]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/ipoctal232.c
Merge remote-tracking branch 'remotes/bonzini/scsi-next' into staging
[mirror_qemu.git] / hw / char / ipoctal232.c
1 /*
2 * QEMU GE IP-Octal 232 IndustryPack emulation
3 *
4 * Copyright (C) 2012 Igalia, S.L.
5 * Author: Alberto Garcia <agarcia@igalia.com>
6 *
7 * This code is licensed under the GNU GPL v2 or (at your option) any
8 * later version.
9 */
10
11 #include "hw/ipack/ipack.h"
12 #include "qemu/bitops.h"
13 #include "sysemu/char.h"
14
15 /* #define DEBUG_IPOCTAL */
16
17 #ifdef DEBUG_IPOCTAL
18 #define DPRINTF2(fmt, ...) \
19 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
20 #else
21 #define DPRINTF2(fmt, ...) do { } while (0)
22 #endif
23
24 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__)
25
26 #define RX_FIFO_SIZE 3
27
28 /* The IP-Octal has 8 channels (a-h)
29 divided into 4 blocks (A-D) */
30 #define N_CHANNELS 8
31 #define N_BLOCKS 4
32
33 #define REG_MRa 0x01
34 #define REG_MRb 0x11
35 #define REG_SRa 0x03
36 #define REG_SRb 0x13
37 #define REG_CSRa 0x03
38 #define REG_CSRb 0x13
39 #define REG_CRa 0x05
40 #define REG_CRb 0x15
41 #define REG_RHRa 0x07
42 #define REG_RHRb 0x17
43 #define REG_THRa 0x07
44 #define REG_THRb 0x17
45 #define REG_ACR 0x09
46 #define REG_ISR 0x0B
47 #define REG_IMR 0x0B
48 #define REG_OPCR 0x1B
49
50 #define CR_ENABLE_RX BIT(0)
51 #define CR_DISABLE_RX BIT(1)
52 #define CR_ENABLE_TX BIT(2)
53 #define CR_DISABLE_TX BIT(3)
54 #define CR_CMD(cr) ((cr) >> 4)
55 #define CR_NO_OP 0
56 #define CR_RESET_MR 1
57 #define CR_RESET_RX 2
58 #define CR_RESET_TX 3
59 #define CR_RESET_ERR 4
60 #define CR_RESET_BRKINT 5
61 #define CR_START_BRK 6
62 #define CR_STOP_BRK 7
63 #define CR_ASSERT_RTSN 8
64 #define CR_NEGATE_RTSN 9
65 #define CR_TIMEOUT_ON 10
66 #define CR_TIMEOUT_OFF 12
67
68 #define SR_RXRDY BIT(0)
69 #define SR_FFULL BIT(1)
70 #define SR_TXRDY BIT(2)
71 #define SR_TXEMT BIT(3)
72 #define SR_OVERRUN BIT(4)
73 #define SR_PARITY BIT(5)
74 #define SR_FRAMING BIT(6)
75 #define SR_BREAK BIT(7)
76
77 #define ISR_TXRDYA BIT(0)
78 #define ISR_RXRDYA BIT(1)
79 #define ISR_BREAKA BIT(2)
80 #define ISR_CNTRDY BIT(3)
81 #define ISR_TXRDYB BIT(4)
82 #define ISR_RXRDYB BIT(5)
83 #define ISR_BREAKB BIT(6)
84 #define ISR_MPICHG BIT(7)
85 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0))
86 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1))
87 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2))
88
89 typedef struct IPOctalState IPOctalState;
90 typedef struct SCC2698Channel SCC2698Channel;
91 typedef struct SCC2698Block SCC2698Block;
92
93 struct SCC2698Channel {
94 IPOctalState *ipoctal;
95 CharDriverState *dev;
96 bool rx_enabled;
97 uint8_t mr[2];
98 uint8_t mr_idx;
99 uint8_t sr;
100 uint8_t rhr[RX_FIFO_SIZE];
101 uint8_t rhr_idx;
102 uint8_t rx_pending;
103 };
104
105 struct SCC2698Block {
106 uint8_t imr;
107 uint8_t isr;
108 };
109
110 struct IPOctalState {
111 IPackDevice parent_obj;
112
113 SCC2698Channel ch[N_CHANNELS];
114 SCC2698Block blk[N_BLOCKS];
115 uint8_t irq_vector;
116 };
117
118 #define TYPE_IPOCTAL "ipoctal232"
119
120 #define IPOCTAL(obj) \
121 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL)
122
123 static const VMStateDescription vmstate_scc2698_channel = {
124 .name = "scc2698_channel",
125 .version_id = 1,
126 .minimum_version_id = 1,
127 .fields = (VMStateField[]) {
128 VMSTATE_BOOL(rx_enabled, SCC2698Channel),
129 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2),
130 VMSTATE_UINT8(mr_idx, SCC2698Channel),
131 VMSTATE_UINT8(sr, SCC2698Channel),
132 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE),
133 VMSTATE_UINT8(rhr_idx, SCC2698Channel),
134 VMSTATE_UINT8(rx_pending, SCC2698Channel),
135 VMSTATE_END_OF_LIST()
136 }
137 };
138
139 static const VMStateDescription vmstate_scc2698_block = {
140 .name = "scc2698_block",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .fields = (VMStateField[]) {
144 VMSTATE_UINT8(imr, SCC2698Block),
145 VMSTATE_UINT8(isr, SCC2698Block),
146 VMSTATE_END_OF_LIST()
147 }
148 };
149
150 static const VMStateDescription vmstate_ipoctal = {
151 .name = "ipoctal232",
152 .version_id = 1,
153 .minimum_version_id = 1,
154 .fields = (VMStateField[]) {
155 VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState),
156 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1,
157 vmstate_scc2698_channel, SCC2698Channel),
158 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1,
159 vmstate_scc2698_block, SCC2698Block),
160 VMSTATE_UINT8(irq_vector, IPOctalState),
161 VMSTATE_END_OF_LIST()
162 }
163 };
164
165 /* data[10] is 0x0C, not 0x0B as the doc says */
166 static const uint8_t id_prom_data[] = {
167 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22,
168 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC
169 };
170
171 static void update_irq(IPOctalState *dev, unsigned block)
172 {
173 IPackDevice *idev = IPACK_DEVICE(dev);
174 /* Blocks A and B interrupt on INT0#, C and D on INT1#.
175 Thus, to get the status we have to check two blocks. */
176 SCC2698Block *blk0 = &dev->blk[block];
177 SCC2698Block *blk1 = &dev->blk[block^1];
178 unsigned intno = block / 2;
179
180 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) {
181 qemu_irq_raise(idev->irq[intno]);
182 } else {
183 qemu_irq_lower(idev->irq[intno]);
184 }
185 }
186
187 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val)
188 {
189 SCC2698Channel *ch = &dev->ch[channel];
190 SCC2698Block *blk = &dev->blk[channel / 2];
191
192 DPRINTF("Write CR%c %u: ", channel + 'a', val);
193
194 /* The lower 4 bits are used to enable and disable Tx and Rx */
195 if (val & CR_ENABLE_RX) {
196 DPRINTF2("Rx on, ");
197 ch->rx_enabled = true;
198 }
199 if (val & CR_DISABLE_RX) {
200 DPRINTF2("Rx off, ");
201 ch->rx_enabled = false;
202 }
203 if (val & CR_ENABLE_TX) {
204 DPRINTF2("Tx on, ");
205 ch->sr |= SR_TXRDY | SR_TXEMT;
206 blk->isr |= ISR_TXRDY(channel);
207 }
208 if (val & CR_DISABLE_TX) {
209 DPRINTF2("Tx off, ");
210 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
211 blk->isr &= ~ISR_TXRDY(channel);
212 }
213
214 DPRINTF2("cmd: ");
215
216 /* The rest of the bits implement different commands */
217 switch (CR_CMD(val)) {
218 case CR_NO_OP:
219 DPRINTF2("none");
220 break;
221 case CR_RESET_MR:
222 DPRINTF2("reset MR");
223 ch->mr_idx = 0;
224 break;
225 case CR_RESET_RX:
226 DPRINTF2("reset Rx");
227 ch->rx_enabled = false;
228 ch->rx_pending = 0;
229 ch->sr &= ~SR_RXRDY;
230 blk->isr &= ~ISR_RXRDY(channel);
231 break;
232 case CR_RESET_TX:
233 DPRINTF2("reset Tx");
234 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
235 blk->isr &= ~ISR_TXRDY(channel);
236 break;
237 case CR_RESET_ERR:
238 DPRINTF2("reset err");
239 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK);
240 break;
241 case CR_RESET_BRKINT:
242 DPRINTF2("reset brk ch int");
243 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB);
244 break;
245 default:
246 DPRINTF2("unsupported 0x%x", CR_CMD(val));
247 }
248
249 DPRINTF2("\n");
250 }
251
252 static uint16_t io_read(IPackDevice *ip, uint8_t addr)
253 {
254 IPOctalState *dev = IPOCTAL(ip);
255 uint16_t ret = 0;
256 /* addr[7:6]: block (A-D)
257 addr[7:5]: channel (a-h)
258 addr[5:0]: register */
259 unsigned block = addr >> 5;
260 unsigned channel = addr >> 4;
261 /* Big endian, accessed using 8-bit bytes at odd locations */
262 unsigned offset = (addr & 0x1F) ^ 1;
263 SCC2698Channel *ch = &dev->ch[channel];
264 SCC2698Block *blk = &dev->blk[block];
265 uint8_t old_isr = blk->isr;
266
267 switch (offset) {
268
269 case REG_MRa:
270 case REG_MRb:
271 ret = ch->mr[ch->mr_idx];
272 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret);
273 ch->mr_idx = 1;
274 break;
275
276 case REG_SRa:
277 case REG_SRb:
278 ret = ch->sr;
279 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret);
280 break;
281
282 case REG_RHRa:
283 case REG_RHRb:
284 ret = ch->rhr[ch->rhr_idx];
285 if (ch->rx_pending > 0) {
286 ch->rx_pending--;
287 if (ch->rx_pending == 0) {
288 ch->sr &= ~SR_RXRDY;
289 blk->isr &= ~ISR_RXRDY(channel);
290 if (ch->dev) {
291 qemu_chr_accept_input(ch->dev);
292 }
293 } else {
294 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE;
295 }
296 if (ch->sr & SR_BREAK) {
297 ch->sr &= ~SR_BREAK;
298 blk->isr |= ISR_BREAK(channel);
299 }
300 }
301 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret);
302 break;
303
304 case REG_ISR:
305 ret = blk->isr;
306 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret);
307 break;
308
309 default:
310 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset);
311 }
312
313 if (old_isr != blk->isr) {
314 update_irq(dev, block);
315 }
316
317 return ret;
318 }
319
320 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val)
321 {
322 IPOctalState *dev = IPOCTAL(ip);
323 unsigned reg = val & 0xFF;
324 /* addr[7:6]: block (A-D)
325 addr[7:5]: channel (a-h)
326 addr[5:0]: register */
327 unsigned block = addr >> 5;
328 unsigned channel = addr >> 4;
329 /* Big endian, accessed using 8-bit bytes at odd locations */
330 unsigned offset = (addr & 0x1F) ^ 1;
331 SCC2698Channel *ch = &dev->ch[channel];
332 SCC2698Block *blk = &dev->blk[block];
333 uint8_t old_isr = blk->isr;
334 uint8_t old_imr = blk->imr;
335
336 switch (offset) {
337
338 case REG_MRa:
339 case REG_MRb:
340 ch->mr[ch->mr_idx] = reg;
341 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg);
342 ch->mr_idx = 1;
343 break;
344
345 /* Not implemented */
346 case REG_CSRa:
347 case REG_CSRb:
348 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg);
349 break;
350
351 case REG_CRa:
352 case REG_CRb:
353 write_cr(dev, channel, reg);
354 break;
355
356 case REG_THRa:
357 case REG_THRb:
358 if (ch->sr & SR_TXRDY) {
359 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg);
360 if (ch->dev) {
361 uint8_t thr = reg;
362 qemu_chr_fe_write(ch->dev, &thr, 1);
363 }
364 } else {
365 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg);
366 }
367 break;
368
369 /* Not implemented */
370 case REG_ACR:
371 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val);
372 break;
373
374 case REG_IMR:
375 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val);
376 blk->imr = reg;
377 break;
378
379 /* Not implemented */
380 case REG_OPCR:
381 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val);
382 break;
383
384 default:
385 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val);
386 }
387
388 if (old_isr != blk->isr || old_imr != blk->imr) {
389 update_irq(dev, block);
390 }
391 }
392
393 static uint16_t id_read(IPackDevice *ip, uint8_t addr)
394 {
395 uint16_t ret = 0;
396 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */
397
398 if (pos < ARRAY_SIZE(id_prom_data)) {
399 ret = id_prom_data[pos];
400 } else {
401 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr);
402 }
403
404 return ret;
405 }
406
407 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val)
408 {
409 IPOctalState *dev = IPOCTAL(ip);
410 if (addr == 1) {
411 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
412 dev->irq_vector = val; /* Undocumented, but the hw works like that */
413 } else {
414 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
415 }
416 }
417
418 static uint16_t int_read(IPackDevice *ip, uint8_t addr)
419 {
420 IPOctalState *dev = IPOCTAL(ip);
421 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */
422 if (addr != 0 && addr != 2) {
423 DPRINTF("Attempt to read from 0x%x\n", addr);
424 return 0;
425 } else {
426 /* Update interrupts if necessary */
427 update_irq(dev, addr);
428 return dev->irq_vector;
429 }
430 }
431
432 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val)
433 {
434 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
435 }
436
437 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr)
438 {
439 DPRINTF("Attempt to read from 0x%x\n", addr);
440 return 0;
441 }
442
443 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val)
444 {
445 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
446 }
447
448 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr)
449 {
450 DPRINTF("Attempt to read from 0x%x\n", addr);
451 return 0;
452 }
453
454 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val)
455 {
456 IPOctalState *dev = IPOCTAL(ip);
457 if (addr == 1) {
458 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
459 dev->irq_vector = val;
460 } else {
461 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
462 }
463 }
464
465 static int hostdev_can_receive(void *opaque)
466 {
467 SCC2698Channel *ch = opaque;
468 int available_bytes = RX_FIFO_SIZE - ch->rx_pending;
469 return ch->rx_enabled ? available_bytes : 0;
470 }
471
472 static void hostdev_receive(void *opaque, const uint8_t *buf, int size)
473 {
474 SCC2698Channel *ch = opaque;
475 IPOctalState *dev = ch->ipoctal;
476 unsigned pos = ch->rhr_idx + ch->rx_pending;
477 int i;
478
479 assert(size + ch->rx_pending <= RX_FIFO_SIZE);
480
481 /* Copy data to the RxFIFO */
482 for (i = 0; i < size; i++) {
483 pos %= RX_FIFO_SIZE;
484 ch->rhr[pos++] = buf[i];
485 }
486
487 ch->rx_pending += size;
488
489 /* If the RxFIFO was empty raise an interrupt */
490 if (!(ch->sr & SR_RXRDY)) {
491 unsigned block, channel = 0;
492 /* Find channel number to update the ISR register */
493 while (&dev->ch[channel] != ch) {
494 channel++;
495 }
496 block = channel / 2;
497 dev->blk[block].isr |= ISR_RXRDY(channel);
498 ch->sr |= SR_RXRDY;
499 update_irq(dev, block);
500 }
501 }
502
503 static void hostdev_event(void *opaque, int event)
504 {
505 SCC2698Channel *ch = opaque;
506 switch (event) {
507 case CHR_EVENT_OPENED:
508 DPRINTF("Device %s opened\n", ch->dev->label);
509 break;
510 case CHR_EVENT_BREAK: {
511 uint8_t zero = 0;
512 DPRINTF("Device %s received break\n", ch->dev->label);
513
514 if (!(ch->sr & SR_BREAK)) {
515 IPOctalState *dev = ch->ipoctal;
516 unsigned block, channel = 0;
517
518 while (&dev->ch[channel] != ch) {
519 channel++;
520 }
521 block = channel / 2;
522
523 ch->sr |= SR_BREAK;
524 dev->blk[block].isr |= ISR_BREAK(channel);
525 }
526
527 /* Put a zero character in the buffer */
528 hostdev_receive(ch, &zero, 1);
529 }
530 break;
531 default:
532 DPRINTF("Device %s received event %d\n", ch->dev->label, event);
533 }
534 }
535
536 static void ipoctal_realize(DeviceState *dev, Error **errp)
537 {
538 IPOctalState *s = IPOCTAL(dev);
539 unsigned i;
540
541 for (i = 0; i < N_CHANNELS; i++) {
542 SCC2698Channel *ch = &s->ch[i];
543 ch->ipoctal = s;
544
545 /* Redirect IP-Octal channels to host character devices */
546 if (ch->dev) {
547 qemu_chr_add_handlers(ch->dev, hostdev_can_receive,
548 hostdev_receive, hostdev_event, ch);
549 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label);
550 } else {
551 DPRINTF("Could not redirect channel %u, no chardev set\n", i);
552 }
553 }
554 }
555
556 static Property ipoctal_properties[] = {
557 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev),
558 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev),
559 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev),
560 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev),
561 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev),
562 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev),
563 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev),
564 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev),
565 DEFINE_PROP_END_OF_LIST(),
566 };
567
568 static void ipoctal_class_init(ObjectClass *klass, void *data)
569 {
570 DeviceClass *dc = DEVICE_CLASS(klass);
571 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass);
572
573 ic->realize = ipoctal_realize;
574 ic->io_read = io_read;
575 ic->io_write = io_write;
576 ic->id_read = id_read;
577 ic->id_write = id_write;
578 ic->int_read = int_read;
579 ic->int_write = int_write;
580 ic->mem_read16 = mem_read16;
581 ic->mem_write16 = mem_write16;
582 ic->mem_read8 = mem_read8;
583 ic->mem_write8 = mem_write8;
584
585 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
586 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack";
587 dc->props = ipoctal_properties;
588 dc->vmsd = &vmstate_ipoctal;
589 }
590
591 static const TypeInfo ipoctal_info = {
592 .name = TYPE_IPOCTAL,
593 .parent = TYPE_IPACK_DEVICE,
594 .instance_size = sizeof(IPOctalState),
595 .class_init = ipoctal_class_init,
596 };
597
598 static void ipoctal_register_types(void)
599 {
600 type_register_static(&ipoctal_info);
601 }
602
603 type_init(ipoctal_register_types)