]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/onenand.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / hw / block / onenand.c
1 /*
2 * OneNAND flash memories emulation.
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "qemu/error-report.h"
31
32 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
33 #define PAGE_SHIFT 11
34
35 /* Fixed */
36 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
37
38 #define TYPE_ONE_NAND "onenand"
39 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
40
41 typedef struct OneNANDState {
42 SysBusDevice parent_obj;
43
44 struct {
45 uint16_t man;
46 uint16_t dev;
47 uint16_t ver;
48 } id;
49 int shift;
50 hwaddr base;
51 qemu_irq intr;
52 qemu_irq rdy;
53 BlockBackend *blk;
54 BlockBackend *blk_cur;
55 uint8_t *image;
56 uint8_t *otp;
57 uint8_t *current;
58 MemoryRegion ram;
59 MemoryRegion mapped_ram;
60 uint8_t current_direction;
61 uint8_t *boot[2];
62 uint8_t *data[2][2];
63 MemoryRegion iomem;
64 MemoryRegion container;
65 int cycle;
66 int otpmode;
67
68 uint16_t addr[8];
69 uint16_t unladdr[8];
70 int bufaddr;
71 int count;
72 uint16_t command;
73 uint16_t config[2];
74 uint16_t status;
75 uint16_t intstatus;
76 uint16_t wpstatus;
77
78 ECCState ecc;
79
80 int density_mask;
81 int secs;
82 int secs_cur;
83 int blocks;
84 uint8_t *blockwp;
85 } OneNANDState;
86
87 enum {
88 ONEN_BUF_BLOCK = 0,
89 ONEN_BUF_BLOCK2 = 1,
90 ONEN_BUF_DEST_BLOCK = 2,
91 ONEN_BUF_DEST_PAGE = 3,
92 ONEN_BUF_PAGE = 7,
93 };
94
95 enum {
96 ONEN_ERR_CMD = 1 << 10,
97 ONEN_ERR_ERASE = 1 << 11,
98 ONEN_ERR_PROG = 1 << 12,
99 ONEN_ERR_LOAD = 1 << 13,
100 };
101
102 enum {
103 ONEN_INT_RESET = 1 << 4,
104 ONEN_INT_ERASE = 1 << 5,
105 ONEN_INT_PROG = 1 << 6,
106 ONEN_INT_LOAD = 1 << 7,
107 ONEN_INT = 1 << 15,
108 };
109
110 enum {
111 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
112 ONEN_LOCK_LOCKED = 1 << 1,
113 ONEN_LOCK_UNLOCKED = 1 << 2,
114 };
115
116 static void onenand_mem_setup(OneNANDState *s)
117 {
118 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
119 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
120 * write boot commands. Also take note of the BWPS bit. */
121 memory_region_init(&s->container, OBJECT(s), "onenand",
122 0x10000 << s->shift);
123 memory_region_add_subregion(&s->container, 0, &s->iomem);
124 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
125 &s->ram, 0x0200 << s->shift,
126 0xbe00 << s->shift);
127 memory_region_add_subregion_overlap(&s->container,
128 0x0200 << s->shift,
129 &s->mapped_ram,
130 1);
131 }
132
133 static void onenand_intr_update(OneNANDState *s)
134 {
135 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
136 }
137
138 static int onenand_pre_save(void *opaque)
139 {
140 OneNANDState *s = opaque;
141 if (s->current == s->otp) {
142 s->current_direction = 1;
143 } else if (s->current == s->image) {
144 s->current_direction = 2;
145 } else {
146 s->current_direction = 0;
147 }
148
149 return 0;
150 }
151
152 static int onenand_post_load(void *opaque, int version_id)
153 {
154 OneNANDState *s = opaque;
155 switch (s->current_direction) {
156 case 0:
157 break;
158 case 1:
159 s->current = s->otp;
160 break;
161 case 2:
162 s->current = s->image;
163 break;
164 default:
165 return -1;
166 }
167 onenand_intr_update(s);
168 return 0;
169 }
170
171 static const VMStateDescription vmstate_onenand = {
172 .name = "onenand",
173 .version_id = 1,
174 .minimum_version_id = 1,
175 .pre_save = onenand_pre_save,
176 .post_load = onenand_post_load,
177 .fields = (VMStateField[]) {
178 VMSTATE_UINT8(current_direction, OneNANDState),
179 VMSTATE_INT32(cycle, OneNANDState),
180 VMSTATE_INT32(otpmode, OneNANDState),
181 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
182 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
183 VMSTATE_INT32(bufaddr, OneNANDState),
184 VMSTATE_INT32(count, OneNANDState),
185 VMSTATE_UINT16(command, OneNANDState),
186 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
187 VMSTATE_UINT16(status, OneNANDState),
188 VMSTATE_UINT16(intstatus, OneNANDState),
189 VMSTATE_UINT16(wpstatus, OneNANDState),
190 VMSTATE_INT32(secs_cur, OneNANDState),
191 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
192 VMSTATE_UINT8(ecc.cp, OneNANDState),
193 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
194 VMSTATE_UINT16(ecc.count, OneNANDState),
195 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
196 ((64 + 2) << PAGE_SHIFT)),
197 VMSTATE_END_OF_LIST()
198 }
199 };
200
201 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
202 static void onenand_reset(OneNANDState *s, int cold)
203 {
204 memset(&s->addr, 0, sizeof(s->addr));
205 s->command = 0;
206 s->count = 1;
207 s->bufaddr = 0;
208 s->config[0] = 0x40c0;
209 s->config[1] = 0x0000;
210 onenand_intr_update(s);
211 qemu_irq_raise(s->rdy);
212 s->status = 0x0000;
213 s->intstatus = cold ? 0x8080 : 0x8010;
214 s->unladdr[0] = 0;
215 s->unladdr[1] = 0;
216 s->wpstatus = 0x0002;
217 s->cycle = 0;
218 s->otpmode = 0;
219 s->blk_cur = s->blk;
220 s->current = s->image;
221 s->secs_cur = s->secs;
222
223 if (cold) {
224 /* Lock the whole flash */
225 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
226
227 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
228 8 << BDRV_SECTOR_BITS) < 0) {
229 hw_error("%s: Loading the BootRAM failed.\n", __func__);
230 }
231 }
232 }
233
234 static void onenand_system_reset(DeviceState *dev)
235 {
236 OneNANDState *s = ONE_NAND(dev);
237
238 onenand_reset(s, 1);
239 }
240
241 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
242 void *dest)
243 {
244 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
245 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
246 if (s->blk_cur) {
247 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
248 secn << BDRV_SECTOR_BITS) < 0;
249 } else if (sec + secn > s->secs_cur) {
250 return 1;
251 }
252
253 memcpy(dest, s->current + (sec << 9), secn << 9);
254
255 return 0;
256 }
257
258 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
259 void *src)
260 {
261 int result = 0;
262
263 if (secn > 0) {
264 uint32_t size = secn << BDRV_SECTOR_BITS;
265 uint32_t offset = sec << BDRV_SECTOR_BITS;
266 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
267 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
268 const uint8_t *sp = (const uint8_t *)src;
269 uint8_t *dp = 0;
270 if (s->blk_cur) {
271 dp = g_malloc(size);
272 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
273 result = 1;
274 }
275 } else {
276 if (sec + secn > s->secs_cur) {
277 result = 1;
278 } else {
279 dp = (uint8_t *)s->current + offset;
280 }
281 }
282 if (!result) {
283 uint32_t i;
284 for (i = 0; i < size; i++) {
285 dp[i] &= sp[i];
286 }
287 if (s->blk_cur) {
288 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
289 }
290 }
291 if (dp && s->blk_cur) {
292 g_free(dp);
293 }
294 }
295
296 return result;
297 }
298
299 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
300 void *dest)
301 {
302 uint8_t buf[512];
303
304 if (s->blk_cur) {
305 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
306 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
307 return 1;
308 }
309 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
310 } else if (sec + secn > s->secs_cur) {
311 return 1;
312 } else {
313 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
314 }
315
316 return 0;
317 }
318
319 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
320 void *src)
321 {
322 int result = 0;
323 if (secn > 0) {
324 const uint8_t *sp = (const uint8_t *)src;
325 uint8_t *dp = 0, *dpp = 0;
326 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
327 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
328 if (s->blk_cur) {
329 dp = g_malloc(512);
330 if (!dp
331 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
332 result = 1;
333 } else {
334 dpp = dp + ((sec & 31) << 4);
335 }
336 } else {
337 if (sec + secn > s->secs_cur) {
338 result = 1;
339 } else {
340 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
341 }
342 }
343 if (!result) {
344 uint32_t i;
345 for (i = 0; i < (secn << 4); i++) {
346 dpp[i] &= sp[i];
347 }
348 if (s->blk_cur) {
349 result = blk_pwrite(s->blk_cur, offset, dp,
350 BDRV_SECTOR_SIZE, 0) < 0;
351 }
352 }
353 g_free(dp);
354 }
355 return result;
356 }
357
358 static inline int onenand_erase(OneNANDState *s, int sec, int num)
359 {
360 uint8_t *blankbuf, *tmpbuf;
361
362 blankbuf = g_malloc(512);
363 tmpbuf = g_malloc(512);
364 memset(blankbuf, 0xff, 512);
365 for (; num > 0; num--, sec++) {
366 if (s->blk_cur) {
367 int erasesec = s->secs_cur + (sec >> 5);
368 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
369 BDRV_SECTOR_SIZE, 0) < 0) {
370 goto fail;
371 }
372 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
373 BDRV_SECTOR_SIZE) < 0) {
374 goto fail;
375 }
376 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
377 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
378 BDRV_SECTOR_SIZE, 0) < 0) {
379 goto fail;
380 }
381 } else {
382 if (sec + 1 > s->secs_cur) {
383 goto fail;
384 }
385 memcpy(s->current + (sec << 9), blankbuf, 512);
386 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
387 blankbuf, 1 << 4);
388 }
389 }
390
391 g_free(tmpbuf);
392 g_free(blankbuf);
393 return 0;
394
395 fail:
396 g_free(tmpbuf);
397 g_free(blankbuf);
398 return 1;
399 }
400
401 static void onenand_command(OneNANDState *s)
402 {
403 int b;
404 int sec;
405 void *buf;
406 #define SETADDR(block, page) \
407 sec = (s->addr[page] & 3) + \
408 ((((s->addr[page] >> 2) & 0x3f) + \
409 (((s->addr[block] & 0xfff) | \
410 (s->addr[block] >> 15 ? \
411 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
412 #define SETBUF_M() \
413 buf = (s->bufaddr & 8) ? \
414 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
415 buf += (s->bufaddr & 3) << 9;
416 #define SETBUF_S() \
417 buf = (s->bufaddr & 8) ? \
418 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
419 buf += (s->bufaddr & 3) << 4;
420
421 switch (s->command) {
422 case 0x00: /* Load single/multiple sector data unit into buffer */
423 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
424
425 SETBUF_M()
426 if (onenand_load_main(s, sec, s->count, buf))
427 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
428
429 #if 0
430 SETBUF_S()
431 if (onenand_load_spare(s, sec, s->count, buf))
432 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
433 #endif
434
435 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
436 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
437 * then we need two split the read/write into two chunks.
438 */
439 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
440 break;
441 case 0x13: /* Load single/multiple spare sector into buffer */
442 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
443
444 SETBUF_S()
445 if (onenand_load_spare(s, sec, s->count, buf))
446 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
447
448 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
449 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
450 * then we need two split the read/write into two chunks.
451 */
452 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
453 break;
454 case 0x80: /* Program single/multiple sector data unit from buffer */
455 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
456
457 SETBUF_M()
458 if (onenand_prog_main(s, sec, s->count, buf))
459 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
460
461 #if 0
462 SETBUF_S()
463 if (onenand_prog_spare(s, sec, s->count, buf))
464 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
465 #endif
466
467 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
468 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
469 * then we need two split the read/write into two chunks.
470 */
471 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
472 break;
473 case 0x1a: /* Program single/multiple spare area sector from buffer */
474 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
475
476 SETBUF_S()
477 if (onenand_prog_spare(s, sec, s->count, buf))
478 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
479
480 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
481 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
482 * then we need two split the read/write into two chunks.
483 */
484 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
485 break;
486 case 0x1b: /* Copy-back program */
487 SETBUF_S()
488
489 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
490 if (onenand_load_main(s, sec, s->count, buf))
491 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
492
493 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
494 if (onenand_prog_main(s, sec, s->count, buf))
495 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
496
497 /* TODO: spare areas */
498
499 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
500 break;
501
502 case 0x23: /* Unlock NAND array block(s) */
503 s->intstatus |= ONEN_INT;
504
505 /* XXX the previous (?) area should be locked automatically */
506 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
507 if (b >= s->blocks) {
508 s->status |= ONEN_ERR_CMD;
509 break;
510 }
511 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
512 break;
513
514 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
515 }
516 break;
517 case 0x27: /* Unlock All NAND array blocks */
518 s->intstatus |= ONEN_INT;
519
520 for (b = 0; b < s->blocks; b ++) {
521 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
522 break;
523
524 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
525 }
526 break;
527
528 case 0x2a: /* Lock NAND array block(s) */
529 s->intstatus |= ONEN_INT;
530
531 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
532 if (b >= s->blocks) {
533 s->status |= ONEN_ERR_CMD;
534 break;
535 }
536 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
537 break;
538
539 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
540 }
541 break;
542 case 0x2c: /* Lock-tight NAND array block(s) */
543 s->intstatus |= ONEN_INT;
544
545 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
546 if (b >= s->blocks) {
547 s->status |= ONEN_ERR_CMD;
548 break;
549 }
550 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
551 continue;
552
553 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
554 }
555 break;
556
557 case 0x71: /* Erase-Verify-Read */
558 s->intstatus |= ONEN_INT;
559 break;
560 case 0x95: /* Multi-block erase */
561 qemu_irq_pulse(s->intr);
562 /* Fall through. */
563 case 0x94: /* Block erase */
564 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
565 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
566 << (BLOCK_SHIFT - 9);
567 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
568 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
569
570 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
571 break;
572 case 0xb0: /* Erase suspend */
573 break;
574 case 0x30: /* Erase resume */
575 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
576 break;
577
578 case 0xf0: /* Reset NAND Flash core */
579 onenand_reset(s, 0);
580 break;
581 case 0xf3: /* Reset OneNAND */
582 onenand_reset(s, 0);
583 break;
584
585 case 0x65: /* OTP Access */
586 s->intstatus |= ONEN_INT;
587 s->blk_cur = NULL;
588 s->current = s->otp;
589 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
590 s->addr[ONEN_BUF_BLOCK] = 0;
591 s->otpmode = 1;
592 break;
593
594 default:
595 s->status |= ONEN_ERR_CMD;
596 s->intstatus |= ONEN_INT;
597 fprintf(stderr, "%s: unknown OneNAND command %x\n",
598 __func__, s->command);
599 }
600
601 onenand_intr_update(s);
602 }
603
604 static uint64_t onenand_read(void *opaque, hwaddr addr,
605 unsigned size)
606 {
607 OneNANDState *s = (OneNANDState *) opaque;
608 int offset = addr >> s->shift;
609
610 switch (offset) {
611 case 0x0000 ... 0xc000:
612 return lduw_le_p(s->boot[0] + addr);
613
614 case 0xf000: /* Manufacturer ID */
615 return s->id.man;
616 case 0xf001: /* Device ID */
617 return s->id.dev;
618 case 0xf002: /* Version ID */
619 return s->id.ver;
620 /* TODO: get the following values from a real chip! */
621 case 0xf003: /* Data Buffer size */
622 return 1 << PAGE_SHIFT;
623 case 0xf004: /* Boot Buffer size */
624 return 0x200;
625 case 0xf005: /* Amount of buffers */
626 return 1 | (2 << 8);
627 case 0xf006: /* Technology */
628 return 0;
629
630 case 0xf100 ... 0xf107: /* Start addresses */
631 return s->addr[offset - 0xf100];
632
633 case 0xf200: /* Start buffer */
634 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
635
636 case 0xf220: /* Command */
637 return s->command;
638 case 0xf221: /* System Configuration 1 */
639 return s->config[0] & 0xffe0;
640 case 0xf222: /* System Configuration 2 */
641 return s->config[1];
642
643 case 0xf240: /* Controller Status */
644 return s->status;
645 case 0xf241: /* Interrupt */
646 return s->intstatus;
647 case 0xf24c: /* Unlock Start Block Address */
648 return s->unladdr[0];
649 case 0xf24d: /* Unlock End Block Address */
650 return s->unladdr[1];
651 case 0xf24e: /* Write Protection Status */
652 return s->wpstatus;
653
654 case 0xff00: /* ECC Status */
655 return 0x00;
656 case 0xff01: /* ECC Result of main area data */
657 case 0xff02: /* ECC Result of spare area data */
658 case 0xff03: /* ECC Result of main area data */
659 case 0xff04: /* ECC Result of spare area data */
660 hw_error("%s: implement ECC\n", __func__);
661 return 0x0000;
662 }
663
664 fprintf(stderr, "%s: unknown OneNAND register %x\n",
665 __func__, offset);
666 return 0;
667 }
668
669 static void onenand_write(void *opaque, hwaddr addr,
670 uint64_t value, unsigned size)
671 {
672 OneNANDState *s = (OneNANDState *) opaque;
673 int offset = addr >> s->shift;
674 int sec;
675
676 switch (offset) {
677 case 0x0000 ... 0x01ff:
678 case 0x8000 ... 0x800f:
679 if (s->cycle) {
680 s->cycle = 0;
681
682 if (value == 0x0000) {
683 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
684 onenand_load_main(s, sec,
685 1 << (PAGE_SHIFT - 9), s->data[0][0]);
686 s->addr[ONEN_BUF_PAGE] += 4;
687 s->addr[ONEN_BUF_PAGE] &= 0xff;
688 }
689 break;
690 }
691
692 switch (value) {
693 case 0x00f0: /* Reset OneNAND */
694 onenand_reset(s, 0);
695 break;
696
697 case 0x00e0: /* Load Data into Buffer */
698 s->cycle = 1;
699 break;
700
701 case 0x0090: /* Read Identification Data */
702 memset(s->boot[0], 0, 3 << s->shift);
703 s->boot[0][0 << s->shift] = s->id.man & 0xff;
704 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
705 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
706 break;
707
708 default:
709 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
710 __func__, value);
711 }
712 break;
713
714 case 0xf100 ... 0xf107: /* Start addresses */
715 s->addr[offset - 0xf100] = value;
716 break;
717
718 case 0xf200: /* Start buffer */
719 s->bufaddr = (value >> 8) & 0xf;
720 if (PAGE_SHIFT == 11)
721 s->count = (value & 3) ?: 4;
722 else if (PAGE_SHIFT == 10)
723 s->count = (value & 1) ?: 2;
724 break;
725
726 case 0xf220: /* Command */
727 if (s->intstatus & (1 << 15))
728 break;
729 s->command = value;
730 onenand_command(s);
731 break;
732 case 0xf221: /* System Configuration 1 */
733 s->config[0] = value;
734 onenand_intr_update(s);
735 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
736 break;
737 case 0xf222: /* System Configuration 2 */
738 s->config[1] = value;
739 break;
740
741 case 0xf241: /* Interrupt */
742 s->intstatus &= value;
743 if ((1 << 15) & ~s->intstatus)
744 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
745 ONEN_ERR_PROG | ONEN_ERR_LOAD);
746 onenand_intr_update(s);
747 break;
748 case 0xf24c: /* Unlock Start Block Address */
749 s->unladdr[0] = value & (s->blocks - 1);
750 /* For some reason we have to set the end address to by default
751 * be same as start because the software forgets to write anything
752 * in there. */
753 s->unladdr[1] = value & (s->blocks - 1);
754 break;
755 case 0xf24d: /* Unlock End Block Address */
756 s->unladdr[1] = value & (s->blocks - 1);
757 break;
758
759 default:
760 fprintf(stderr, "%s: unknown OneNAND register %x\n",
761 __func__, offset);
762 }
763 }
764
765 static const MemoryRegionOps onenand_ops = {
766 .read = onenand_read,
767 .write = onenand_write,
768 .endianness = DEVICE_NATIVE_ENDIAN,
769 };
770
771 static int onenand_initfn(SysBusDevice *sbd)
772 {
773 DeviceState *dev = DEVICE(sbd);
774 OneNANDState *s = ONE_NAND(dev);
775 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
776 void *ram;
777 Error *local_err = NULL;
778
779 s->base = (hwaddr)-1;
780 s->rdy = NULL;
781 s->blocks = size >> BLOCK_SHIFT;
782 s->secs = size >> 9;
783 s->blockwp = g_malloc(s->blocks);
784 s->density_mask = (s->id.dev & 0x08)
785 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
786 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
787 0x10000 << s->shift);
788 if (!s->blk) {
789 s->image = memset(g_malloc(size + (size >> 5)),
790 0xff, size + (size >> 5));
791 } else {
792 if (blk_is_read_only(s->blk)) {
793 error_report("Can't use a read-only drive");
794 return -1;
795 }
796 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
797 BLK_PERM_ALL, &local_err);
798 if (local_err) {
799 error_report_err(local_err);
800 return -1;
801 }
802 s->blk_cur = s->blk;
803 }
804 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
805 0xff, (64 + 2) << PAGE_SHIFT);
806 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
807 0xc000 << s->shift, &error_fatal);
808 vmstate_register_ram_global(&s->ram);
809 ram = memory_region_get_ram_ptr(&s->ram);
810 s->boot[0] = ram + (0x0000 << s->shift);
811 s->boot[1] = ram + (0x8000 << s->shift);
812 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
813 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
814 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
815 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
816 onenand_mem_setup(s);
817 sysbus_init_irq(sbd, &s->intr);
818 sysbus_init_mmio(sbd, &s->container);
819 vmstate_register(dev,
820 ((s->shift & 0x7f) << 24)
821 | ((s->id.man & 0xff) << 16)
822 | ((s->id.dev & 0xff) << 8)
823 | (s->id.ver & 0xff),
824 &vmstate_onenand, s);
825 return 0;
826 }
827
828 static Property onenand_properties[] = {
829 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
830 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
831 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
832 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
833 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
834 DEFINE_PROP_END_OF_LIST(),
835 };
836
837 static void onenand_class_init(ObjectClass *klass, void *data)
838 {
839 DeviceClass *dc = DEVICE_CLASS(klass);
840 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
841
842 k->init = onenand_initfn;
843 dc->reset = onenand_system_reset;
844 dc->props = onenand_properties;
845 }
846
847 static const TypeInfo onenand_info = {
848 .name = TYPE_ONE_NAND,
849 .parent = TYPE_SYS_BUS_DEVICE,
850 .instance_size = sizeof(OneNANDState),
851 .class_init = onenand_class_init,
852 };
853
854 static void onenand_register_types(void)
855 {
856 type_register_static(&onenand_info);
857 }
858
859 void *onenand_raw_otp(DeviceState *onenand_device)
860 {
861 OneNANDState *s = ONE_NAND(onenand_device);
862
863 return s->otp;
864 }
865
866 type_init(onenand_register_types)