2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/escc.h"
29 #include "sysemu/char.h"
30 #include "ui/console.h"
36 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
37 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
39 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
40 * (Slave I/O), also produced as NCR89C105. See
41 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
44 * mouse and keyboard ports don't implement all functions and they are
45 * only asynchronous. There is no DMA.
47 * Z85C30 is also used on PowerMacs. There are some small differences
48 * between Sparc version (sunzilog) and PowerMac (pmac):
49 * Offset between control and data registers
50 * There is some kind of lockup bug, but we can ignore it
52 * DMA on pmac using DBDMA chip
53 * pmac can do IRDA and faster rates, sunzilog can only do 38400
54 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
59 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
61 * Implemented serial mouse protocol.
63 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
70 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
76 #define SERIO_QUEUE_SIZE 256
79 uint8_t data
[SERIO_QUEUE_SIZE
];
80 int rptr
, wptr
, count
;
83 #define SERIAL_REGS 16
84 typedef struct ChannelState
{
86 uint32_t rxint
, txint
, rxint_under_svc
, txint_under_svc
;
87 struct ChannelState
*otherchn
;
89 uint8_t wregs
[SERIAL_REGS
], rregs
[SERIAL_REGS
];
92 int e0_mode
, led_mode
, caps_lock_mode
, num_lock_mode
;
95 uint32_t vmstate_dummy
;
96 ChnID chn
; // this channel, A (base+4) or B (base+0)
99 QemuInputHandlerState
*hs
;
102 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
104 typedef struct ESCCState
{
105 SysBusDevice parent_obj
;
107 struct ChannelState chn
[2];
114 #define SERIAL_CTRL 0
115 #define SERIAL_DATA 1
118 #define CMD_PTR_MASK 0x07
119 #define CMD_CMD_MASK 0x38
121 #define CMD_CLR_TXINT 0x28
122 #define CMD_CLR_IUS 0x38
124 #define INTR_INTALL 0x01
125 #define INTR_TXINT 0x02
126 #define INTR_RXMODEMSK 0x18
127 #define INTR_RXINT1ST 0x08
128 #define INTR_RXINTALL 0x10
131 #define RXCTRL_RXEN 0x01
133 #define TXCTRL1_PAREN 0x01
134 #define TXCTRL1_PAREV 0x02
135 #define TXCTRL1_1STOP 0x04
136 #define TXCTRL1_1HSTOP 0x08
137 #define TXCTRL1_2STOP 0x0c
138 #define TXCTRL1_STPMSK 0x0c
139 #define TXCTRL1_CLK1X 0x00
140 #define TXCTRL1_CLK16X 0x40
141 #define TXCTRL1_CLK32X 0x80
142 #define TXCTRL1_CLK64X 0xc0
143 #define TXCTRL1_CLKMSK 0xc0
145 #define TXCTRL2_TXEN 0x08
146 #define TXCTRL2_BITMSK 0x60
147 #define TXCTRL2_5BITS 0x00
148 #define TXCTRL2_7BITS 0x20
149 #define TXCTRL2_6BITS 0x40
150 #define TXCTRL2_8BITS 0x60
155 #define MINTR_STATUSHI 0x10
156 #define MINTR_RST_MASK 0xc0
157 #define MINTR_RST_B 0x40
158 #define MINTR_RST_A 0x80
159 #define MINTR_RST_ALL 0xc0
162 #define CLOCK_TRXC 0x08
166 #define MISC2_PLLDIS 0x30
168 #define EXTINT_DCD 0x08
169 #define EXTINT_SYNCINT 0x10
170 #define EXTINT_CTSINT 0x20
171 #define EXTINT_TXUNDRN 0x40
172 #define EXTINT_BRKINT 0x80
175 #define STATUS_RXAV 0x01
176 #define STATUS_ZERO 0x02
177 #define STATUS_TXEMPTY 0x04
178 #define STATUS_DCD 0x08
179 #define STATUS_SYNC 0x10
180 #define STATUS_CTS 0x20
181 #define STATUS_TXUNDRN 0x40
182 #define STATUS_BRK 0x80
184 #define SPEC_ALLSENT 0x01
185 #define SPEC_BITS8 0x06
187 #define IVEC_TXINTB 0x00
188 #define IVEC_LONOINT 0x06
189 #define IVEC_LORXINTA 0x0c
190 #define IVEC_LORXINTB 0x04
191 #define IVEC_LOTXINTA 0x08
192 #define IVEC_HINOINT 0x60
193 #define IVEC_HIRXINTA 0x30
194 #define IVEC_HIRXINTB 0x20
195 #define IVEC_HITXINTA 0x10
197 #define INTR_EXTINTB 0x01
198 #define INTR_TXINTB 0x02
199 #define INTR_RXINTB 0x04
200 #define INTR_EXTINTA 0x08
201 #define INTR_TXINTA 0x10
202 #define INTR_RXINTA 0x20
216 static void handle_kbd_command(ChannelState
*s
, int val
);
217 static int serial_can_receive(void *opaque
);
218 static void serial_receive_byte(ChannelState
*s
, int ch
);
220 static void clear_queue(void *opaque
)
222 ChannelState
*s
= opaque
;
223 SERIOQueue
*q
= &s
->queue
;
224 q
->rptr
= q
->wptr
= q
->count
= 0;
227 static void put_queue(void *opaque
, int b
)
229 ChannelState
*s
= opaque
;
230 SERIOQueue
*q
= &s
->queue
;
232 trace_escc_put_queue(CHN_C(s
), b
);
233 if (q
->count
>= SERIO_QUEUE_SIZE
)
235 q
->data
[q
->wptr
] = b
;
236 if (++q
->wptr
== SERIO_QUEUE_SIZE
)
239 serial_receive_byte(s
, 0);
242 static uint32_t get_queue(void *opaque
)
244 ChannelState
*s
= opaque
;
245 SERIOQueue
*q
= &s
->queue
;
251 val
= q
->data
[q
->rptr
];
252 if (++q
->rptr
== SERIO_QUEUE_SIZE
)
256 trace_escc_get_queue(CHN_C(s
), val
);
258 serial_receive_byte(s
, 0);
262 static int escc_update_irq_chn(ChannelState
*s
)
264 if ((((s
->wregs
[W_INTR
] & INTR_TXINT
) && (s
->txint
== 1)) ||
265 // tx ints enabled, pending
266 ((((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINT1ST
) ||
267 ((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINTALL
)) &&
268 s
->rxint
== 1) || // rx ints enabled, pending
269 ((s
->wregs
[W_EXTINT
] & EXTINT_BRKINT
) &&
270 (s
->rregs
[R_STATUS
] & STATUS_BRK
)))) { // break int e&p
276 static void escc_update_irq(ChannelState
*s
)
280 irq
= escc_update_irq_chn(s
);
281 irq
|= escc_update_irq_chn(s
->otherchn
);
283 trace_escc_update_irq(irq
);
284 qemu_set_irq(s
->irq
, irq
);
287 static void escc_reset_chn(ChannelState
*s
)
292 for (i
= 0; i
< SERIAL_REGS
; i
++) {
296 s
->wregs
[W_TXCTRL1
] = TXCTRL1_1STOP
; // 1X divisor, 1 stop bit, no parity
297 s
->wregs
[W_MINTR
] = MINTR_RST_ALL
;
298 s
->wregs
[W_CLOCK
] = CLOCK_TRXC
; // Synch mode tx clock = TRxC
299 s
->wregs
[W_MISC2
] = MISC2_PLLDIS
; // PLL disabled
300 s
->wregs
[W_EXTINT
] = EXTINT_DCD
| EXTINT_SYNCINT
| EXTINT_CTSINT
|
301 EXTINT_TXUNDRN
| EXTINT_BRKINT
; // Enable most interrupts
303 s
->rregs
[R_STATUS
] = STATUS_TXEMPTY
| STATUS_DCD
| STATUS_SYNC
|
304 STATUS_CTS
| STATUS_TXUNDRN
;
306 s
->rregs
[R_STATUS
] = STATUS_TXEMPTY
| STATUS_TXUNDRN
;
307 s
->rregs
[R_SPEC
] = SPEC_BITS8
| SPEC_ALLSENT
;
310 s
->rxint
= s
->txint
= 0;
311 s
->rxint_under_svc
= s
->txint_under_svc
= 0;
312 s
->e0_mode
= s
->led_mode
= s
->caps_lock_mode
= s
->num_lock_mode
= 0;
316 static void escc_reset(DeviceState
*d
)
318 ESCCState
*s
= ESCC(d
);
320 escc_reset_chn(&s
->chn
[0]);
321 escc_reset_chn(&s
->chn
[1]);
324 static inline void set_rxint(ChannelState
*s
)
327 /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
328 than chn_a rx/tx/special_condition service*/
329 s
->rxint_under_svc
= 1;
330 if (s
->chn
== chn_a
) {
331 s
->rregs
[R_INTR
] |= INTR_RXINTA
;
332 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
333 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HIRXINTA
;
335 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LORXINTA
;
337 s
->otherchn
->rregs
[R_INTR
] |= INTR_RXINTB
;
338 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
339 s
->rregs
[R_IVEC
] = IVEC_HIRXINTB
;
341 s
->rregs
[R_IVEC
] = IVEC_LORXINTB
;
346 static inline void set_txint(ChannelState
*s
)
349 if (!s
->rxint_under_svc
) {
350 s
->txint_under_svc
= 1;
351 if (s
->chn
== chn_a
) {
352 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
353 s
->rregs
[R_INTR
] |= INTR_TXINTA
;
355 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
356 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HITXINTA
;
358 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LOTXINTA
;
360 s
->rregs
[R_IVEC
] = IVEC_TXINTB
;
361 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
362 s
->otherchn
->rregs
[R_INTR
] |= INTR_TXINTB
;
369 static inline void clr_rxint(ChannelState
*s
)
372 s
->rxint_under_svc
= 0;
373 if (s
->chn
== chn_a
) {
374 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
375 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
377 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
378 s
->rregs
[R_INTR
] &= ~INTR_RXINTA
;
380 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
381 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
383 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
384 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_RXINTB
;
391 static inline void clr_txint(ChannelState
*s
)
394 s
->txint_under_svc
= 0;
395 if (s
->chn
== chn_a
) {
396 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
397 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
399 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
400 s
->rregs
[R_INTR
] &= ~INTR_TXINTA
;
402 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
403 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
404 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
406 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
407 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
414 static void escc_update_parameters(ChannelState
*s
)
416 int speed
, parity
, data_bits
, stop_bits
;
417 QEMUSerialSetParams ssp
;
419 if (!s
->chr
|| s
->type
!= ser
)
422 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREN
) {
423 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREV
)
430 if ((s
->wregs
[W_TXCTRL1
] & TXCTRL1_STPMSK
) == TXCTRL1_2STOP
)
434 switch (s
->wregs
[W_TXCTRL2
] & TXCTRL2_BITMSK
) {
449 speed
= s
->clock
/ ((s
->wregs
[W_BRGLO
] | (s
->wregs
[W_BRGHI
] << 8)) + 2);
450 switch (s
->wregs
[W_TXCTRL1
] & TXCTRL1_CLKMSK
) {
466 ssp
.data_bits
= data_bits
;
467 ssp
.stop_bits
= stop_bits
;
468 trace_escc_update_parameters(CHN_C(s
), speed
, parity
, data_bits
, stop_bits
);
469 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
472 static void escc_mem_write(void *opaque
, hwaddr addr
,
473 uint64_t val
, unsigned size
)
475 ESCCState
*serial
= opaque
;
481 saddr
= (addr
>> serial
->it_shift
) & 1;
482 channel
= (addr
>> (serial
->it_shift
+ 1)) & 1;
483 s
= &serial
->chn
[channel
];
486 trace_escc_mem_writeb_ctrl(CHN_C(s
), s
->reg
, val
& 0xff);
490 newreg
= val
& CMD_PTR_MASK
;
500 if (s
->rxint_under_svc
) {
501 s
->rxint_under_svc
= 0;
505 } else if (s
->txint_under_svc
) {
506 s
->txint_under_svc
= 0;
514 case W_INTR
... W_RXCTRL
:
515 case W_SYNC1
... W_TXBUF
:
516 case W_MISC1
... W_CLOCK
:
517 case W_MISC2
... W_EXTINT
:
518 s
->wregs
[s
->reg
] = val
;
522 s
->wregs
[s
->reg
] = val
;
523 escc_update_parameters(s
);
527 s
->wregs
[s
->reg
] = val
;
528 s
->rregs
[s
->reg
] = val
;
529 escc_update_parameters(s
);
532 switch (val
& MINTR_RST_MASK
) {
537 escc_reset_chn(&serial
->chn
[0]);
540 escc_reset_chn(&serial
->chn
[1]);
543 escc_reset(DEVICE(serial
));
556 trace_escc_mem_writeb_data(CHN_C(s
), val
);
558 if (s
->wregs
[W_TXCTRL2
] & TXCTRL2_TXEN
) { // tx enabled
560 qemu_chr_fe_write(s
->chr
, &s
->tx
, 1);
561 else if (s
->type
== kbd
&& !s
->disabled
) {
562 handle_kbd_command(s
, val
);
565 s
->rregs
[R_STATUS
] |= STATUS_TXEMPTY
; // Tx buffer empty
566 s
->rregs
[R_SPEC
] |= SPEC_ALLSENT
; // All sent
574 static uint64_t escc_mem_read(void *opaque
, hwaddr addr
,
577 ESCCState
*serial
= opaque
;
583 saddr
= (addr
>> serial
->it_shift
) & 1;
584 channel
= (addr
>> (serial
->it_shift
+ 1)) & 1;
585 s
= &serial
->chn
[channel
];
588 trace_escc_mem_readb_ctrl(CHN_C(s
), s
->reg
, s
->rregs
[s
->reg
]);
589 ret
= s
->rregs
[s
->reg
];
593 s
->rregs
[R_STATUS
] &= ~STATUS_RXAV
;
595 if (s
->type
== kbd
|| s
->type
== mouse
)
599 trace_escc_mem_readb_data(CHN_C(s
), ret
);
601 qemu_chr_accept_input(s
->chr
);
609 static const MemoryRegionOps escc_mem_ops
= {
610 .read
= escc_mem_read
,
611 .write
= escc_mem_write
,
612 .endianness
= DEVICE_NATIVE_ENDIAN
,
614 .min_access_size
= 1,
615 .max_access_size
= 1,
619 static int serial_can_receive(void *opaque
)
621 ChannelState
*s
= opaque
;
624 if (((s
->wregs
[W_RXCTRL
] & RXCTRL_RXEN
) == 0) // Rx not enabled
625 || ((s
->rregs
[R_STATUS
] & STATUS_RXAV
) == STATUS_RXAV
))
626 // char already available
633 static void serial_receive_byte(ChannelState
*s
, int ch
)
635 trace_escc_serial_receive_byte(CHN_C(s
), ch
);
636 s
->rregs
[R_STATUS
] |= STATUS_RXAV
;
641 static void serial_receive_break(ChannelState
*s
)
643 s
->rregs
[R_STATUS
] |= STATUS_BRK
;
647 static void serial_receive1(void *opaque
, const uint8_t *buf
, int size
)
649 ChannelState
*s
= opaque
;
650 serial_receive_byte(s
, buf
[0]);
653 static void serial_event(void *opaque
, int event
)
655 ChannelState
*s
= opaque
;
656 if (event
== CHR_EVENT_BREAK
)
657 serial_receive_break(s
);
660 static const VMStateDescription vmstate_escc_chn
= {
663 .minimum_version_id
= 1,
664 .fields
= (VMStateField
[]) {
665 VMSTATE_UINT32(vmstate_dummy
, ChannelState
),
666 VMSTATE_UINT32(reg
, ChannelState
),
667 VMSTATE_UINT32(rxint
, ChannelState
),
668 VMSTATE_UINT32(txint
, ChannelState
),
669 VMSTATE_UINT32(rxint_under_svc
, ChannelState
),
670 VMSTATE_UINT32(txint_under_svc
, ChannelState
),
671 VMSTATE_UINT8(rx
, ChannelState
),
672 VMSTATE_UINT8(tx
, ChannelState
),
673 VMSTATE_BUFFER(wregs
, ChannelState
),
674 VMSTATE_BUFFER(rregs
, ChannelState
),
675 VMSTATE_END_OF_LIST()
679 static const VMStateDescription vmstate_escc
= {
682 .minimum_version_id
= 1,
683 .fields
= (VMStateField
[]) {
684 VMSTATE_STRUCT_ARRAY(chn
, ESCCState
, 2, 2, vmstate_escc_chn
,
686 VMSTATE_END_OF_LIST()
690 MemoryRegion
*escc_init(hwaddr base
, qemu_irq irqA
, qemu_irq irqB
,
691 CharDriverState
*chrA
, CharDriverState
*chrB
,
692 int clock
, int it_shift
)
698 dev
= qdev_create(NULL
, TYPE_ESCC
);
699 qdev_prop_set_uint32(dev
, "disabled", 0);
700 qdev_prop_set_uint32(dev
, "frequency", clock
);
701 qdev_prop_set_uint32(dev
, "it_shift", it_shift
);
702 qdev_prop_set_chr(dev
, "chrB", chrB
);
703 qdev_prop_set_chr(dev
, "chrA", chrA
);
704 qdev_prop_set_uint32(dev
, "chnBtype", ser
);
705 qdev_prop_set_uint32(dev
, "chnAtype", ser
);
706 qdev_init_nofail(dev
);
707 s
= SYS_BUS_DEVICE(dev
);
708 sysbus_connect_irq(s
, 0, irqB
);
709 sysbus_connect_irq(s
, 1, irqA
);
711 sysbus_mmio_map(s
, 0, base
);
718 static const uint8_t qcode_to_keycode
[Q_KEY_CODE__MAX
] = {
719 [Q_KEY_CODE_SHIFT
] = 99,
720 [Q_KEY_CODE_SHIFT_R
] = 110,
721 [Q_KEY_CODE_ALT
] = 19,
722 [Q_KEY_CODE_ALT_R
] = 13,
723 [Q_KEY_CODE_ALTGR
] = 13,
724 [Q_KEY_CODE_CTRL
] = 76,
725 [Q_KEY_CODE_CTRL_R
] = 76,
726 [Q_KEY_CODE_ESC
] = 29,
737 [Q_KEY_CODE_MINUS
] = 40,
738 [Q_KEY_CODE_EQUAL
] = 41,
739 [Q_KEY_CODE_BACKSPACE
] = 43,
740 [Q_KEY_CODE_TAB
] = 53,
751 [Q_KEY_CODE_BRACKET_LEFT
] = 64,
752 [Q_KEY_CODE_BRACKET_RIGHT
] = 65,
753 [Q_KEY_CODE_RET
] = 89,
763 [Q_KEY_CODE_SEMICOLON
] = 86,
764 [Q_KEY_CODE_APOSTROPHE
] = 87,
765 [Q_KEY_CODE_GRAVE_ACCENT
] = 42,
766 [Q_KEY_CODE_BACKSLASH
] = 88,
767 [Q_KEY_CODE_Z
] = 100,
768 [Q_KEY_CODE_X
] = 101,
769 [Q_KEY_CODE_C
] = 102,
770 [Q_KEY_CODE_V
] = 103,
771 [Q_KEY_CODE_B
] = 104,
772 [Q_KEY_CODE_N
] = 105,
773 [Q_KEY_CODE_M
] = 106,
774 [Q_KEY_CODE_COMMA
] = 107,
775 [Q_KEY_CODE_DOT
] = 108,
776 [Q_KEY_CODE_SLASH
] = 109,
777 [Q_KEY_CODE_ASTERISK
] = 47,
778 [Q_KEY_CODE_SPC
] = 121,
779 [Q_KEY_CODE_CAPS_LOCK
] = 119,
783 [Q_KEY_CODE_F4
] = 10,
784 [Q_KEY_CODE_F5
] = 12,
785 [Q_KEY_CODE_F6
] = 14,
786 [Q_KEY_CODE_F7
] = 16,
787 [Q_KEY_CODE_F8
] = 17,
788 [Q_KEY_CODE_F9
] = 18,
789 [Q_KEY_CODE_F10
] = 7,
790 [Q_KEY_CODE_NUM_LOCK
] = 98,
791 [Q_KEY_CODE_SCROLL_LOCK
] = 23,
792 [Q_KEY_CODE_KP_DIVIDE
] = 46,
793 [Q_KEY_CODE_KP_MULTIPLY
] = 47,
794 [Q_KEY_CODE_KP_SUBTRACT
] = 71,
795 [Q_KEY_CODE_KP_ADD
] = 125,
796 [Q_KEY_CODE_KP_ENTER
] = 90,
797 [Q_KEY_CODE_KP_DECIMAL
] = 50,
798 [Q_KEY_CODE_KP_0
] = 94,
799 [Q_KEY_CODE_KP_1
] = 112,
800 [Q_KEY_CODE_KP_2
] = 113,
801 [Q_KEY_CODE_KP_3
] = 114,
802 [Q_KEY_CODE_KP_4
] = 91,
803 [Q_KEY_CODE_KP_5
] = 92,
804 [Q_KEY_CODE_KP_6
] = 93,
805 [Q_KEY_CODE_KP_7
] = 68,
806 [Q_KEY_CODE_KP_8
] = 69,
807 [Q_KEY_CODE_KP_9
] = 70,
808 [Q_KEY_CODE_LESS
] = 124,
809 [Q_KEY_CODE_F11
] = 9,
810 [Q_KEY_CODE_F12
] = 11,
811 [Q_KEY_CODE_HOME
] = 52,
812 [Q_KEY_CODE_PGUP
] = 96,
813 [Q_KEY_CODE_PGDN
] = 123,
814 [Q_KEY_CODE_END
] = 74,
815 [Q_KEY_CODE_LEFT
] = 24,
816 [Q_KEY_CODE_UP
] = 20,
817 [Q_KEY_CODE_DOWN
] = 27,
818 [Q_KEY_CODE_RIGHT
] = 28,
819 [Q_KEY_CODE_INSERT
] = 44,
820 [Q_KEY_CODE_DELETE
] = 66,
821 [Q_KEY_CODE_STOP
] = 1,
822 [Q_KEY_CODE_AGAIN
] = 3,
823 [Q_KEY_CODE_PROPS
] = 25,
824 [Q_KEY_CODE_UNDO
] = 26,
825 [Q_KEY_CODE_FRONT
] = 49,
826 [Q_KEY_CODE_COPY
] = 51,
827 [Q_KEY_CODE_OPEN
] = 72,
828 [Q_KEY_CODE_PASTE
] = 73,
829 [Q_KEY_CODE_FIND
] = 95,
830 [Q_KEY_CODE_CUT
] = 97,
831 [Q_KEY_CODE_LF
] = 111,
832 [Q_KEY_CODE_HELP
] = 118,
833 [Q_KEY_CODE_META_L
] = 120,
834 [Q_KEY_CODE_META_R
] = 122,
835 [Q_KEY_CODE_COMPOSE
] = 67,
836 [Q_KEY_CODE_PRINT
] = 22,
837 [Q_KEY_CODE_SYSRQ
] = 21,
840 static void sunkbd_handle_event(DeviceState
*dev
, QemuConsole
*src
,
843 ChannelState
*s
= (ChannelState
*)dev
;
847 assert(evt
->type
== INPUT_EVENT_KIND_KEY
);
848 key
= evt
->u
.key
.data
;
849 qcode
= qemu_input_key_value_to_qcode(key
->key
);
850 trace_escc_sunkbd_event_in(qcode
, QKeyCode_lookup
[qcode
],
853 if (qcode
== Q_KEY_CODE_CAPS_LOCK
) {
855 s
->caps_lock_mode
^= 1;
856 if (s
->caps_lock_mode
== 2) {
857 return; /* Drop second press */
860 s
->caps_lock_mode
^= 2;
861 if (s
->caps_lock_mode
== 3) {
862 return; /* Drop first release */
867 if (qcode
== Q_KEY_CODE_NUM_LOCK
) {
869 s
->num_lock_mode
^= 1;
870 if (s
->num_lock_mode
== 2) {
871 return; /* Drop second press */
874 s
->num_lock_mode
^= 2;
875 if (s
->num_lock_mode
== 3) {
876 return; /* Drop first release */
881 keycode
= qcode_to_keycode
[qcode
];
885 trace_escc_sunkbd_event_out(keycode
);
886 put_queue(s
, keycode
);
889 static QemuInputHandler sunkbd_handler
= {
890 .name
= "sun keyboard",
891 .mask
= INPUT_EVENT_MASK_KEY
,
892 .event
= sunkbd_handle_event
,
895 static void handle_kbd_command(ChannelState
*s
, int val
)
897 trace_escc_kbd_command(val
);
898 if (s
->led_mode
) { // Ignore led byte
903 case 1: // Reset, return type code
906 put_queue(s
, 4); // Type 4
909 case 0xe: // Set leds
912 case 7: // Query layout
916 put_queue(s
, 0x21); /* en-us layout */
923 static void sunmouse_event(void *opaque
,
924 int dx
, int dy
, int dz
, int buttons_state
)
926 ChannelState
*s
= opaque
;
929 trace_escc_sunmouse_event(dx
, dy
, buttons_state
);
930 ch
= 0x80 | 0x7; /* protocol start byte, no buttons pressed */
932 if (buttons_state
& MOUSE_EVENT_LBUTTON
)
934 if (buttons_state
& MOUSE_EVENT_MBUTTON
)
936 if (buttons_state
& MOUSE_EVENT_RBUTTON
)
948 put_queue(s
, ch
& 0xff);
957 put_queue(s
, ch
& 0xff);
959 // MSC protocol specify two extra motion bytes
965 void slavio_serial_ms_kbd_init(hwaddr base
, qemu_irq irq
,
966 int disabled
, int clock
, int it_shift
)
971 dev
= qdev_create(NULL
, TYPE_ESCC
);
972 qdev_prop_set_uint32(dev
, "disabled", disabled
);
973 qdev_prop_set_uint32(dev
, "frequency", clock
);
974 qdev_prop_set_uint32(dev
, "it_shift", it_shift
);
975 qdev_prop_set_chr(dev
, "chrB", NULL
);
976 qdev_prop_set_chr(dev
, "chrA", NULL
);
977 qdev_prop_set_uint32(dev
, "chnBtype", mouse
);
978 qdev_prop_set_uint32(dev
, "chnAtype", kbd
);
979 qdev_init_nofail(dev
);
980 s
= SYS_BUS_DEVICE(dev
);
981 sysbus_connect_irq(s
, 0, irq
);
982 sysbus_connect_irq(s
, 1, irq
);
983 sysbus_mmio_map(s
, 0, base
);
986 static int escc_init1(SysBusDevice
*dev
)
988 ESCCState
*s
= ESCC(dev
);
991 s
->chn
[0].disabled
= s
->disabled
;
992 s
->chn
[1].disabled
= s
->disabled
;
993 for (i
= 0; i
< 2; i
++) {
994 sysbus_init_irq(dev
, &s
->chn
[i
].irq
);
995 s
->chn
[i
].chn
= 1 - i
;
996 s
->chn
[i
].clock
= s
->frequency
/ 2;
998 qemu_chr_add_handlers(s
->chn
[i
].chr
, serial_can_receive
,
999 serial_receive1
, serial_event
, &s
->chn
[i
]);
1002 s
->chn
[0].otherchn
= &s
->chn
[1];
1003 s
->chn
[1].otherchn
= &s
->chn
[0];
1005 memory_region_init_io(&s
->mmio
, OBJECT(s
), &escc_mem_ops
, s
, "escc",
1006 ESCC_SIZE
<< s
->it_shift
);
1007 sysbus_init_mmio(dev
, &s
->mmio
);
1009 if (s
->chn
[0].type
== mouse
) {
1010 qemu_add_mouse_event_handler(sunmouse_event
, &s
->chn
[0], 0,
1013 if (s
->chn
[1].type
== kbd
) {
1014 s
->chn
[1].hs
= qemu_input_handler_register((DeviceState
*)(&s
->chn
[1]),
1021 static Property escc_properties
[] = {
1022 DEFINE_PROP_UINT32("frequency", ESCCState
, frequency
, 0),
1023 DEFINE_PROP_UINT32("it_shift", ESCCState
, it_shift
, 0),
1024 DEFINE_PROP_UINT32("disabled", ESCCState
, disabled
, 0),
1025 DEFINE_PROP_UINT32("chnBtype", ESCCState
, chn
[0].type
, 0),
1026 DEFINE_PROP_UINT32("chnAtype", ESCCState
, chn
[1].type
, 0),
1027 DEFINE_PROP_CHR("chrB", ESCCState
, chn
[0].chr
),
1028 DEFINE_PROP_CHR("chrA", ESCCState
, chn
[1].chr
),
1029 DEFINE_PROP_END_OF_LIST(),
1032 static void escc_class_init(ObjectClass
*klass
, void *data
)
1034 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1035 SysBusDeviceClass
*k
= SYS_BUS_DEVICE_CLASS(klass
);
1037 k
->init
= escc_init1
;
1038 dc
->reset
= escc_reset
;
1039 dc
->vmsd
= &vmstate_escc
;
1040 dc
->props
= escc_properties
;
1041 set_bit(DEVICE_CATEGORY_INPUT
, dc
->categories
);
1044 static const TypeInfo escc_info
= {
1046 .parent
= TYPE_SYS_BUS_DEVICE
,
1047 .instance_size
= sizeof(ESCCState
),
1048 .class_init
= escc_class_init
,
1051 static void escc_register_types(void)
1053 type_register_static(&escc_info
);
1056 type_init(escc_register_types
)