]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/onenand.c
include/qemu/osdep.h: Don't include qapi/error.h
[mirror_qemu.git] / hw / block / onenand.c
1 /*
2 * OneNAND flash memories emulation.
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "exec/memory.h"
30 #include "exec/address-spaces.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
33
34 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define PAGE_SHIFT 11
36
37 /* Fixed */
38 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
39
40 #define TYPE_ONE_NAND "onenand"
41 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
42
43 typedef struct OneNANDState {
44 SysBusDevice parent_obj;
45
46 struct {
47 uint16_t man;
48 uint16_t dev;
49 uint16_t ver;
50 } id;
51 int shift;
52 hwaddr base;
53 qemu_irq intr;
54 qemu_irq rdy;
55 BlockBackend *blk;
56 BlockBackend *blk_cur;
57 uint8_t *image;
58 uint8_t *otp;
59 uint8_t *current;
60 MemoryRegion ram;
61 MemoryRegion mapped_ram;
62 uint8_t current_direction;
63 uint8_t *boot[2];
64 uint8_t *data[2][2];
65 MemoryRegion iomem;
66 MemoryRegion container;
67 int cycle;
68 int otpmode;
69
70 uint16_t addr[8];
71 uint16_t unladdr[8];
72 int bufaddr;
73 int count;
74 uint16_t command;
75 uint16_t config[2];
76 uint16_t status;
77 uint16_t intstatus;
78 uint16_t wpstatus;
79
80 ECCState ecc;
81
82 int density_mask;
83 int secs;
84 int secs_cur;
85 int blocks;
86 uint8_t *blockwp;
87 } OneNANDState;
88
89 enum {
90 ONEN_BUF_BLOCK = 0,
91 ONEN_BUF_BLOCK2 = 1,
92 ONEN_BUF_DEST_BLOCK = 2,
93 ONEN_BUF_DEST_PAGE = 3,
94 ONEN_BUF_PAGE = 7,
95 };
96
97 enum {
98 ONEN_ERR_CMD = 1 << 10,
99 ONEN_ERR_ERASE = 1 << 11,
100 ONEN_ERR_PROG = 1 << 12,
101 ONEN_ERR_LOAD = 1 << 13,
102 };
103
104 enum {
105 ONEN_INT_RESET = 1 << 4,
106 ONEN_INT_ERASE = 1 << 5,
107 ONEN_INT_PROG = 1 << 6,
108 ONEN_INT_LOAD = 1 << 7,
109 ONEN_INT = 1 << 15,
110 };
111
112 enum {
113 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114 ONEN_LOCK_LOCKED = 1 << 1,
115 ONEN_LOCK_UNLOCKED = 1 << 2,
116 };
117
118 static void onenand_mem_setup(OneNANDState *s)
119 {
120 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122 * write boot commands. Also take note of the BWPS bit. */
123 memory_region_init(&s->container, OBJECT(s), "onenand",
124 0x10000 << s->shift);
125 memory_region_add_subregion(&s->container, 0, &s->iomem);
126 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
127 &s->ram, 0x0200 << s->shift,
128 0xbe00 << s->shift);
129 memory_region_add_subregion_overlap(&s->container,
130 0x0200 << s->shift,
131 &s->mapped_ram,
132 1);
133 }
134
135 static void onenand_intr_update(OneNANDState *s)
136 {
137 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
138 }
139
140 static void onenand_pre_save(void *opaque)
141 {
142 OneNANDState *s = opaque;
143 if (s->current == s->otp) {
144 s->current_direction = 1;
145 } else if (s->current == s->image) {
146 s->current_direction = 2;
147 } else {
148 s->current_direction = 0;
149 }
150 }
151
152 static int onenand_post_load(void *opaque, int version_id)
153 {
154 OneNANDState *s = opaque;
155 switch (s->current_direction) {
156 case 0:
157 break;
158 case 1:
159 s->current = s->otp;
160 break;
161 case 2:
162 s->current = s->image;
163 break;
164 default:
165 return -1;
166 }
167 onenand_intr_update(s);
168 return 0;
169 }
170
171 static const VMStateDescription vmstate_onenand = {
172 .name = "onenand",
173 .version_id = 1,
174 .minimum_version_id = 1,
175 .pre_save = onenand_pre_save,
176 .post_load = onenand_post_load,
177 .fields = (VMStateField[]) {
178 VMSTATE_UINT8(current_direction, OneNANDState),
179 VMSTATE_INT32(cycle, OneNANDState),
180 VMSTATE_INT32(otpmode, OneNANDState),
181 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
182 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
183 VMSTATE_INT32(bufaddr, OneNANDState),
184 VMSTATE_INT32(count, OneNANDState),
185 VMSTATE_UINT16(command, OneNANDState),
186 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
187 VMSTATE_UINT16(status, OneNANDState),
188 VMSTATE_UINT16(intstatus, OneNANDState),
189 VMSTATE_UINT16(wpstatus, OneNANDState),
190 VMSTATE_INT32(secs_cur, OneNANDState),
191 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
192 VMSTATE_UINT8(ecc.cp, OneNANDState),
193 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
194 VMSTATE_UINT16(ecc.count, OneNANDState),
195 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
196 ((64 + 2) << PAGE_SHIFT)),
197 VMSTATE_END_OF_LIST()
198 }
199 };
200
201 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
202 static void onenand_reset(OneNANDState *s, int cold)
203 {
204 memset(&s->addr, 0, sizeof(s->addr));
205 s->command = 0;
206 s->count = 1;
207 s->bufaddr = 0;
208 s->config[0] = 0x40c0;
209 s->config[1] = 0x0000;
210 onenand_intr_update(s);
211 qemu_irq_raise(s->rdy);
212 s->status = 0x0000;
213 s->intstatus = cold ? 0x8080 : 0x8010;
214 s->unladdr[0] = 0;
215 s->unladdr[1] = 0;
216 s->wpstatus = 0x0002;
217 s->cycle = 0;
218 s->otpmode = 0;
219 s->blk_cur = s->blk;
220 s->current = s->image;
221 s->secs_cur = s->secs;
222
223 if (cold) {
224 /* Lock the whole flash */
225 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
226
227 if (s->blk_cur && blk_read(s->blk_cur, 0, s->boot[0], 8) < 0) {
228 hw_error("%s: Loading the BootRAM failed.\n", __func__);
229 }
230 }
231 }
232
233 static void onenand_system_reset(DeviceState *dev)
234 {
235 OneNANDState *s = ONE_NAND(dev);
236
237 onenand_reset(s, 1);
238 }
239
240 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
241 void *dest)
242 {
243 if (s->blk_cur) {
244 return blk_read(s->blk_cur, sec, dest, secn) < 0;
245 } else if (sec + secn > s->secs_cur) {
246 return 1;
247 }
248
249 memcpy(dest, s->current + (sec << 9), secn << 9);
250
251 return 0;
252 }
253
254 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
255 void *src)
256 {
257 int result = 0;
258
259 if (secn > 0) {
260 uint32_t size = (uint32_t)secn * 512;
261 const uint8_t *sp = (const uint8_t *)src;
262 uint8_t *dp = 0;
263 if (s->blk_cur) {
264 dp = g_malloc(size);
265 if (!dp || blk_read(s->blk_cur, sec, dp, secn) < 0) {
266 result = 1;
267 }
268 } else {
269 if (sec + secn > s->secs_cur) {
270 result = 1;
271 } else {
272 dp = (uint8_t *)s->current + (sec << 9);
273 }
274 }
275 if (!result) {
276 uint32_t i;
277 for (i = 0; i < size; i++) {
278 dp[i] &= sp[i];
279 }
280 if (s->blk_cur) {
281 result = blk_write(s->blk_cur, sec, dp, secn) < 0;
282 }
283 }
284 if (dp && s->blk_cur) {
285 g_free(dp);
286 }
287 }
288
289 return result;
290 }
291
292 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
293 void *dest)
294 {
295 uint8_t buf[512];
296
297 if (s->blk_cur) {
298 if (blk_read(s->blk_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) {
299 return 1;
300 }
301 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
302 } else if (sec + secn > s->secs_cur) {
303 return 1;
304 } else {
305 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
306 }
307
308 return 0;
309 }
310
311 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
312 void *src)
313 {
314 int result = 0;
315 if (secn > 0) {
316 const uint8_t *sp = (const uint8_t *)src;
317 uint8_t *dp = 0, *dpp = 0;
318 if (s->blk_cur) {
319 dp = g_malloc(512);
320 if (!dp
321 || blk_read(s->blk_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) {
322 result = 1;
323 } else {
324 dpp = dp + ((sec & 31) << 4);
325 }
326 } else {
327 if (sec + secn > s->secs_cur) {
328 result = 1;
329 } else {
330 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
331 }
332 }
333 if (!result) {
334 uint32_t i;
335 for (i = 0; i < (secn << 4); i++) {
336 dpp[i] &= sp[i];
337 }
338 if (s->blk_cur) {
339 result = blk_write(s->blk_cur, s->secs_cur + (sec >> 5),
340 dp, 1) < 0;
341 }
342 }
343 g_free(dp);
344 }
345 return result;
346 }
347
348 static inline int onenand_erase(OneNANDState *s, int sec, int num)
349 {
350 uint8_t *blankbuf, *tmpbuf;
351
352 blankbuf = g_malloc(512);
353 tmpbuf = g_malloc(512);
354 memset(blankbuf, 0xff, 512);
355 for (; num > 0; num--, sec++) {
356 if (s->blk_cur) {
357 int erasesec = s->secs_cur + (sec >> 5);
358 if (blk_write(s->blk_cur, sec, blankbuf, 1) < 0) {
359 goto fail;
360 }
361 if (blk_read(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
362 goto fail;
363 }
364 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
365 if (blk_write(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
366 goto fail;
367 }
368 } else {
369 if (sec + 1 > s->secs_cur) {
370 goto fail;
371 }
372 memcpy(s->current + (sec << 9), blankbuf, 512);
373 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
374 blankbuf, 1 << 4);
375 }
376 }
377
378 g_free(tmpbuf);
379 g_free(blankbuf);
380 return 0;
381
382 fail:
383 g_free(tmpbuf);
384 g_free(blankbuf);
385 return 1;
386 }
387
388 static void onenand_command(OneNANDState *s)
389 {
390 int b;
391 int sec;
392 void *buf;
393 #define SETADDR(block, page) \
394 sec = (s->addr[page] & 3) + \
395 ((((s->addr[page] >> 2) & 0x3f) + \
396 (((s->addr[block] & 0xfff) | \
397 (s->addr[block] >> 15 ? \
398 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
399 #define SETBUF_M() \
400 buf = (s->bufaddr & 8) ? \
401 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
402 buf += (s->bufaddr & 3) << 9;
403 #define SETBUF_S() \
404 buf = (s->bufaddr & 8) ? \
405 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
406 buf += (s->bufaddr & 3) << 4;
407
408 switch (s->command) {
409 case 0x00: /* Load single/multiple sector data unit into buffer */
410 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
411
412 SETBUF_M()
413 if (onenand_load_main(s, sec, s->count, buf))
414 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
415
416 #if 0
417 SETBUF_S()
418 if (onenand_load_spare(s, sec, s->count, buf))
419 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
420 #endif
421
422 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
423 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
424 * then we need two split the read/write into two chunks.
425 */
426 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
427 break;
428 case 0x13: /* Load single/multiple spare sector into buffer */
429 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
430
431 SETBUF_S()
432 if (onenand_load_spare(s, sec, s->count, buf))
433 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
434
435 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
436 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
437 * then we need two split the read/write into two chunks.
438 */
439 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
440 break;
441 case 0x80: /* Program single/multiple sector data unit from buffer */
442 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
443
444 SETBUF_M()
445 if (onenand_prog_main(s, sec, s->count, buf))
446 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
447
448 #if 0
449 SETBUF_S()
450 if (onenand_prog_spare(s, sec, s->count, buf))
451 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
452 #endif
453
454 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
455 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
456 * then we need two split the read/write into two chunks.
457 */
458 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
459 break;
460 case 0x1a: /* Program single/multiple spare area sector from buffer */
461 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
462
463 SETBUF_S()
464 if (onenand_prog_spare(s, sec, s->count, buf))
465 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
466
467 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
468 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
469 * then we need two split the read/write into two chunks.
470 */
471 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
472 break;
473 case 0x1b: /* Copy-back program */
474 SETBUF_S()
475
476 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
477 if (onenand_load_main(s, sec, s->count, buf))
478 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
479
480 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
481 if (onenand_prog_main(s, sec, s->count, buf))
482 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
483
484 /* TODO: spare areas */
485
486 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
487 break;
488
489 case 0x23: /* Unlock NAND array block(s) */
490 s->intstatus |= ONEN_INT;
491
492 /* XXX the previous (?) area should be locked automatically */
493 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
494 if (b >= s->blocks) {
495 s->status |= ONEN_ERR_CMD;
496 break;
497 }
498 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
499 break;
500
501 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
502 }
503 break;
504 case 0x27: /* Unlock All NAND array blocks */
505 s->intstatus |= ONEN_INT;
506
507 for (b = 0; b < s->blocks; b ++) {
508 if (b >= s->blocks) {
509 s->status |= ONEN_ERR_CMD;
510 break;
511 }
512 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
513 break;
514
515 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
516 }
517 break;
518
519 case 0x2a: /* Lock NAND array block(s) */
520 s->intstatus |= ONEN_INT;
521
522 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
523 if (b >= s->blocks) {
524 s->status |= ONEN_ERR_CMD;
525 break;
526 }
527 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
528 break;
529
530 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
531 }
532 break;
533 case 0x2c: /* Lock-tight NAND array block(s) */
534 s->intstatus |= ONEN_INT;
535
536 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
537 if (b >= s->blocks) {
538 s->status |= ONEN_ERR_CMD;
539 break;
540 }
541 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
542 continue;
543
544 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
545 }
546 break;
547
548 case 0x71: /* Erase-Verify-Read */
549 s->intstatus |= ONEN_INT;
550 break;
551 case 0x95: /* Multi-block erase */
552 qemu_irq_pulse(s->intr);
553 /* Fall through. */
554 case 0x94: /* Block erase */
555 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
556 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
557 << (BLOCK_SHIFT - 9);
558 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
559 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
560
561 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
562 break;
563 case 0xb0: /* Erase suspend */
564 break;
565 case 0x30: /* Erase resume */
566 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
567 break;
568
569 case 0xf0: /* Reset NAND Flash core */
570 onenand_reset(s, 0);
571 break;
572 case 0xf3: /* Reset OneNAND */
573 onenand_reset(s, 0);
574 break;
575
576 case 0x65: /* OTP Access */
577 s->intstatus |= ONEN_INT;
578 s->blk_cur = NULL;
579 s->current = s->otp;
580 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
581 s->addr[ONEN_BUF_BLOCK] = 0;
582 s->otpmode = 1;
583 break;
584
585 default:
586 s->status |= ONEN_ERR_CMD;
587 s->intstatus |= ONEN_INT;
588 fprintf(stderr, "%s: unknown OneNAND command %x\n",
589 __func__, s->command);
590 }
591
592 onenand_intr_update(s);
593 }
594
595 static uint64_t onenand_read(void *opaque, hwaddr addr,
596 unsigned size)
597 {
598 OneNANDState *s = (OneNANDState *) opaque;
599 int offset = addr >> s->shift;
600
601 switch (offset) {
602 case 0x0000 ... 0xc000:
603 return lduw_le_p(s->boot[0] + addr);
604
605 case 0xf000: /* Manufacturer ID */
606 return s->id.man;
607 case 0xf001: /* Device ID */
608 return s->id.dev;
609 case 0xf002: /* Version ID */
610 return s->id.ver;
611 /* TODO: get the following values from a real chip! */
612 case 0xf003: /* Data Buffer size */
613 return 1 << PAGE_SHIFT;
614 case 0xf004: /* Boot Buffer size */
615 return 0x200;
616 case 0xf005: /* Amount of buffers */
617 return 1 | (2 << 8);
618 case 0xf006: /* Technology */
619 return 0;
620
621 case 0xf100 ... 0xf107: /* Start addresses */
622 return s->addr[offset - 0xf100];
623
624 case 0xf200: /* Start buffer */
625 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
626
627 case 0xf220: /* Command */
628 return s->command;
629 case 0xf221: /* System Configuration 1 */
630 return s->config[0] & 0xffe0;
631 case 0xf222: /* System Configuration 2 */
632 return s->config[1];
633
634 case 0xf240: /* Controller Status */
635 return s->status;
636 case 0xf241: /* Interrupt */
637 return s->intstatus;
638 case 0xf24c: /* Unlock Start Block Address */
639 return s->unladdr[0];
640 case 0xf24d: /* Unlock End Block Address */
641 return s->unladdr[1];
642 case 0xf24e: /* Write Protection Status */
643 return s->wpstatus;
644
645 case 0xff00: /* ECC Status */
646 return 0x00;
647 case 0xff01: /* ECC Result of main area data */
648 case 0xff02: /* ECC Result of spare area data */
649 case 0xff03: /* ECC Result of main area data */
650 case 0xff04: /* ECC Result of spare area data */
651 hw_error("%s: imeplement ECC\n", __FUNCTION__);
652 return 0x0000;
653 }
654
655 fprintf(stderr, "%s: unknown OneNAND register %x\n",
656 __FUNCTION__, offset);
657 return 0;
658 }
659
660 static void onenand_write(void *opaque, hwaddr addr,
661 uint64_t value, unsigned size)
662 {
663 OneNANDState *s = (OneNANDState *) opaque;
664 int offset = addr >> s->shift;
665 int sec;
666
667 switch (offset) {
668 case 0x0000 ... 0x01ff:
669 case 0x8000 ... 0x800f:
670 if (s->cycle) {
671 s->cycle = 0;
672
673 if (value == 0x0000) {
674 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
675 onenand_load_main(s, sec,
676 1 << (PAGE_SHIFT - 9), s->data[0][0]);
677 s->addr[ONEN_BUF_PAGE] += 4;
678 s->addr[ONEN_BUF_PAGE] &= 0xff;
679 }
680 break;
681 }
682
683 switch (value) {
684 case 0x00f0: /* Reset OneNAND */
685 onenand_reset(s, 0);
686 break;
687
688 case 0x00e0: /* Load Data into Buffer */
689 s->cycle = 1;
690 break;
691
692 case 0x0090: /* Read Identification Data */
693 memset(s->boot[0], 0, 3 << s->shift);
694 s->boot[0][0 << s->shift] = s->id.man & 0xff;
695 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
696 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
697 break;
698
699 default:
700 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
701 __FUNCTION__, value);
702 }
703 break;
704
705 case 0xf100 ... 0xf107: /* Start addresses */
706 s->addr[offset - 0xf100] = value;
707 break;
708
709 case 0xf200: /* Start buffer */
710 s->bufaddr = (value >> 8) & 0xf;
711 if (PAGE_SHIFT == 11)
712 s->count = (value & 3) ?: 4;
713 else if (PAGE_SHIFT == 10)
714 s->count = (value & 1) ?: 2;
715 break;
716
717 case 0xf220: /* Command */
718 if (s->intstatus & (1 << 15))
719 break;
720 s->command = value;
721 onenand_command(s);
722 break;
723 case 0xf221: /* System Configuration 1 */
724 s->config[0] = value;
725 onenand_intr_update(s);
726 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
727 break;
728 case 0xf222: /* System Configuration 2 */
729 s->config[1] = value;
730 break;
731
732 case 0xf241: /* Interrupt */
733 s->intstatus &= value;
734 if ((1 << 15) & ~s->intstatus)
735 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
736 ONEN_ERR_PROG | ONEN_ERR_LOAD);
737 onenand_intr_update(s);
738 break;
739 case 0xf24c: /* Unlock Start Block Address */
740 s->unladdr[0] = value & (s->blocks - 1);
741 /* For some reason we have to set the end address to by default
742 * be same as start because the software forgets to write anything
743 * in there. */
744 s->unladdr[1] = value & (s->blocks - 1);
745 break;
746 case 0xf24d: /* Unlock End Block Address */
747 s->unladdr[1] = value & (s->blocks - 1);
748 break;
749
750 default:
751 fprintf(stderr, "%s: unknown OneNAND register %x\n",
752 __FUNCTION__, offset);
753 }
754 }
755
756 static const MemoryRegionOps onenand_ops = {
757 .read = onenand_read,
758 .write = onenand_write,
759 .endianness = DEVICE_NATIVE_ENDIAN,
760 };
761
762 static int onenand_initfn(SysBusDevice *sbd)
763 {
764 DeviceState *dev = DEVICE(sbd);
765 OneNANDState *s = ONE_NAND(dev);
766 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
767 void *ram;
768
769 s->base = (hwaddr)-1;
770 s->rdy = NULL;
771 s->blocks = size >> BLOCK_SHIFT;
772 s->secs = size >> 9;
773 s->blockwp = g_malloc(s->blocks);
774 s->density_mask = (s->id.dev & 0x08)
775 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
776 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
777 0x10000 << s->shift);
778 if (!s->blk) {
779 s->image = memset(g_malloc(size + (size >> 5)),
780 0xff, size + (size >> 5));
781 } else {
782 if (blk_is_read_only(s->blk)) {
783 error_report("Can't use a read-only drive");
784 return -1;
785 }
786 s->blk_cur = s->blk;
787 }
788 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
789 0xff, (64 + 2) << PAGE_SHIFT);
790 memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
791 0xc000 << s->shift, &error_fatal);
792 vmstate_register_ram_global(&s->ram);
793 ram = memory_region_get_ram_ptr(&s->ram);
794 s->boot[0] = ram + (0x0000 << s->shift);
795 s->boot[1] = ram + (0x8000 << s->shift);
796 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
797 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
798 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
799 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
800 onenand_mem_setup(s);
801 sysbus_init_irq(sbd, &s->intr);
802 sysbus_init_mmio(sbd, &s->container);
803 vmstate_register(dev,
804 ((s->shift & 0x7f) << 24)
805 | ((s->id.man & 0xff) << 16)
806 | ((s->id.dev & 0xff) << 8)
807 | (s->id.ver & 0xff),
808 &vmstate_onenand, s);
809 return 0;
810 }
811
812 static Property onenand_properties[] = {
813 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
814 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
815 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
816 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
817 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
818 DEFINE_PROP_END_OF_LIST(),
819 };
820
821 static void onenand_class_init(ObjectClass *klass, void *data)
822 {
823 DeviceClass *dc = DEVICE_CLASS(klass);
824 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
825
826 k->init = onenand_initfn;
827 dc->reset = onenand_system_reset;
828 dc->props = onenand_properties;
829 }
830
831 static const TypeInfo onenand_info = {
832 .name = TYPE_ONE_NAND,
833 .parent = TYPE_SYS_BUS_DEVICE,
834 .instance_size = sizeof(OneNANDState),
835 .class_init = onenand_class_init,
836 };
837
838 static void onenand_register_types(void)
839 {
840 type_register_static(&onenand_info);
841 }
842
843 void *onenand_raw_otp(DeviceState *onenand_device)
844 {
845 OneNANDState *s = ONE_NAND(onenand_device);
846
847 return s->otp;
848 }
849
850 type_init(onenand_register_types)