts.all);
781
782 return cpu_to_le64(ts.all);
783 }
784
785 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
786 {
787 uint64_t prp1 = le64_to_cpu(cmd->prp1);
788 uint64_t prp2 = le64_to_cpu(cmd->prp2);
789
790 uint64_t timestamp = nvme_get_timestamp(n);
791
792 return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
793 sizeof(timestamp), prp1, prp2);
794 }
795
796 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
797 {
798 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
799 uint32_t result;
800
801 switch (dw10) {
802 case NVME_VOLATILE_WRITE_CACHE:
803 result = blk_enable_write_cache(n->conf.blk);
804 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
805 break;
806 case NVME_NUMBER_OF_QUEUES:
807 result = cpu_to_le32((n->params.num_queues - 2) |
808 ((n->params.num_queues - 2) << 16));
809 trace_pci_nvme_getfeat_numq(result);
810 break;
811 case NVME_TIMESTAMP:
812 return nvme_get_feature_timestamp(n, cmd);
813 default:
814 trace_pci_nvme_err_invalid_getfeat(dw10);
815 return NVME_INVALID_FIELD | NVME_DNR;
816 }
817
818 req->cqe.result = result;
819 return NVME_SUCCESS;
820 }
821
822 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
823 {
824 uint16_t ret;
825 uint64_t timestamp;
826 uint64_t prp1 = le64_to_cpu(cmd->prp1);
827 uint64_t prp2 = le64_to_cpu(cmd->prp2);
828
829 ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
830 sizeof(timestamp), prp1, prp2);
831 if (ret != NVME_SUCCESS) {
832 return ret;
833 }
834
835 nvme_set_timestamp(n, timestamp);
836
837 return NVME_SUCCESS;
838 }
839
840 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
841 {
842 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
843 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
844
845 switch (dw10) {
846 case NVME_VOLATILE_WRITE_CACHE:
847 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
848 break;
849 case NVME_NUMBER_OF_QUEUES:
850 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
851 ((dw11 >> 16) & 0xFFFF) + 1,
852 n->params.num_queues - 1,
853 n->params.num_queues - 1);
854 req->cqe.result = cpu_to_le32((n->params.num_queues - 2) |
855 ((n->params.num_queues - 2) << 16));
856 break;
857 case NVME_TIMESTAMP:
858 return nvme_set_feature_timestamp(n, cmd);
859 default:
860 trace_pci_nvme_err_invalid_setfeat(dw10);
861 return NVME_INVALID_FIELD | NVME_DNR;
862 }
863 return NVME_SUCCESS;
864 }
865
866 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
867 {
868 switch (cmd->opcode) {
869 case NVME_ADM_CMD_DELETE_SQ:
870 return nvme_del_sq(n, cmd);
871 case NVME_ADM_CMD_CREATE_SQ:
872 return nvme_create_sq(n, cmd);
873 case NVME_ADM_CMD_DELETE_CQ:
874 return nvme_del_cq(n, cmd);
875 case NVME_ADM_CMD_CREATE_CQ:
876 return nvme_create_cq(n, cmd);
877 case NVME_ADM_CMD_IDENTIFY:
878 return nvme_identify(n, cmd);
879 case NVME_ADM_CMD_SET_FEATURES:
880 return nvme_set_feature(n, cmd, req);
881 case NVME_ADM_CMD_GET_FEATURES:
882 return nvme_get_feature(n, cmd, req);
883 default:
884 trace_pci_nvme_err_invalid_admin_opc(cmd->opcode);
885 return NVME_INVALID_OPCODE | NVME_DNR;
886 }
887 }
888
889 static void nvme_process_sq(void *opaque)
890 {
891 NvmeSQueue *sq = opaque;
892 NvmeCtrl *n = sq->ctrl;
893 NvmeCQueue *cq = n->cq[sq->cqid];
894
895 uint16_t status;
896 hwaddr addr;
897 NvmeCmd cmd;
898 NvmeRequest *req;
899
900 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
901 addr = sq->dma_addr + sq->head * n->sqe_size;
902 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
903 nvme_inc_sq_head(sq);
904
905 req = QTAILQ_FIRST(&sq->req_list);
906 QTAILQ_REMOVE(&sq->req_list, req, entry);
907 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
908 memset(&req->cqe, 0, sizeof(req->cqe));
909 req->cqe.cid = cmd.cid;
910
911 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
912 nvme_admin_cmd(n, &cmd, req);
913 if (status != NVME_NO_COMPLETE) {
914 req->status = status;
915 nvme_enqueue_req_completion(cq, req);
916 }
917 }
918 }
919
920 static void nvme_clear_ctrl(NvmeCtrl *n)
921 {
922 int i;
923
924 blk_drain(n->conf.blk);
925
926 for (i = 0; i < n->params.num_queues; i++) {
927 if (n->sq[i] != NULL) {
928 nvme_free_sq(n->sq[i], n);
929 }
930 }
931 for (i = 0; i < n->params.num_queues; i++) {
932 if (n->cq[i] != NULL) {
933 nvme_free_cq(n->cq[i], n);
934 }
935 }
936
937 blk_flush(n->conf.blk);
938 n->bar.cc = 0;
939 }
940
941 static int nvme_start_ctrl(NvmeCtrl *n)
942 {
943 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
944 uint32_t page_size = 1 << page_bits;
945
946 if (unlikely(n->cq[0])) {
947 trace_pci_nvme_err_startfail_cq();
948 return -1;
949 }
950 if (unlikely(n->sq[0])) {
951 trace_pci_nvme_err_startfail_sq();
952 return -1;
953 }
954 if (unlikely(!n->bar.asq)) {
955 trace_pci_nvme_err_startfail_nbarasq();
956 return -1;
957 }
958 if (unlikely(!n->bar.acq)) {
959 trace_pci_nvme_err_startfail_nbaracq();
960 return -1;
961 }
962 if (unlikely(n->bar.asq & (page_size - 1))) {
963 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
964 return -1;
965 }
966 if (unlikely(n->bar.acq & (page_size - 1))) {
967 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
968 return -1;
969 }
970 if (unlikely(NVME_CC_MPS(n->bar.cc) <
971 NVME_CAP_MPSMIN(n->bar.cap))) {
972 trace_pci_nvme_err_startfail_page_too_small(
973 NVME_CC_MPS(n->bar.cc),
974 NVME_CAP_MPSMIN(n->bar.cap));
975 return -1;
976 }
977 if (unlikely(NVME_CC_MPS(n->bar.cc) >
978 NVME_CAP_MPSMAX(n->bar.cap))) {
979 trace_pci_nvme_err_startfail_page_too_large(
980 NVME_CC_MPS(n->bar.cc),
981 NVME_CAP_MPSMAX(n->bar.cap));
982 return -1;
983 }
984 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
985 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
986 trace_pci_nvme_err_startfail_cqent_too_small(
987 NVME_CC_IOCQES(n->bar.cc),
988 NVME_CTRL_CQES_MIN(n->bar.cap));
989 return -1;
990 }
991 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
992 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
993 trace_pci_nvme_err_startfail_cqent_too_large(
994 NVME_CC_IOCQES(n->bar.cc),
995 NVME_CTRL_CQES_MAX(n->bar.cap));
996 return -1;
997 }
998 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
999 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
1000 trace_pci_nvme_err_startfail_sqent_too_small(
1001 NVME_CC_IOSQES(n->bar.cc),
1002 NVME_CTRL_SQES_MIN(n->bar.cap));
1003 return -1;
1004 }
1005 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
1006 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
1007 trace_pci_nvme_err_startfail_sqent_too_large(
1008 NVME_CC_IOSQES(n->bar.cc),
1009 NVME_CTRL_SQES_MAX(n->bar.cap));
1010 return -1;
1011 }
1012 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1013 trace_pci_nvme_err_startfail_asqent_sz_zero();
1014 return -1;
1015 }
1016 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1017 trace_pci_nvme_err_startfail_acqent_sz_zero();
1018 return -1;
1019 }
1020
1021 n->page_bits = page_bits;
1022 n->page_size = page_size;
1023 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1024 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1025 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1026 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1027 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1028 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1029 NVME_AQA_ASQS(n->bar.aqa) + 1);
1030
1031 nvme_set_timestamp(n, 0ULL);
1032
1033 return 0;
1034 }
1035
1036 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1037 unsigned size)
1038 {
1039 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1040 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
1041 "MMIO write not 32-bit aligned,"
1042 " offset=0x%"PRIx64"", offset);
1043 /* should be ignored, fall through for now */
1044 }
1045
1046 if (unlikely(size < sizeof(uint32_t))) {
1047 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
1048 "MMIO write smaller than 32-bits,"
1049 " offset=0x%"PRIx64", size=%u",
1050 offset, size);
1051 /* should be ignored, fall through for now */
1052 }
1053
1054 switch (offset) {
1055 case 0xc: /* INTMS */
1056 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1057 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1058 "undefined access to interrupt mask set"
1059 " when MSI-X is enabled");
1060 /* should be ignored, fall through for now */
1061 }
1062 n->bar.intms |= data & 0xffffffff;
1063 n->bar.intmc = n->bar.intms;
1064 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
1065 nvme_irq_check(n);
1066 break;
1067 case 0x10: /* INTMC */
1068 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1069 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
1070 "undefined access to interrupt mask clr"
1071 " when MSI-X is enabled");
1072 /* should be ignored, fall through for now */
1073 }
1074 n->bar.intms &= ~(data & 0xffffffff);
1075 n->bar.intmc = n->bar.intms;
1076 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
1077 nvme_irq_check(n);
1078 break;
1079 case 0x14: /* CC */
1080 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
1081 /* Windows first sends data, then sends enable bit */
1082 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1083 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1084 {
1085 n->bar.cc = data;
1086 }
1087
1088 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1089 n->bar.cc = data;
1090 if (unlikely(nvme_start_ctrl(n))) {
1091 trace_pci_nvme_err_startfail();
1092 n->bar.csts = NVME_CSTS_FAILED;
1093 } else {
1094 trace_pci_nvme_mmio_start_success();
1095 n->bar.csts = NVME_CSTS_READY;
1096 }
1097 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1098 trace_pci_nvme_mmio_stopped();
1099 nvme_clear_ctrl(n);
1100 n->bar.csts &= ~NVME_CSTS_READY;
1101 }
1102 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1103 trace_pci_nvme_mmio_shutdown_set();
1104 nvme_clear_ctrl(n);
1105 n->bar.cc = data;
1106 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1107 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1108 trace_pci_nvme_mmio_shutdown_cleared();
1109 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1110 n->bar.cc = data;
1111 }
1112 break;
1113 case 0x1C: /* CSTS */
1114 if (data & (1 << 4)) {
1115 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
1116 "attempted to W1C CSTS.NSSRO"
1117 " but CAP.NSSRS is zero (not supported)");
1118 } else if (data != 0) {
1119 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
1120 "attempted to set a read only bit"
1121 " of controller status");
1122 }
1123 break;
1124 case 0x20: /* NSSR */
1125 if (data == 0x4E564D65) {
1126 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
1127 } else {
1128 /* The spec says that writes of other values have no effect */
1129 return;
1130 }
1131 break;
1132 case 0x24: /* AQA */
1133 n->bar.aqa = data & 0xffffffff;
1134 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
1135 break;
1136 case 0x28: /* ASQ */
1137 n->bar.asq = data;
1138 trace_pci_nvme_mmio_asqaddr(data);
1139 break;
1140 case 0x2c: /* ASQ hi */
1141 n->bar.asq |= data << 32;
1142 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1143 break;
1144 case 0x30: /* ACQ */
1145 trace_pci_nvme_mmio_acqaddr(data);
1146 n->bar.acq = data;
1147 break;
1148 case 0x34: /* ACQ hi */
1149 n->bar.acq |= data << 32;
1150 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1151 break;
1152 case 0x38: /* CMBLOC */
1153 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
1154 "invalid write to reserved CMBLOC"
1155 " when CMBSZ is zero, ignored");
1156 return;
1157 case 0x3C: /* CMBSZ */
1158 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
1159 "invalid write to read only CMBSZ, ignored");
1160 return;
1161 case 0xE00: /* PMRCAP */
1162 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
1163 "invalid write to PMRCAP register, ignored");
1164 return;
1165 case 0xE04: /* TODO PMRCTL */
1166 break;
1167 case 0xE08: /* PMRSTS */
1168 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
1169 "invalid write to PMRSTS register, ignored");
1170 return;
1171 case 0xE0C: /* PMREBS */
1172 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
1173 "invalid write to PMREBS register, ignored");
1174 return;
1175 case 0xE10: /* PMRSWTP */
1176 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
1177 "invalid write to PMRSWTP register, ignored");
1178 return;
1179 case 0xE14: /* TODO PMRMSC */
1180 break;
1181 default:
1182 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
1183 "invalid MMIO write,"
1184 " offset=0x%"PRIx64", data=%"PRIx64"",
1185 offset, data);
1186 break;
1187 }
1188 }
1189
1190 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1191 {
1192 NvmeCtrl *n = (NvmeCtrl *)opaque;
1193 uint8_t *ptr = (uint8_t *)&n->bar;
1194 uint64_t val = 0;
1195
1196 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1197 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
1198 "MMIO read not 32-bit aligned,"
1199 " offset=0x%"PRIx64"", addr);
1200 /* should RAZ, fall through for now */
1201 } else if (unlikely(size < sizeof(uint32_t))) {
1202 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
1203 "MMIO read smaller than 32-bits,"
1204 " offset=0x%"PRIx64"", addr);
1205 /* should RAZ, fall through for now */
1206 }
1207
1208 if (addr < sizeof(n->bar)) {
1209 /*
1210 * When PMRWBM bit 1 is set then read from
1211 * from PMRSTS should ensure prior writes
1212 * made it to persistent media
1213 */
1214 if (addr == 0xE08 &&
1215 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1216 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1217 }
1218 memcpy(&val, ptr + addr, size);
1219 } else {
1220 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
1221 "MMIO read beyond last register,"
1222 " offset=0x%"PRIx64", returning 0", addr);
1223 }
1224
1225 return val;
1226 }
1227
1228 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1229 {
1230 uint32_t qid;
1231
1232 if (unlikely(addr & ((1 << 2) - 1))) {
1233 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
1234 "doorbell write not 32-bit aligned,"
1235 " offset=0x%"PRIx64", ignoring", addr);
1236 return;
1237 }
1238
1239 if (((addr - 0x1000) >> 2) & 1) {
1240 /* Completion queue doorbell write */
1241
1242 uint16_t new_head = val & 0xffff;
1243 int start_sqs;
1244 NvmeCQueue *cq;
1245
1246 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1247 if (unlikely(nvme_check_cqid(n, qid))) {
1248 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
1249 "completion queue doorbell write"
1250 " for nonexistent queue,"
1251 " sqid=%"PRIu32", ignoring", qid);
1252 return;
1253 }
1254
1255 cq = n->cq[qid];
1256 if (unlikely(new_head >= cq->size)) {
1257 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
1258 "completion queue doorbell write value"
1259 " beyond queue size, sqid=%"PRIu32","
1260 " new_head=%"PRIu16", ignoring",
1261 qid, new_head);
1262 return;
1263 }
1264
1265 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1266 cq->head = new_head;
1267 if (start_sqs) {
1268 NvmeSQueue *sq;
1269 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1270 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1271 }
1272 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1273 }
1274
1275 if (cq->tail == cq->head) {
1276 nvme_irq_deassert(n, cq);
1277 }
1278 } else {
1279 /* Submission queue doorbell write */
1280
1281 uint16_t new_tail = val & 0xffff;
1282 NvmeSQueue *sq;
1283
1284 qid = (addr - 0x1000) >> 3;
1285 if (unlikely(nvme_check_sqid(n, qid))) {
1286 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
1287 "submission queue doorbell write"
1288 " for nonexistent queue,"
1289 " sqid=%"PRIu32", ignoring", qid);
1290 return;
1291 }
1292
1293 sq = n->sq[qid];
1294 if (unlikely(new_tail >= sq->size)) {
1295 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
1296 "submission queue doorbell write value"
1297 " beyond queue size, sqid=%"PRIu32","
1298 " new_tail=%"PRIu16", ignoring",
1299 qid, new_tail);
1300 return;
1301 }
1302
1303 sq->tail = new_tail;
1304 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1305 }
1306 }
1307
1308 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1309 unsigned size)
1310 {
1311 NvmeCtrl *n = (NvmeCtrl *)opaque;
1312 if (addr < sizeof(n->bar)) {
1313 nvme_write_bar(n, addr, data, size);
1314 } else if (addr >= 0x1000) {
1315 nvme_process_db(n, addr, data);
1316 }
1317 }
1318
1319 static const MemoryRegionOps nvme_mmio_ops = {
1320 .read = nvme_mmio_read,
1321 .write = nvme_mmio_write,
1322 .endianness = DEVICE_LITTLE_ENDIAN,
1323 .impl = {
1324 .min_access_size = 2,
1325 .max_access_size = 8,
1326 },
1327 };
1328
1329 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1330 unsigned size)
1331 {
1332 NvmeCtrl *n = (NvmeCtrl *)opaque;
1333 stn_le_p(&n->cmbuf[addr], size, data);
1334 }
1335
1336 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1337 {
1338 NvmeCtrl *n = (NvmeCtrl *)opaque;
1339 return ldn_le_p(&n->cmbuf[addr], size);
1340 }
1341
1342 static const MemoryRegionOps nvme_cmb_ops = {
1343 .read = nvme_cmb_read,
1344 .write = nvme_cmb_write,
1345 .endianness = DEVICE_LITTLE_ENDIAN,
1346 .impl = {
1347 .min_access_size = 1,
1348 .max_access_size = 8,
1349 },
1350 };
1351
1352 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1353 {
1354 NvmeCtrl *n = NVME(pci_dev);
1355 NvmeIdCtrl *id = &n->id_ctrl;
1356
1357 int i;
1358 int64_t bs_size;
1359 uint8_t *pci_conf;
1360
1361 if (!n->params.num_queues) {
1362 error_setg(errp, "num_queues can't be zero");
1363 return;
1364 }
1365
1366 if (!n->conf.blk) {
1367 error_setg(errp, "drive property not set");
1368 return;
1369 }
1370
1371 bs_size = blk_getlength(n->conf.blk);
1372 if (bs_size < 0) {
1373 error_setg(errp, "could not get backing file size");
1374 return;
1375 }
1376
1377 if (!n->params.serial) {
1378 error_setg(errp, "serial property not set");
1379 return;
1380 }
1381
1382 if (!n->params.cmb_size_mb && n->pmrdev) {
1383 if (host_memory_backend_is_mapped(n->pmrdev)) {
1384 char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1385 error_setg(errp, "can't use already busy memdev: %s", path);
1386 g_free(path);
1387 return;
1388 }
1389
1390 if (!is_power_of_2(n->pmrdev->size)) {
1391 error_setg(errp, "pmr backend size needs to be power of 2 in size");
1392 return;
1393 }
1394
1395 host_memory_backend_set_mapped(n->pmrdev, true);
1396 }
1397
1398 blkconf_blocksizes(&n->conf);
1399 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1400 false, errp)) {
1401 return;
1402 }
1403
1404 pci_conf = pci_dev->config;
1405 pci_conf[PCI_INTERRUPT_PIN] = 1;
1406 pci_config_set_prog_interface(pci_dev->config, 0x2);
1407 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1408 pcie_endpoint_cap_init(pci_dev, 0x80);
1409
1410 n->num_namespaces = 1;
1411
1412 /* num_queues is really number of pairs, so each has two doorbells */
1413 n->reg_size = pow2ceil(NVME_REG_SIZE +
1414 2 * n->params.num_queues * NVME_DB_SIZE);
1415 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1416
1417 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1418 n->sq = g_new0(NvmeSQueue *, n->params.num_queues);
1419 n->cq = g_new0(NvmeCQueue *, n->params.num_queues);
1420
1421 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1422 "nvme", n->reg_size);
1423 pci_register_bar(pci_dev, 0,
1424 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1425 &n->iomem);
1426 msix_init_exclusive_bar(pci_dev, n->params.num_queues, 4, NULL);
1427
1428 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1429 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1430 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1431 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1432 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
1433 id->rab = 6;
1434 id->ieee[0] = 0x00;
1435 id->ieee[1] = 0x02;
1436 id->ieee[2] = 0xb3;
1437 id->oacs = cpu_to_le16(0);
1438 id->frmw = 7 << 1;
1439 id->lpa = 1 << 0;
1440 id->sqes = (0x6 << 4) | 0x6;
1441 id->cqes = (0x4 << 4) | 0x4;
1442 id->nn = cpu_to_le32(n->num_namespaces);
1443 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1444 id->psd[0].mp = cpu_to_le16(0x9c4);
1445 id->psd[0].enlat = cpu_to_le32(0x10);
1446 id->psd[0].exlat = cpu_to_le32(0x4);
1447 if (blk_enable_write_cache(n->conf.blk)) {
1448 id->vwc = 1;
1449 }
1450
1451 n->bar.cap = 0;
1452 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1453 NVME_CAP_SET_CQR(n->bar.cap, 1);
1454 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1455 NVME_CAP_SET_CSS(n->bar.cap, 1);
1456 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1457
1458 n->bar.vs = 0x00010200;
1459 n->bar.intmc = n->bar.intms = 0;
1460
1461 if (n->params.cmb_size_mb) {
1462
1463 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1464 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1465
1466 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1467 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1468 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1469 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1470 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1471 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1472 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
1473
1474 n->cmbloc = n->bar.cmbloc;
1475 n->cmbsz = n->bar.cmbsz;
1476
1477 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1478 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1479 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1480 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1481 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1482 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1483
1484 } else if (n->pmrdev) {
1485 /* Controller Capabilities register */
1486 NVME_CAP_SET_PMRS(n->bar.cap, 1);
1487
1488 /* PMR Capabities register */
1489 n->bar.pmrcap = 0;
1490 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1491 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1492 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2);
1493 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1494 /* Turn on bit 1 support */
1495 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1496 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1497 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1498
1499 /* PMR Control register */
1500 n->bar.pmrctl = 0;
1501 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1502
1503 /* PMR Status register */
1504 n->bar.pmrsts = 0;
1505 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1506 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1507 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1508 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1509
1510 /* PMR Elasticity Buffer Size register */
1511 n->bar.pmrebs = 0;
1512 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1513 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1514 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1515
1516 /* PMR Sustained Write Throughput register */
1517 n->bar.pmrswtp = 0;
1518 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1519 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1520
1521 /* PMR Memory Space Control register */
1522 n->bar.pmrmsc = 0;
1523 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1524 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1525
1526 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1527 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1528 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1529 }
1530
1531 for (i = 0; i < n->num_namespaces; i++) {
1532 NvmeNamespace *ns = &n->namespaces[i];
1533 NvmeIdNs *id_ns = &ns->id_ns;
1534 id_ns->nsfeat = 0;
1535 id_ns->nlbaf = 0;
1536 id_ns->flbas = 0;
1537 id_ns->mc = 0;
1538 id_ns->dpc = 0;
1539 id_ns->dps = 0;
1540 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1541 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1542 cpu_to_le64(n->ns_size >>
1543 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1544 }
1545 }
1546
1547 static void nvme_exit(PCIDevice *pci_dev)
1548 {
1549 NvmeCtrl *n = NVME(pci_dev);
1550
1551 nvme_clear_ctrl(n);
1552 g_free(n->namespaces);
1553 g_free(n->cq);
1554 g_free(n->sq);
1555
1556 if (n->params.cmb_size_mb) {
1557 g_free(n->cmbuf);
1558 }
1559
1560 if (n->pmrdev) {
1561 host_memory_backend_set_mapped(n->pmrdev, false);
1562 }
1563 msix_uninit_exclusive_bar(pci_dev);
1564 }
1565
1566 static Property nvme_props[] = {
1567 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1568 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1569 HostMemoryBackend *),
1570 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
1571 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
1572 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 64),
1573 DEFINE_PROP_END_OF_LIST(),
1574 };
1575
1576 static const VMStateDescription nvme_vmstate = {
1577 .name = "nvme",
1578 .unmigratable = 1,
1579 };
1580
1581 static void nvme_class_init(ObjectClass *oc, void *data)
1582 {
1583 DeviceClass *dc = DEVICE_CLASS(oc);
1584 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1585
1586 pc->realize = nvme_realize;
1587 pc->exit = nvme_exit;
1588 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1589 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1590 pc->device_id = 0x5845;
1591 pc->revision = 2;
1592
1593 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1594 dc->desc = "Non-Volatile Memory Express";
1595 device_class_set_props(dc, nvme_props);
1596 dc->vmsd = &nvme_vmstate;
1597 }
1598
1599 static void nvme_instance_init(Object *obj)
1600 {
1601 NvmeCtrl *s = NVME(obj);
1602
1603 device_add_bootindex_property(obj, &s->conf.bootindex,
1604 "bootindex", "/namespace@1,0",
1605 DEVICE(obj));
1606 }
1607
1608 static const TypeInfo nvme_info = {
1609 .name = TYPE_NVME,
1610 .parent = TYPE_PCI_DEVICE,
1611 .instance_size = sizeof(NvmeCtrl),
1612 .class_init = nvme_class_init,
1613 .instance_init = nvme_instance_init,
1614 .interfaces = (InterfaceInfo[]) {
1615 { INTERFACE_PCIE_DEVICE },
1616 { }
1617 },
1618 };
1619
1620 static void nvme_register_types(void)
1621 {
1622 type_register_static(&nvme_info);
1623 }
1624
1625 type_init(nvme_register_types)