]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
x86: Clean up includes
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "sysemu/char.h"
29 #include "qemu/timer.h"
30 #include "exec/address-spaces.h"
31 #include "qemu/error-report.h"
32
33 //#define DEBUG_SERIAL
34
35 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
36
37 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
38 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
39 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
40 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
41
42 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
43 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
44
45 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
46 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
47 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
48 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
49 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
50
51 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
52 #define UART_IIR_FE 0xC0 /* Fifo enabled */
53
54 /*
55 * These are the definitions for the Modem Control Register
56 */
57 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
58 #define UART_MCR_OUT2 0x08 /* Out2 complement */
59 #define UART_MCR_OUT1 0x04 /* Out1 complement */
60 #define UART_MCR_RTS 0x02 /* RTS complement */
61 #define UART_MCR_DTR 0x01 /* DTR complement */
62
63 /*
64 * These are the definitions for the Modem Status Register
65 */
66 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
67 #define UART_MSR_RI 0x40 /* Ring Indicator */
68 #define UART_MSR_DSR 0x20 /* Data Set Ready */
69 #define UART_MSR_CTS 0x10 /* Clear to Send */
70 #define UART_MSR_DDCD 0x08 /* Delta DCD */
71 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
72 #define UART_MSR_DDSR 0x02 /* Delta DSR */
73 #define UART_MSR_DCTS 0x01 /* Delta CTS */
74 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
75
76 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
77 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
78 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
79 #define UART_LSR_FE 0x08 /* Frame error indicator */
80 #define UART_LSR_PE 0x04 /* Parity error indicator */
81 #define UART_LSR_OE 0x02 /* Overrun error indicator */
82 #define UART_LSR_DR 0x01 /* Receiver data ready */
83 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
84
85 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
86
87 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
88 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
89 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
90 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
91
92 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
93 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
94 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
95 #define UART_FCR_FE 0x01 /* FIFO Enable */
96
97 #define MAX_XMIT_RETRY 4
98
99 #ifdef DEBUG_SERIAL
100 #define DPRINTF(fmt, ...) \
101 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
102 #else
103 #define DPRINTF(fmt, ...) \
104 do {} while (0)
105 #endif
106
107 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
108
109 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
110 {
111 /* Receive overruns do not overwrite FIFO contents. */
112 if (!fifo8_is_full(&s->recv_fifo)) {
113 fifo8_push(&s->recv_fifo, chr);
114 } else {
115 s->lsr |= UART_LSR_OE;
116 }
117 }
118
119 static void serial_update_irq(SerialState *s)
120 {
121 uint8_t tmp_iir = UART_IIR_NO_INT;
122
123 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
124 tmp_iir = UART_IIR_RLSI;
125 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
126 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
127 * this is not in the specification but is observed on existing
128 * hardware. */
129 tmp_iir = UART_IIR_CTI;
130 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
131 (!(s->fcr & UART_FCR_FE) ||
132 s->recv_fifo.num >= s->recv_fifo_itl)) {
133 tmp_iir = UART_IIR_RDI;
134 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
135 tmp_iir = UART_IIR_THRI;
136 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
137 tmp_iir = UART_IIR_MSI;
138 }
139
140 s->iir = tmp_iir | (s->iir & 0xF0);
141
142 if (tmp_iir != UART_IIR_NO_INT) {
143 qemu_irq_raise(s->irq);
144 } else {
145 qemu_irq_lower(s->irq);
146 }
147 }
148
149 static void serial_update_parameters(SerialState *s)
150 {
151 int speed, parity, data_bits, stop_bits, frame_size;
152 QEMUSerialSetParams ssp;
153
154 if (s->divider == 0)
155 return;
156
157 /* Start bit. */
158 frame_size = 1;
159 if (s->lcr & 0x08) {
160 /* Parity bit. */
161 frame_size++;
162 if (s->lcr & 0x10)
163 parity = 'E';
164 else
165 parity = 'O';
166 } else {
167 parity = 'N';
168 }
169 if (s->lcr & 0x04)
170 stop_bits = 2;
171 else
172 stop_bits = 1;
173
174 data_bits = (s->lcr & 0x03) + 5;
175 frame_size += data_bits + stop_bits;
176 speed = s->baudbase / s->divider;
177 ssp.speed = speed;
178 ssp.parity = parity;
179 ssp.data_bits = data_bits;
180 ssp.stop_bits = stop_bits;
181 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
182 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
183
184 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
185 speed, parity, data_bits, stop_bits);
186 }
187
188 static void serial_update_msl(SerialState *s)
189 {
190 uint8_t omsr;
191 int flags;
192
193 timer_del(s->modem_status_poll);
194
195 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
196 s->poll_msl = -1;
197 return;
198 }
199
200 omsr = s->msr;
201
202 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
203 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
204 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
205 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
206
207 if (s->msr != omsr) {
208 /* Set delta bits */
209 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
210 /* UART_MSR_TERI only if change was from 1 -> 0 */
211 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
212 s->msr &= ~UART_MSR_TERI;
213 serial_update_irq(s);
214 }
215
216 /* The real 16550A apparently has a 250ns response latency to line status changes.
217 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
218
219 if (s->poll_msl)
220 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + get_ticks_per_sec() / 100);
221 }
222
223 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
224 {
225 SerialState *s = opaque;
226
227 do {
228 assert(!(s->lsr & UART_LSR_TEMT));
229 if (s->tsr_retry <= 0) {
230 assert(!(s->lsr & UART_LSR_THRE));
231
232 if (s->fcr & UART_FCR_FE) {
233 assert(!fifo8_is_empty(&s->xmit_fifo));
234 s->tsr = fifo8_pop(&s->xmit_fifo);
235 if (!s->xmit_fifo.num) {
236 s->lsr |= UART_LSR_THRE;
237 }
238 } else {
239 s->tsr = s->thr;
240 s->lsr |= UART_LSR_THRE;
241 }
242 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
243 s->thr_ipending = 1;
244 serial_update_irq(s);
245 }
246 }
247
248 if (s->mcr & UART_MCR_LOOP) {
249 /* in loopback mode, say that we just received a char */
250 serial_receive1(s, &s->tsr, 1);
251 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) {
252 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY &&
253 qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
254 serial_xmit, s) > 0) {
255 s->tsr_retry++;
256 return FALSE;
257 }
258 s->tsr_retry = 0;
259 } else {
260 s->tsr_retry = 0;
261 }
262
263 /* Transmit another byte if it is already available. It is only
264 possible when FIFO is enabled and not empty. */
265 } while (!(s->lsr & UART_LSR_THRE));
266
267 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
268 s->lsr |= UART_LSR_TEMT;
269
270 return FALSE;
271 }
272
273
274 /* Setter for FCR.
275 is_load flag means, that value is set while loading VM state
276 and interrupt should not be invoked */
277 static void serial_write_fcr(SerialState *s, uint8_t val)
278 {
279 /* Set fcr - val only has the bits that are supposed to "stick" */
280 s->fcr = val;
281
282 if (val & UART_FCR_FE) {
283 s->iir |= UART_IIR_FE;
284 /* Set recv_fifo trigger Level */
285 switch (val & 0xC0) {
286 case UART_FCR_ITL_1:
287 s->recv_fifo_itl = 1;
288 break;
289 case UART_FCR_ITL_2:
290 s->recv_fifo_itl = 4;
291 break;
292 case UART_FCR_ITL_3:
293 s->recv_fifo_itl = 8;
294 break;
295 case UART_FCR_ITL_4:
296 s->recv_fifo_itl = 14;
297 break;
298 }
299 } else {
300 s->iir &= ~UART_IIR_FE;
301 }
302 }
303
304 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
305 unsigned size)
306 {
307 SerialState *s = opaque;
308
309 addr &= 7;
310 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
311 switch(addr) {
312 default:
313 case 0:
314 if (s->lcr & UART_LCR_DLAB) {
315 s->divider = (s->divider & 0xff00) | val;
316 serial_update_parameters(s);
317 } else {
318 s->thr = (uint8_t) val;
319 if(s->fcr & UART_FCR_FE) {
320 /* xmit overruns overwrite data, so make space if needed */
321 if (fifo8_is_full(&s->xmit_fifo)) {
322 fifo8_pop(&s->xmit_fifo);
323 }
324 fifo8_push(&s->xmit_fifo, s->thr);
325 }
326 s->thr_ipending = 0;
327 s->lsr &= ~UART_LSR_THRE;
328 s->lsr &= ~UART_LSR_TEMT;
329 serial_update_irq(s);
330 if (s->tsr_retry <= 0) {
331 serial_xmit(NULL, G_IO_OUT, s);
332 }
333 }
334 break;
335 case 1:
336 if (s->lcr & UART_LCR_DLAB) {
337 s->divider = (s->divider & 0x00ff) | (val << 8);
338 serial_update_parameters(s);
339 } else {
340 uint8_t changed = (s->ier ^ val) & 0x0f;
341 s->ier = val & 0x0f;
342 /* If the backend device is a real serial port, turn polling of the modem
343 * status lines on physical port on or off depending on UART_IER_MSI state.
344 */
345 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
346 if (s->ier & UART_IER_MSI) {
347 s->poll_msl = 1;
348 serial_update_msl(s);
349 } else {
350 timer_del(s->modem_status_poll);
351 s->poll_msl = 0;
352 }
353 }
354
355 /* Turning on the THRE interrupt on IER can trigger the interrupt
356 * if LSR.THRE=1, even if it had been masked before by reading IIR.
357 * This is not in the datasheet, but Windows relies on it. It is
358 * unclear if THRE has to be resampled every time THRI becomes
359 * 1, or only on the rising edge. Bochs does the latter, and Windows
360 * always toggles IER to all zeroes and back to all ones, so do the
361 * same.
362 *
363 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
364 * so that the thr_ipending subsection is not migrated.
365 */
366 if (changed & UART_IER_THRI) {
367 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
368 s->thr_ipending = 1;
369 } else {
370 s->thr_ipending = 0;
371 }
372 }
373
374 if (changed) {
375 serial_update_irq(s);
376 }
377 }
378 break;
379 case 2:
380 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
381 if ((val ^ s->fcr) & UART_FCR_FE) {
382 val |= UART_FCR_XFR | UART_FCR_RFR;
383 }
384
385 /* FIFO clear */
386
387 if (val & UART_FCR_RFR) {
388 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
389 timer_del(s->fifo_timeout_timer);
390 s->timeout_ipending = 0;
391 fifo8_reset(&s->recv_fifo);
392 }
393
394 if (val & UART_FCR_XFR) {
395 s->lsr |= UART_LSR_THRE;
396 s->thr_ipending = 1;
397 fifo8_reset(&s->xmit_fifo);
398 }
399
400 serial_write_fcr(s, val & 0xC9);
401 serial_update_irq(s);
402 break;
403 case 3:
404 {
405 int break_enable;
406 s->lcr = val;
407 serial_update_parameters(s);
408 break_enable = (val >> 6) & 1;
409 if (break_enable != s->last_break_enable) {
410 s->last_break_enable = break_enable;
411 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
412 &break_enable);
413 }
414 }
415 break;
416 case 4:
417 {
418 int flags;
419 int old_mcr = s->mcr;
420 s->mcr = val & 0x1f;
421 if (val & UART_MCR_LOOP)
422 break;
423
424 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
425
426 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
427
428 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
429
430 if (val & UART_MCR_RTS)
431 flags |= CHR_TIOCM_RTS;
432 if (val & UART_MCR_DTR)
433 flags |= CHR_TIOCM_DTR;
434
435 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
436 /* Update the modem status after a one-character-send wait-time, since there may be a response
437 from the device/computer at the other end of the serial line */
438 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
439 }
440 }
441 break;
442 case 5:
443 break;
444 case 6:
445 break;
446 case 7:
447 s->scr = val;
448 break;
449 }
450 }
451
452 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
453 {
454 SerialState *s = opaque;
455 uint32_t ret;
456
457 addr &= 7;
458 switch(addr) {
459 default:
460 case 0:
461 if (s->lcr & UART_LCR_DLAB) {
462 ret = s->divider & 0xff;
463 } else {
464 if(s->fcr & UART_FCR_FE) {
465 ret = fifo8_is_empty(&s->recv_fifo) ?
466 0 : fifo8_pop(&s->recv_fifo);
467 if (s->recv_fifo.num == 0) {
468 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
469 } else {
470 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
471 }
472 s->timeout_ipending = 0;
473 } else {
474 ret = s->rbr;
475 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
476 }
477 serial_update_irq(s);
478 if (!(s->mcr & UART_MCR_LOOP)) {
479 /* in loopback mode, don't receive any data */
480 qemu_chr_accept_input(s->chr);
481 }
482 }
483 break;
484 case 1:
485 if (s->lcr & UART_LCR_DLAB) {
486 ret = (s->divider >> 8) & 0xff;
487 } else {
488 ret = s->ier;
489 }
490 break;
491 case 2:
492 ret = s->iir;
493 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
494 s->thr_ipending = 0;
495 serial_update_irq(s);
496 }
497 break;
498 case 3:
499 ret = s->lcr;
500 break;
501 case 4:
502 ret = s->mcr;
503 break;
504 case 5:
505 ret = s->lsr;
506 /* Clear break and overrun interrupts */
507 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
508 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
509 serial_update_irq(s);
510 }
511 break;
512 case 6:
513 if (s->mcr & UART_MCR_LOOP) {
514 /* in loopback, the modem output pins are connected to the
515 inputs */
516 ret = (s->mcr & 0x0c) << 4;
517 ret |= (s->mcr & 0x02) << 3;
518 ret |= (s->mcr & 0x01) << 5;
519 } else {
520 if (s->poll_msl >= 0)
521 serial_update_msl(s);
522 ret = s->msr;
523 /* Clear delta bits & msr int after read, if they were set */
524 if (s->msr & UART_MSR_ANY_DELTA) {
525 s->msr &= 0xF0;
526 serial_update_irq(s);
527 }
528 }
529 break;
530 case 7:
531 ret = s->scr;
532 break;
533 }
534 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
535 return ret;
536 }
537
538 static int serial_can_receive(SerialState *s)
539 {
540 if(s->fcr & UART_FCR_FE) {
541 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
542 /*
543 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
544 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
545 * effect will be to almost always fill the fifo completely before
546 * the guest has a chance to respond, effectively overriding the ITL
547 * that the guest has set.
548 */
549 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
550 s->recv_fifo_itl - s->recv_fifo.num : 1;
551 } else {
552 return 0;
553 }
554 } else {
555 return !(s->lsr & UART_LSR_DR);
556 }
557 }
558
559 static void serial_receive_break(SerialState *s)
560 {
561 s->rbr = 0;
562 /* When the LSR_DR is set a null byte is pushed into the fifo */
563 recv_fifo_put(s, '\0');
564 s->lsr |= UART_LSR_BI | UART_LSR_DR;
565 serial_update_irq(s);
566 }
567
568 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
569 static void fifo_timeout_int (void *opaque) {
570 SerialState *s = opaque;
571 if (s->recv_fifo.num) {
572 s->timeout_ipending = 1;
573 serial_update_irq(s);
574 }
575 }
576
577 static int serial_can_receive1(void *opaque)
578 {
579 SerialState *s = opaque;
580 return serial_can_receive(s);
581 }
582
583 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
584 {
585 SerialState *s = opaque;
586
587 if (s->wakeup) {
588 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
589 }
590 if(s->fcr & UART_FCR_FE) {
591 int i;
592 for (i = 0; i < size; i++) {
593 recv_fifo_put(s, buf[i]);
594 }
595 s->lsr |= UART_LSR_DR;
596 /* call the timeout receive callback in 4 char transmit time */
597 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
598 } else {
599 if (s->lsr & UART_LSR_DR)
600 s->lsr |= UART_LSR_OE;
601 s->rbr = buf[0];
602 s->lsr |= UART_LSR_DR;
603 }
604 serial_update_irq(s);
605 }
606
607 static void serial_event(void *opaque, int event)
608 {
609 SerialState *s = opaque;
610 DPRINTF("event %x\n", event);
611 if (event == CHR_EVENT_BREAK)
612 serial_receive_break(s);
613 }
614
615 static void serial_pre_save(void *opaque)
616 {
617 SerialState *s = opaque;
618 s->fcr_vmstate = s->fcr;
619 }
620
621 static int serial_pre_load(void *opaque)
622 {
623 SerialState *s = opaque;
624 s->thr_ipending = -1;
625 s->poll_msl = -1;
626 return 0;
627 }
628
629 static int serial_post_load(void *opaque, int version_id)
630 {
631 SerialState *s = opaque;
632
633 if (version_id < 3) {
634 s->fcr_vmstate = 0;
635 }
636 if (s->thr_ipending == -1) {
637 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
638 }
639 s->last_break_enable = (s->lcr >> 6) & 1;
640 /* Initialize fcr via setter to perform essential side-effects */
641 serial_write_fcr(s, s->fcr_vmstate);
642 serial_update_parameters(s);
643 return 0;
644 }
645
646 static bool serial_thr_ipending_needed(void *opaque)
647 {
648 SerialState *s = opaque;
649
650 if (s->ier & UART_IER_THRI) {
651 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
652 return s->thr_ipending != expected_value;
653 } else {
654 /* LSR.THRE will be sampled again when the interrupt is
655 * enabled. thr_ipending is not used in this case, do
656 * not migrate it.
657 */
658 return false;
659 }
660 }
661
662 static const VMStateDescription vmstate_serial_thr_ipending = {
663 .name = "serial/thr_ipending",
664 .version_id = 1,
665 .minimum_version_id = 1,
666 .needed = serial_thr_ipending_needed,
667 .fields = (VMStateField[]) {
668 VMSTATE_INT32(thr_ipending, SerialState),
669 VMSTATE_END_OF_LIST()
670 }
671 };
672
673 static bool serial_tsr_needed(void *opaque)
674 {
675 SerialState *s = (SerialState *)opaque;
676 return s->tsr_retry != 0;
677 }
678
679 static const VMStateDescription vmstate_serial_tsr = {
680 .name = "serial/tsr",
681 .version_id = 1,
682 .minimum_version_id = 1,
683 .needed = serial_tsr_needed,
684 .fields = (VMStateField[]) {
685 VMSTATE_INT32(tsr_retry, SerialState),
686 VMSTATE_UINT8(thr, SerialState),
687 VMSTATE_UINT8(tsr, SerialState),
688 VMSTATE_END_OF_LIST()
689 }
690 };
691
692 static bool serial_recv_fifo_needed(void *opaque)
693 {
694 SerialState *s = (SerialState *)opaque;
695 return !fifo8_is_empty(&s->recv_fifo);
696
697 }
698
699 static const VMStateDescription vmstate_serial_recv_fifo = {
700 .name = "serial/recv_fifo",
701 .version_id = 1,
702 .minimum_version_id = 1,
703 .needed = serial_recv_fifo_needed,
704 .fields = (VMStateField[]) {
705 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
706 VMSTATE_END_OF_LIST()
707 }
708 };
709
710 static bool serial_xmit_fifo_needed(void *opaque)
711 {
712 SerialState *s = (SerialState *)opaque;
713 return !fifo8_is_empty(&s->xmit_fifo);
714 }
715
716 static const VMStateDescription vmstate_serial_xmit_fifo = {
717 .name = "serial/xmit_fifo",
718 .version_id = 1,
719 .minimum_version_id = 1,
720 .needed = serial_xmit_fifo_needed,
721 .fields = (VMStateField[]) {
722 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
723 VMSTATE_END_OF_LIST()
724 }
725 };
726
727 static bool serial_fifo_timeout_timer_needed(void *opaque)
728 {
729 SerialState *s = (SerialState *)opaque;
730 return timer_pending(s->fifo_timeout_timer);
731 }
732
733 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
734 .name = "serial/fifo_timeout_timer",
735 .version_id = 1,
736 .minimum_version_id = 1,
737 .needed = serial_fifo_timeout_timer_needed,
738 .fields = (VMStateField[]) {
739 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
740 VMSTATE_END_OF_LIST()
741 }
742 };
743
744 static bool serial_timeout_ipending_needed(void *opaque)
745 {
746 SerialState *s = (SerialState *)opaque;
747 return s->timeout_ipending != 0;
748 }
749
750 static const VMStateDescription vmstate_serial_timeout_ipending = {
751 .name = "serial/timeout_ipending",
752 .version_id = 1,
753 .minimum_version_id = 1,
754 .needed = serial_timeout_ipending_needed,
755 .fields = (VMStateField[]) {
756 VMSTATE_INT32(timeout_ipending, SerialState),
757 VMSTATE_END_OF_LIST()
758 }
759 };
760
761 static bool serial_poll_needed(void *opaque)
762 {
763 SerialState *s = (SerialState *)opaque;
764 return s->poll_msl >= 0;
765 }
766
767 static const VMStateDescription vmstate_serial_poll = {
768 .name = "serial/poll",
769 .version_id = 1,
770 .needed = serial_poll_needed,
771 .minimum_version_id = 1,
772 .fields = (VMStateField[]) {
773 VMSTATE_INT32(poll_msl, SerialState),
774 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
775 VMSTATE_END_OF_LIST()
776 }
777 };
778
779 const VMStateDescription vmstate_serial = {
780 .name = "serial",
781 .version_id = 3,
782 .minimum_version_id = 2,
783 .pre_save = serial_pre_save,
784 .pre_load = serial_pre_load,
785 .post_load = serial_post_load,
786 .fields = (VMStateField[]) {
787 VMSTATE_UINT16_V(divider, SerialState, 2),
788 VMSTATE_UINT8(rbr, SerialState),
789 VMSTATE_UINT8(ier, SerialState),
790 VMSTATE_UINT8(iir, SerialState),
791 VMSTATE_UINT8(lcr, SerialState),
792 VMSTATE_UINT8(mcr, SerialState),
793 VMSTATE_UINT8(lsr, SerialState),
794 VMSTATE_UINT8(msr, SerialState),
795 VMSTATE_UINT8(scr, SerialState),
796 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
797 VMSTATE_END_OF_LIST()
798 },
799 .subsections = (const VMStateDescription*[]) {
800 &vmstate_serial_thr_ipending,
801 &vmstate_serial_tsr,
802 &vmstate_serial_recv_fifo,
803 &vmstate_serial_xmit_fifo,
804 &vmstate_serial_fifo_timeout_timer,
805 &vmstate_serial_timeout_ipending,
806 &vmstate_serial_poll,
807 NULL
808 }
809 };
810
811 static void serial_reset(void *opaque)
812 {
813 SerialState *s = opaque;
814
815 s->rbr = 0;
816 s->ier = 0;
817 s->iir = UART_IIR_NO_INT;
818 s->lcr = 0;
819 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
820 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
821 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
822 s->divider = 0x0C;
823 s->mcr = UART_MCR_OUT2;
824 s->scr = 0;
825 s->tsr_retry = 0;
826 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10;
827 s->poll_msl = 0;
828
829 s->timeout_ipending = 0;
830 timer_del(s->fifo_timeout_timer);
831 timer_del(s->modem_status_poll);
832
833 fifo8_reset(&s->recv_fifo);
834 fifo8_reset(&s->xmit_fifo);
835
836 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
837
838 s->thr_ipending = 0;
839 s->last_break_enable = 0;
840 qemu_irq_lower(s->irq);
841
842 serial_update_msl(s);
843 s->msr &= ~UART_MSR_ANY_DELTA;
844 }
845
846 void serial_realize_core(SerialState *s, Error **errp)
847 {
848 if (!s->chr) {
849 error_setg(errp, "Can't create serial device, empty char device");
850 return;
851 }
852
853 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
854
855 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
856 qemu_register_reset(serial_reset, s);
857
858 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
859 serial_event, s);
860 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
861 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
862 serial_reset(s);
863 }
864
865 void serial_exit_core(SerialState *s)
866 {
867 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
868 qemu_unregister_reset(serial_reset, s);
869 }
870
871 /* Change the main reference oscillator frequency. */
872 void serial_set_frequency(SerialState *s, uint32_t frequency)
873 {
874 s->baudbase = frequency;
875 serial_update_parameters(s);
876 }
877
878 const MemoryRegionOps serial_io_ops = {
879 .read = serial_ioport_read,
880 .write = serial_ioport_write,
881 .impl = {
882 .min_access_size = 1,
883 .max_access_size = 1,
884 },
885 .endianness = DEVICE_LITTLE_ENDIAN,
886 };
887
888 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
889 CharDriverState *chr, MemoryRegion *system_io)
890 {
891 SerialState *s;
892
893 s = g_malloc0(sizeof(SerialState));
894
895 s->irq = irq;
896 s->baudbase = baudbase;
897 s->chr = chr;
898 serial_realize_core(s, &error_fatal);
899
900 vmstate_register(NULL, base, &vmstate_serial, s);
901
902 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
903 memory_region_add_subregion(system_io, base, &s->io);
904
905 return s;
906 }
907
908 /* Memory mapped interface */
909 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
910 unsigned size)
911 {
912 SerialState *s = opaque;
913 return serial_ioport_read(s, addr >> s->it_shift, 1);
914 }
915
916 static void serial_mm_write(void *opaque, hwaddr addr,
917 uint64_t value, unsigned size)
918 {
919 SerialState *s = opaque;
920 value &= ~0u >> (32 - (size * 8));
921 serial_ioport_write(s, addr >> s->it_shift, value, 1);
922 }
923
924 static const MemoryRegionOps serial_mm_ops[3] = {
925 [DEVICE_NATIVE_ENDIAN] = {
926 .read = serial_mm_read,
927 .write = serial_mm_write,
928 .endianness = DEVICE_NATIVE_ENDIAN,
929 },
930 [DEVICE_LITTLE_ENDIAN] = {
931 .read = serial_mm_read,
932 .write = serial_mm_write,
933 .endianness = DEVICE_LITTLE_ENDIAN,
934 },
935 [DEVICE_BIG_ENDIAN] = {
936 .read = serial_mm_read,
937 .write = serial_mm_write,
938 .endianness = DEVICE_BIG_ENDIAN,
939 },
940 };
941
942 SerialState *serial_mm_init(MemoryRegion *address_space,
943 hwaddr base, int it_shift,
944 qemu_irq irq, int baudbase,
945 CharDriverState *chr, enum device_endian end)
946 {
947 SerialState *s;
948
949 s = g_malloc0(sizeof(SerialState));
950
951 s->it_shift = it_shift;
952 s->irq = irq;
953 s->baudbase = baudbase;
954 s->chr = chr;
955
956 serial_realize_core(s, &error_fatal);
957 vmstate_register(NULL, base, &vmstate_serial, s);
958
959 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
960 "serial", 8 << it_shift);
961 memory_region_add_subregion(address_space, base, &s->io);
962 return s;
963 }