]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/cadence_uart.c
char: use qemu_chr_fe* functions with CharBackend argument
[mirror_qemu.git] / hw / char / cadence_uart.c
1 /*
2 * Device model for Cadence UART
3 *
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "sysemu/char.h"
22 #include "qemu/timer.h"
23 #include "qemu/log.h"
24 #include "hw/char/cadence_uart.h"
25
26 #ifdef CADENCE_UART_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28 fprintf(stderr, ": %s: ", __func__); \
29 fprintf(stderr, ## __VA_ARGS__); \
30 } while (0);
31 #else
32 #define DB_PRINT(...)
33 #endif
34
35 #define UART_SR_INTR_RTRIG 0x00000001
36 #define UART_SR_INTR_REMPTY 0x00000002
37 #define UART_SR_INTR_RFUL 0x00000004
38 #define UART_SR_INTR_TEMPTY 0x00000008
39 #define UART_SR_INTR_TFUL 0x00000010
40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41 #define UART_SR_TTRIG 0x00002000
42 #define UART_INTR_TTRIG 0x00000400
43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
44 * SR, then the same bit in CISR is set high too */
45 #define UART_SR_TO_CISR_MASK 0x0000001F
46
47 #define UART_INTR_ROVR 0x00000020
48 #define UART_INTR_FRAME 0x00000040
49 #define UART_INTR_PARE 0x00000080
50 #define UART_INTR_TIMEOUT 0x00000100
51 #define UART_INTR_DMSI 0x00000200
52 #define UART_INTR_TOVR 0x00001000
53
54 #define UART_SR_RACTIVE 0x00000400
55 #define UART_SR_TACTIVE 0x00000800
56 #define UART_SR_FDELT 0x00001000
57
58 #define UART_CR_RXRST 0x00000001
59 #define UART_CR_TXRST 0x00000002
60 #define UART_CR_RX_EN 0x00000004
61 #define UART_CR_RX_DIS 0x00000008
62 #define UART_CR_TX_EN 0x00000010
63 #define UART_CR_TX_DIS 0x00000020
64 #define UART_CR_RST_TO 0x00000040
65 #define UART_CR_STARTBRK 0x00000080
66 #define UART_CR_STOPBRK 0x00000100
67
68 #define UART_MR_CLKS 0x00000001
69 #define UART_MR_CHRL 0x00000006
70 #define UART_MR_CHRL_SH 1
71 #define UART_MR_PAR 0x00000038
72 #define UART_MR_PAR_SH 3
73 #define UART_MR_NBSTOP 0x000000C0
74 #define UART_MR_NBSTOP_SH 6
75 #define UART_MR_CHMODE 0x00000300
76 #define UART_MR_CHMODE_SH 8
77 #define UART_MR_UCLKEN 0x00000400
78 #define UART_MR_IRMODE 0x00000800
79
80 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
81 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
82 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
83 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
84 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
85 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
86 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
87 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
88 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
89 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
90
91 #define UART_INPUT_CLK 50000000
92
93 #define R_CR (0x00/4)
94 #define R_MR (0x04/4)
95 #define R_IER (0x08/4)
96 #define R_IDR (0x0C/4)
97 #define R_IMR (0x10/4)
98 #define R_CISR (0x14/4)
99 #define R_BRGR (0x18/4)
100 #define R_RTOR (0x1C/4)
101 #define R_RTRIG (0x20/4)
102 #define R_MCR (0x24/4)
103 #define R_MSR (0x28/4)
104 #define R_SR (0x2C/4)
105 #define R_TX_RX (0x30/4)
106 #define R_BDIV (0x34/4)
107 #define R_FDEL (0x38/4)
108 #define R_PMIN (0x3C/4)
109 #define R_PWID (0x40/4)
110 #define R_TTRIG (0x44/4)
111
112
113 static void uart_update_status(CadenceUARTState *s)
114 {
115 s->r[R_SR] = 0;
116
117 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118 : 0;
119 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
121
122 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123 : 0;
124 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
126
127 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
130 }
131
132 static void fifo_trigger_update(void *opaque)
133 {
134 CadenceUARTState *s = opaque;
135
136 s->r[R_CISR] |= UART_INTR_TIMEOUT;
137
138 uart_update_status(s);
139 }
140
141 static void uart_rx_reset(CadenceUARTState *s)
142 {
143 s->rx_wpos = 0;
144 s->rx_count = 0;
145 if (s->chr.chr) {
146 qemu_chr_fe_accept_input(&s->chr);
147 }
148 }
149
150 static void uart_tx_reset(CadenceUARTState *s)
151 {
152 s->tx_count = 0;
153 }
154
155 static void uart_send_breaks(CadenceUARTState *s)
156 {
157 int break_enabled = 1;
158
159 if (s->chr.chr) {
160 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
161 &break_enabled);
162 }
163 }
164
165 static void uart_parameters_setup(CadenceUARTState *s)
166 {
167 QEMUSerialSetParams ssp;
168 unsigned int baud_rate, packet_size;
169
170 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
171 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
172
173 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
174 packet_size = 1;
175
176 switch (s->r[R_MR] & UART_MR_PAR) {
177 case UART_PARITY_EVEN:
178 ssp.parity = 'E';
179 packet_size++;
180 break;
181 case UART_PARITY_ODD:
182 ssp.parity = 'O';
183 packet_size++;
184 break;
185 default:
186 ssp.parity = 'N';
187 break;
188 }
189
190 switch (s->r[R_MR] & UART_MR_CHRL) {
191 case UART_DATA_BITS_6:
192 ssp.data_bits = 6;
193 break;
194 case UART_DATA_BITS_7:
195 ssp.data_bits = 7;
196 break;
197 default:
198 ssp.data_bits = 8;
199 break;
200 }
201
202 switch (s->r[R_MR] & UART_MR_NBSTOP) {
203 case UART_STOP_BITS_1:
204 ssp.stop_bits = 1;
205 break;
206 default:
207 ssp.stop_bits = 2;
208 break;
209 }
210
211 packet_size += ssp.data_bits + ssp.stop_bits;
212 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
213 if (s->chr.chr) {
214 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215 }
216 }
217
218 static int uart_can_receive(void *opaque)
219 {
220 CadenceUARTState *s = opaque;
221 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
222 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
223
224 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
225 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
226 }
227 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
228 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
229 }
230 return ret;
231 }
232
233 static void uart_ctrl_update(CadenceUARTState *s)
234 {
235 if (s->r[R_CR] & UART_CR_TXRST) {
236 uart_tx_reset(s);
237 }
238
239 if (s->r[R_CR] & UART_CR_RXRST) {
240 uart_rx_reset(s);
241 }
242
243 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
244
245 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
246 uart_send_breaks(s);
247 }
248 }
249
250 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
251 {
252 CadenceUARTState *s = opaque;
253 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254 int i;
255
256 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
257 return;
258 }
259
260 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
261 s->r[R_CISR] |= UART_INTR_ROVR;
262 } else {
263 for (i = 0; i < size; i++) {
264 s->rx_fifo[s->rx_wpos] = buf[i];
265 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
266 s->rx_count++;
267 }
268 timer_mod(s->fifo_trigger_handle, new_rx_time +
269 (s->char_tx_time * 4));
270 }
271 uart_update_status(s);
272 }
273
274 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
275 void *opaque)
276 {
277 CadenceUARTState *s = opaque;
278 int ret;
279
280 /* instant drain the fifo when there's no back-end */
281 if (!qemu_chr_fe_get_driver(&s->chr)) {
282 s->tx_count = 0;
283 return FALSE;
284 }
285
286 if (!s->tx_count) {
287 return FALSE;
288 }
289
290 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
291
292 if (ret >= 0) {
293 s->tx_count -= ret;
294 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
295 }
296
297 if (s->tx_count) {
298 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
299 cadence_uart_xmit, s);
300 if (!r) {
301 s->tx_count = 0;
302 return FALSE;
303 }
304 }
305
306 uart_update_status(s);
307 return FALSE;
308 }
309
310 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
311 int size)
312 {
313 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
314 return;
315 }
316
317 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
318 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
319 /*
320 * This can only be a guest error via a bad tx fifo register push,
321 * as can_receive() should stop remote loop and echo modes ever getting
322 * us to here.
323 */
324 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
325 s->r[R_CISR] |= UART_INTR_ROVR;
326 }
327
328 memcpy(s->tx_fifo + s->tx_count, buf, size);
329 s->tx_count += size;
330
331 cadence_uart_xmit(NULL, G_IO_OUT, s);
332 }
333
334 static void uart_receive(void *opaque, const uint8_t *buf, int size)
335 {
336 CadenceUARTState *s = opaque;
337 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
338
339 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
340 uart_write_rx_fifo(opaque, buf, size);
341 }
342 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
343 uart_write_tx_fifo(s, buf, size);
344 }
345 }
346
347 static void uart_event(void *opaque, int event)
348 {
349 CadenceUARTState *s = opaque;
350 uint8_t buf = '\0';
351
352 if (event == CHR_EVENT_BREAK) {
353 uart_write_rx_fifo(opaque, &buf, 1);
354 }
355
356 uart_update_status(s);
357 }
358
359 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
360 {
361 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
362 return;
363 }
364
365 if (s->rx_count) {
366 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
367 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
368 *c = s->rx_fifo[rx_rpos];
369 s->rx_count--;
370
371 if (s->chr.chr) {
372 qemu_chr_fe_accept_input(&s->chr);
373 }
374 } else {
375 *c = 0;
376 }
377
378 uart_update_status(s);
379 }
380
381 static void uart_write(void *opaque, hwaddr offset,
382 uint64_t value, unsigned size)
383 {
384 CadenceUARTState *s = opaque;
385
386 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
387 offset >>= 2;
388 if (offset >= CADENCE_UART_R_MAX) {
389 return;
390 }
391 switch (offset) {
392 case R_IER: /* ier (wts imr) */
393 s->r[R_IMR] |= value;
394 break;
395 case R_IDR: /* idr (wtc imr) */
396 s->r[R_IMR] &= ~value;
397 break;
398 case R_IMR: /* imr (read only) */
399 break;
400 case R_CISR: /* cisr (wtc) */
401 s->r[R_CISR] &= ~value;
402 break;
403 case R_TX_RX: /* UARTDR */
404 switch (s->r[R_MR] & UART_MR_CHMODE) {
405 case NORMAL_MODE:
406 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
407 break;
408 case LOCAL_LOOPBACK:
409 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
410 break;
411 }
412 break;
413 default:
414 s->r[offset] = value;
415 }
416
417 switch (offset) {
418 case R_CR:
419 uart_ctrl_update(s);
420 break;
421 case R_MR:
422 uart_parameters_setup(s);
423 break;
424 }
425 uart_update_status(s);
426 }
427
428 static uint64_t uart_read(void *opaque, hwaddr offset,
429 unsigned size)
430 {
431 CadenceUARTState *s = opaque;
432 uint32_t c = 0;
433
434 offset >>= 2;
435 if (offset >= CADENCE_UART_R_MAX) {
436 c = 0;
437 } else if (offset == R_TX_RX) {
438 uart_read_rx_fifo(s, &c);
439 } else {
440 c = s->r[offset];
441 }
442
443 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
444 return c;
445 }
446
447 static const MemoryRegionOps uart_ops = {
448 .read = uart_read,
449 .write = uart_write,
450 .endianness = DEVICE_NATIVE_ENDIAN,
451 };
452
453 static void cadence_uart_reset(DeviceState *dev)
454 {
455 CadenceUARTState *s = CADENCE_UART(dev);
456
457 s->r[R_CR] = 0x00000128;
458 s->r[R_IMR] = 0;
459 s->r[R_CISR] = 0;
460 s->r[R_RTRIG] = 0x00000020;
461 s->r[R_BRGR] = 0x0000000F;
462 s->r[R_TTRIG] = 0x00000020;
463
464 uart_rx_reset(s);
465 uart_tx_reset(s);
466
467 uart_update_status(s);
468 }
469
470 static void cadence_uart_realize(DeviceState *dev, Error **errp)
471 {
472 CadenceUARTState *s = CADENCE_UART(dev);
473
474 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
475 fifo_trigger_update, s);
476
477 if (s->chr.chr) {
478 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
479 uart_event, s, NULL);
480 }
481 }
482
483 static void cadence_uart_init(Object *obj)
484 {
485 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
486 CadenceUARTState *s = CADENCE_UART(obj);
487
488 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
489 sysbus_init_mmio(sbd, &s->iomem);
490 sysbus_init_irq(sbd, &s->irq);
491
492 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
493 }
494
495 static int cadence_uart_post_load(void *opaque, int version_id)
496 {
497 CadenceUARTState *s = opaque;
498
499 uart_parameters_setup(s);
500 uart_update_status(s);
501 return 0;
502 }
503
504 static const VMStateDescription vmstate_cadence_uart = {
505 .name = "cadence_uart",
506 .version_id = 2,
507 .minimum_version_id = 2,
508 .post_load = cadence_uart_post_load,
509 .fields = (VMStateField[]) {
510 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
511 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
512 CADENCE_UART_RX_FIFO_SIZE),
513 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
514 CADENCE_UART_TX_FIFO_SIZE),
515 VMSTATE_UINT32(rx_count, CadenceUARTState),
516 VMSTATE_UINT32(tx_count, CadenceUARTState),
517 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
518 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
519 VMSTATE_END_OF_LIST()
520 }
521 };
522
523 static Property cadence_uart_properties[] = {
524 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
525 DEFINE_PROP_END_OF_LIST(),
526 };
527
528 static void cadence_uart_class_init(ObjectClass *klass, void *data)
529 {
530 DeviceClass *dc = DEVICE_CLASS(klass);
531
532 dc->realize = cadence_uart_realize;
533 dc->vmsd = &vmstate_cadence_uart;
534 dc->reset = cadence_uart_reset;
535 dc->props = cadence_uart_properties;
536 }
537
538 static const TypeInfo cadence_uart_info = {
539 .name = TYPE_CADENCE_UART,
540 .parent = TYPE_SYS_BUS_DEVICE,
541 .instance_size = sizeof(CadenceUARTState),
542 .instance_init = cadence_uart_init,
543 .class_init = cadence_uart_class_init,
544 };
545
546 static void cadence_uart_register_types(void)
547 {
548 type_register_static(&cadence_uart_info);
549 }
550
551 type_init(cadence_uart_register_types)