]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
6d815b5c69280e9862e999dc71c5289a005f0d26
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "sysemu/char.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "exec/address-spaces.h"
32 #include "qemu/error-report.h"
33
34 //#define DEBUG_SERIAL
35
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
37
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
42
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
45
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
51
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
54
55 /*
56 * These are the definitions for the Modem Control Register
57 */
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
63
64 /*
65 * These are the definitions for the Modem Status Register
66 */
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
76
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
85
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
87
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
92
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
97
98 #define MAX_XMIT_RETRY 4
99
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
107
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
109
110 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
111 {
112 /* Receive overruns do not overwrite FIFO contents. */
113 if (!fifo8_is_full(&s->recv_fifo)) {
114 fifo8_push(&s->recv_fifo, chr);
115 } else {
116 s->lsr |= UART_LSR_OE;
117 }
118 }
119
120 static void serial_update_irq(SerialState *s)
121 {
122 uint8_t tmp_iir = UART_IIR_NO_INT;
123
124 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
125 tmp_iir = UART_IIR_RLSI;
126 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
127 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
128 * this is not in the specification but is observed on existing
129 * hardware. */
130 tmp_iir = UART_IIR_CTI;
131 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
132 (!(s->fcr & UART_FCR_FE) ||
133 s->recv_fifo.num >= s->recv_fifo_itl)) {
134 tmp_iir = UART_IIR_RDI;
135 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
136 tmp_iir = UART_IIR_THRI;
137 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
138 tmp_iir = UART_IIR_MSI;
139 }
140
141 s->iir = tmp_iir | (s->iir & 0xF0);
142
143 if (tmp_iir != UART_IIR_NO_INT) {
144 qemu_irq_raise(s->irq);
145 } else {
146 qemu_irq_lower(s->irq);
147 }
148 }
149
150 static void serial_update_parameters(SerialState *s)
151 {
152 int speed, parity, data_bits, stop_bits, frame_size;
153 QEMUSerialSetParams ssp;
154
155 if (s->divider == 0)
156 return;
157
158 /* Start bit. */
159 frame_size = 1;
160 if (s->lcr & 0x08) {
161 /* Parity bit. */
162 frame_size++;
163 if (s->lcr & 0x10)
164 parity = 'E';
165 else
166 parity = 'O';
167 } else {
168 parity = 'N';
169 }
170 if (s->lcr & 0x04)
171 stop_bits = 2;
172 else
173 stop_bits = 1;
174
175 data_bits = (s->lcr & 0x03) + 5;
176 frame_size += data_bits + stop_bits;
177 speed = s->baudbase / s->divider;
178 ssp.speed = speed;
179 ssp.parity = parity;
180 ssp.data_bits = data_bits;
181 ssp.stop_bits = stop_bits;
182 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
183 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
184
185 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
186 speed, parity, data_bits, stop_bits);
187 }
188
189 static void serial_update_msl(SerialState *s)
190 {
191 uint8_t omsr;
192 int flags;
193
194 timer_del(s->modem_status_poll);
195
196 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
197 s->poll_msl = -1;
198 return;
199 }
200
201 omsr = s->msr;
202
203 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
204 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
205 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
206 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
207
208 if (s->msr != omsr) {
209 /* Set delta bits */
210 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
211 /* UART_MSR_TERI only if change was from 1 -> 0 */
212 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
213 s->msr &= ~UART_MSR_TERI;
214 serial_update_irq(s);
215 }
216
217 /* The real 16550A apparently has a 250ns response latency to line status changes.
218 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
219
220 if (s->poll_msl) {
221 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
222 NANOSECONDS_PER_SECOND / 100);
223 }
224 }
225
226 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
227 {
228 SerialState *s = opaque;
229
230 do {
231 assert(!(s->lsr & UART_LSR_TEMT));
232 if (s->tsr_retry <= 0) {
233 assert(!(s->lsr & UART_LSR_THRE));
234
235 if (s->fcr & UART_FCR_FE) {
236 assert(!fifo8_is_empty(&s->xmit_fifo));
237 s->tsr = fifo8_pop(&s->xmit_fifo);
238 if (!s->xmit_fifo.num) {
239 s->lsr |= UART_LSR_THRE;
240 }
241 } else {
242 s->tsr = s->thr;
243 s->lsr |= UART_LSR_THRE;
244 }
245 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
246 s->thr_ipending = 1;
247 serial_update_irq(s);
248 }
249 }
250
251 if (s->mcr & UART_MCR_LOOP) {
252 /* in loopback mode, say that we just received a char */
253 serial_receive1(s, &s->tsr, 1);
254 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) {
255 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY &&
256 qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
257 serial_xmit, s) > 0) {
258 s->tsr_retry++;
259 return FALSE;
260 }
261 s->tsr_retry = 0;
262 } else {
263 s->tsr_retry = 0;
264 }
265
266 /* Transmit another byte if it is already available. It is only
267 possible when FIFO is enabled and not empty. */
268 } while (!(s->lsr & UART_LSR_THRE));
269
270 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
271 s->lsr |= UART_LSR_TEMT;
272
273 return FALSE;
274 }
275
276
277 /* Setter for FCR.
278 is_load flag means, that value is set while loading VM state
279 and interrupt should not be invoked */
280 static void serial_write_fcr(SerialState *s, uint8_t val)
281 {
282 /* Set fcr - val only has the bits that are supposed to "stick" */
283 s->fcr = val;
284
285 if (val & UART_FCR_FE) {
286 s->iir |= UART_IIR_FE;
287 /* Set recv_fifo trigger Level */
288 switch (val & 0xC0) {
289 case UART_FCR_ITL_1:
290 s->recv_fifo_itl = 1;
291 break;
292 case UART_FCR_ITL_2:
293 s->recv_fifo_itl = 4;
294 break;
295 case UART_FCR_ITL_3:
296 s->recv_fifo_itl = 8;
297 break;
298 case UART_FCR_ITL_4:
299 s->recv_fifo_itl = 14;
300 break;
301 }
302 } else {
303 s->iir &= ~UART_IIR_FE;
304 }
305 }
306
307 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
308 unsigned size)
309 {
310 SerialState *s = opaque;
311
312 addr &= 7;
313 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
314 switch(addr) {
315 default:
316 case 0:
317 if (s->lcr & UART_LCR_DLAB) {
318 s->divider = (s->divider & 0xff00) | val;
319 serial_update_parameters(s);
320 } else {
321 s->thr = (uint8_t) val;
322 if(s->fcr & UART_FCR_FE) {
323 /* xmit overruns overwrite data, so make space if needed */
324 if (fifo8_is_full(&s->xmit_fifo)) {
325 fifo8_pop(&s->xmit_fifo);
326 }
327 fifo8_push(&s->xmit_fifo, s->thr);
328 }
329 s->thr_ipending = 0;
330 s->lsr &= ~UART_LSR_THRE;
331 s->lsr &= ~UART_LSR_TEMT;
332 serial_update_irq(s);
333 if (s->tsr_retry <= 0) {
334 serial_xmit(NULL, G_IO_OUT, s);
335 }
336 }
337 break;
338 case 1:
339 if (s->lcr & UART_LCR_DLAB) {
340 s->divider = (s->divider & 0x00ff) | (val << 8);
341 serial_update_parameters(s);
342 } else {
343 uint8_t changed = (s->ier ^ val) & 0x0f;
344 s->ier = val & 0x0f;
345 /* If the backend device is a real serial port, turn polling of the modem
346 * status lines on physical port on or off depending on UART_IER_MSI state.
347 */
348 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
349 if (s->ier & UART_IER_MSI) {
350 s->poll_msl = 1;
351 serial_update_msl(s);
352 } else {
353 timer_del(s->modem_status_poll);
354 s->poll_msl = 0;
355 }
356 }
357
358 /* Turning on the THRE interrupt on IER can trigger the interrupt
359 * if LSR.THRE=1, even if it had been masked before by reading IIR.
360 * This is not in the datasheet, but Windows relies on it. It is
361 * unclear if THRE has to be resampled every time THRI becomes
362 * 1, or only on the rising edge. Bochs does the latter, and Windows
363 * always toggles IER to all zeroes and back to all ones, so do the
364 * same.
365 *
366 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
367 * so that the thr_ipending subsection is not migrated.
368 */
369 if (changed & UART_IER_THRI) {
370 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
371 s->thr_ipending = 1;
372 } else {
373 s->thr_ipending = 0;
374 }
375 }
376
377 if (changed) {
378 serial_update_irq(s);
379 }
380 }
381 break;
382 case 2:
383 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
384 if ((val ^ s->fcr) & UART_FCR_FE) {
385 val |= UART_FCR_XFR | UART_FCR_RFR;
386 }
387
388 /* FIFO clear */
389
390 if (val & UART_FCR_RFR) {
391 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
392 timer_del(s->fifo_timeout_timer);
393 s->timeout_ipending = 0;
394 fifo8_reset(&s->recv_fifo);
395 }
396
397 if (val & UART_FCR_XFR) {
398 s->lsr |= UART_LSR_THRE;
399 s->thr_ipending = 1;
400 fifo8_reset(&s->xmit_fifo);
401 }
402
403 serial_write_fcr(s, val & 0xC9);
404 serial_update_irq(s);
405 break;
406 case 3:
407 {
408 int break_enable;
409 s->lcr = val;
410 serial_update_parameters(s);
411 break_enable = (val >> 6) & 1;
412 if (break_enable != s->last_break_enable) {
413 s->last_break_enable = break_enable;
414 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
415 &break_enable);
416 }
417 }
418 break;
419 case 4:
420 {
421 int flags;
422 int old_mcr = s->mcr;
423 s->mcr = val & 0x1f;
424 if (val & UART_MCR_LOOP)
425 break;
426
427 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
428
429 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
430
431 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
432
433 if (val & UART_MCR_RTS)
434 flags |= CHR_TIOCM_RTS;
435 if (val & UART_MCR_DTR)
436 flags |= CHR_TIOCM_DTR;
437
438 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
439 /* Update the modem status after a one-character-send wait-time, since there may be a response
440 from the device/computer at the other end of the serial line */
441 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
442 }
443 }
444 break;
445 case 5:
446 break;
447 case 6:
448 break;
449 case 7:
450 s->scr = val;
451 break;
452 }
453 }
454
455 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
456 {
457 SerialState *s = opaque;
458 uint32_t ret;
459
460 addr &= 7;
461 switch(addr) {
462 default:
463 case 0:
464 if (s->lcr & UART_LCR_DLAB) {
465 ret = s->divider & 0xff;
466 } else {
467 if(s->fcr & UART_FCR_FE) {
468 ret = fifo8_is_empty(&s->recv_fifo) ?
469 0 : fifo8_pop(&s->recv_fifo);
470 if (s->recv_fifo.num == 0) {
471 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
472 } else {
473 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
474 }
475 s->timeout_ipending = 0;
476 } else {
477 ret = s->rbr;
478 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
479 }
480 serial_update_irq(s);
481 if (!(s->mcr & UART_MCR_LOOP)) {
482 /* in loopback mode, don't receive any data */
483 qemu_chr_accept_input(s->chr);
484 }
485 }
486 break;
487 case 1:
488 if (s->lcr & UART_LCR_DLAB) {
489 ret = (s->divider >> 8) & 0xff;
490 } else {
491 ret = s->ier;
492 }
493 break;
494 case 2:
495 ret = s->iir;
496 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
497 s->thr_ipending = 0;
498 serial_update_irq(s);
499 }
500 break;
501 case 3:
502 ret = s->lcr;
503 break;
504 case 4:
505 ret = s->mcr;
506 break;
507 case 5:
508 ret = s->lsr;
509 /* Clear break and overrun interrupts */
510 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
511 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
512 serial_update_irq(s);
513 }
514 break;
515 case 6:
516 if (s->mcr & UART_MCR_LOOP) {
517 /* in loopback, the modem output pins are connected to the
518 inputs */
519 ret = (s->mcr & 0x0c) << 4;
520 ret |= (s->mcr & 0x02) << 3;
521 ret |= (s->mcr & 0x01) << 5;
522 } else {
523 if (s->poll_msl >= 0)
524 serial_update_msl(s);
525 ret = s->msr;
526 /* Clear delta bits & msr int after read, if they were set */
527 if (s->msr & UART_MSR_ANY_DELTA) {
528 s->msr &= 0xF0;
529 serial_update_irq(s);
530 }
531 }
532 break;
533 case 7:
534 ret = s->scr;
535 break;
536 }
537 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
538 return ret;
539 }
540
541 static int serial_can_receive(SerialState *s)
542 {
543 if(s->fcr & UART_FCR_FE) {
544 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
545 /*
546 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
547 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
548 * effect will be to almost always fill the fifo completely before
549 * the guest has a chance to respond, effectively overriding the ITL
550 * that the guest has set.
551 */
552 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
553 s->recv_fifo_itl - s->recv_fifo.num : 1;
554 } else {
555 return 0;
556 }
557 } else {
558 return !(s->lsr & UART_LSR_DR);
559 }
560 }
561
562 static void serial_receive_break(SerialState *s)
563 {
564 s->rbr = 0;
565 /* When the LSR_DR is set a null byte is pushed into the fifo */
566 recv_fifo_put(s, '\0');
567 s->lsr |= UART_LSR_BI | UART_LSR_DR;
568 serial_update_irq(s);
569 }
570
571 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
572 static void fifo_timeout_int (void *opaque) {
573 SerialState *s = opaque;
574 if (s->recv_fifo.num) {
575 s->timeout_ipending = 1;
576 serial_update_irq(s);
577 }
578 }
579
580 static int serial_can_receive1(void *opaque)
581 {
582 SerialState *s = opaque;
583 return serial_can_receive(s);
584 }
585
586 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
587 {
588 SerialState *s = opaque;
589
590 if (s->wakeup) {
591 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
592 }
593 if(s->fcr & UART_FCR_FE) {
594 int i;
595 for (i = 0; i < size; i++) {
596 recv_fifo_put(s, buf[i]);
597 }
598 s->lsr |= UART_LSR_DR;
599 /* call the timeout receive callback in 4 char transmit time */
600 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
601 } else {
602 if (s->lsr & UART_LSR_DR)
603 s->lsr |= UART_LSR_OE;
604 s->rbr = buf[0];
605 s->lsr |= UART_LSR_DR;
606 }
607 serial_update_irq(s);
608 }
609
610 static void serial_event(void *opaque, int event)
611 {
612 SerialState *s = opaque;
613 DPRINTF("event %x\n", event);
614 if (event == CHR_EVENT_BREAK)
615 serial_receive_break(s);
616 }
617
618 static void serial_pre_save(void *opaque)
619 {
620 SerialState *s = opaque;
621 s->fcr_vmstate = s->fcr;
622 }
623
624 static int serial_pre_load(void *opaque)
625 {
626 SerialState *s = opaque;
627 s->thr_ipending = -1;
628 s->poll_msl = -1;
629 return 0;
630 }
631
632 static int serial_post_load(void *opaque, int version_id)
633 {
634 SerialState *s = opaque;
635
636 if (version_id < 3) {
637 s->fcr_vmstate = 0;
638 }
639 if (s->thr_ipending == -1) {
640 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
641 }
642 s->last_break_enable = (s->lcr >> 6) & 1;
643 /* Initialize fcr via setter to perform essential side-effects */
644 serial_write_fcr(s, s->fcr_vmstate);
645 serial_update_parameters(s);
646 return 0;
647 }
648
649 static bool serial_thr_ipending_needed(void *opaque)
650 {
651 SerialState *s = opaque;
652
653 if (s->ier & UART_IER_THRI) {
654 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
655 return s->thr_ipending != expected_value;
656 } else {
657 /* LSR.THRE will be sampled again when the interrupt is
658 * enabled. thr_ipending is not used in this case, do
659 * not migrate it.
660 */
661 return false;
662 }
663 }
664
665 static const VMStateDescription vmstate_serial_thr_ipending = {
666 .name = "serial/thr_ipending",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .needed = serial_thr_ipending_needed,
670 .fields = (VMStateField[]) {
671 VMSTATE_INT32(thr_ipending, SerialState),
672 VMSTATE_END_OF_LIST()
673 }
674 };
675
676 static bool serial_tsr_needed(void *opaque)
677 {
678 SerialState *s = (SerialState *)opaque;
679 return s->tsr_retry != 0;
680 }
681
682 static const VMStateDescription vmstate_serial_tsr = {
683 .name = "serial/tsr",
684 .version_id = 1,
685 .minimum_version_id = 1,
686 .needed = serial_tsr_needed,
687 .fields = (VMStateField[]) {
688 VMSTATE_INT32(tsr_retry, SerialState),
689 VMSTATE_UINT8(thr, SerialState),
690 VMSTATE_UINT8(tsr, SerialState),
691 VMSTATE_END_OF_LIST()
692 }
693 };
694
695 static bool serial_recv_fifo_needed(void *opaque)
696 {
697 SerialState *s = (SerialState *)opaque;
698 return !fifo8_is_empty(&s->recv_fifo);
699
700 }
701
702 static const VMStateDescription vmstate_serial_recv_fifo = {
703 .name = "serial/recv_fifo",
704 .version_id = 1,
705 .minimum_version_id = 1,
706 .needed = serial_recv_fifo_needed,
707 .fields = (VMStateField[]) {
708 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
709 VMSTATE_END_OF_LIST()
710 }
711 };
712
713 static bool serial_xmit_fifo_needed(void *opaque)
714 {
715 SerialState *s = (SerialState *)opaque;
716 return !fifo8_is_empty(&s->xmit_fifo);
717 }
718
719 static const VMStateDescription vmstate_serial_xmit_fifo = {
720 .name = "serial/xmit_fifo",
721 .version_id = 1,
722 .minimum_version_id = 1,
723 .needed = serial_xmit_fifo_needed,
724 .fields = (VMStateField[]) {
725 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
726 VMSTATE_END_OF_LIST()
727 }
728 };
729
730 static bool serial_fifo_timeout_timer_needed(void *opaque)
731 {
732 SerialState *s = (SerialState *)opaque;
733 return timer_pending(s->fifo_timeout_timer);
734 }
735
736 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
737 .name = "serial/fifo_timeout_timer",
738 .version_id = 1,
739 .minimum_version_id = 1,
740 .needed = serial_fifo_timeout_timer_needed,
741 .fields = (VMStateField[]) {
742 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
743 VMSTATE_END_OF_LIST()
744 }
745 };
746
747 static bool serial_timeout_ipending_needed(void *opaque)
748 {
749 SerialState *s = (SerialState *)opaque;
750 return s->timeout_ipending != 0;
751 }
752
753 static const VMStateDescription vmstate_serial_timeout_ipending = {
754 .name = "serial/timeout_ipending",
755 .version_id = 1,
756 .minimum_version_id = 1,
757 .needed = serial_timeout_ipending_needed,
758 .fields = (VMStateField[]) {
759 VMSTATE_INT32(timeout_ipending, SerialState),
760 VMSTATE_END_OF_LIST()
761 }
762 };
763
764 static bool serial_poll_needed(void *opaque)
765 {
766 SerialState *s = (SerialState *)opaque;
767 return s->poll_msl >= 0;
768 }
769
770 static const VMStateDescription vmstate_serial_poll = {
771 .name = "serial/poll",
772 .version_id = 1,
773 .needed = serial_poll_needed,
774 .minimum_version_id = 1,
775 .fields = (VMStateField[]) {
776 VMSTATE_INT32(poll_msl, SerialState),
777 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
778 VMSTATE_END_OF_LIST()
779 }
780 };
781
782 const VMStateDescription vmstate_serial = {
783 .name = "serial",
784 .version_id = 3,
785 .minimum_version_id = 2,
786 .pre_save = serial_pre_save,
787 .pre_load = serial_pre_load,
788 .post_load = serial_post_load,
789 .fields = (VMStateField[]) {
790 VMSTATE_UINT16_V(divider, SerialState, 2),
791 VMSTATE_UINT8(rbr, SerialState),
792 VMSTATE_UINT8(ier, SerialState),
793 VMSTATE_UINT8(iir, SerialState),
794 VMSTATE_UINT8(lcr, SerialState),
795 VMSTATE_UINT8(mcr, SerialState),
796 VMSTATE_UINT8(lsr, SerialState),
797 VMSTATE_UINT8(msr, SerialState),
798 VMSTATE_UINT8(scr, SerialState),
799 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
800 VMSTATE_END_OF_LIST()
801 },
802 .subsections = (const VMStateDescription*[]) {
803 &vmstate_serial_thr_ipending,
804 &vmstate_serial_tsr,
805 &vmstate_serial_recv_fifo,
806 &vmstate_serial_xmit_fifo,
807 &vmstate_serial_fifo_timeout_timer,
808 &vmstate_serial_timeout_ipending,
809 &vmstate_serial_poll,
810 NULL
811 }
812 };
813
814 static void serial_reset(void *opaque)
815 {
816 SerialState *s = opaque;
817
818 s->rbr = 0;
819 s->ier = 0;
820 s->iir = UART_IIR_NO_INT;
821 s->lcr = 0;
822 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
823 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
824 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
825 s->divider = 0x0C;
826 s->mcr = UART_MCR_OUT2;
827 s->scr = 0;
828 s->tsr_retry = 0;
829 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
830 s->poll_msl = 0;
831
832 s->timeout_ipending = 0;
833 timer_del(s->fifo_timeout_timer);
834 timer_del(s->modem_status_poll);
835
836 fifo8_reset(&s->recv_fifo);
837 fifo8_reset(&s->xmit_fifo);
838
839 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
840
841 s->thr_ipending = 0;
842 s->last_break_enable = 0;
843 qemu_irq_lower(s->irq);
844
845 serial_update_msl(s);
846 s->msr &= ~UART_MSR_ANY_DELTA;
847 }
848
849 void serial_realize_core(SerialState *s, Error **errp)
850 {
851 if (!s->chr) {
852 error_setg(errp, "Can't create serial device, empty char device");
853 return;
854 }
855
856 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
857
858 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
859 qemu_register_reset(serial_reset, s);
860
861 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
862 serial_event, s);
863 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
864 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
865 serial_reset(s);
866 }
867
868 void serial_exit_core(SerialState *s)
869 {
870 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
871 qemu_unregister_reset(serial_reset, s);
872 }
873
874 /* Change the main reference oscillator frequency. */
875 void serial_set_frequency(SerialState *s, uint32_t frequency)
876 {
877 s->baudbase = frequency;
878 serial_update_parameters(s);
879 }
880
881 const MemoryRegionOps serial_io_ops = {
882 .read = serial_ioport_read,
883 .write = serial_ioport_write,
884 .impl = {
885 .min_access_size = 1,
886 .max_access_size = 1,
887 },
888 .endianness = DEVICE_LITTLE_ENDIAN,
889 };
890
891 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
892 CharDriverState *chr, MemoryRegion *system_io)
893 {
894 SerialState *s;
895
896 s = g_malloc0(sizeof(SerialState));
897
898 s->irq = irq;
899 s->baudbase = baudbase;
900 s->chr = chr;
901 serial_realize_core(s, &error_fatal);
902
903 vmstate_register(NULL, base, &vmstate_serial, s);
904
905 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
906 memory_region_add_subregion(system_io, base, &s->io);
907
908 return s;
909 }
910
911 /* Memory mapped interface */
912 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
913 unsigned size)
914 {
915 SerialState *s = opaque;
916 return serial_ioport_read(s, addr >> s->it_shift, 1);
917 }
918
919 static void serial_mm_write(void *opaque, hwaddr addr,
920 uint64_t value, unsigned size)
921 {
922 SerialState *s = opaque;
923 value &= ~0u >> (32 - (size * 8));
924 serial_ioport_write(s, addr >> s->it_shift, value, 1);
925 }
926
927 static const MemoryRegionOps serial_mm_ops[3] = {
928 [DEVICE_NATIVE_ENDIAN] = {
929 .read = serial_mm_read,
930 .write = serial_mm_write,
931 .endianness = DEVICE_NATIVE_ENDIAN,
932 },
933 [DEVICE_LITTLE_ENDIAN] = {
934 .read = serial_mm_read,
935 .write = serial_mm_write,
936 .endianness = DEVICE_LITTLE_ENDIAN,
937 },
938 [DEVICE_BIG_ENDIAN] = {
939 .read = serial_mm_read,
940 .write = serial_mm_write,
941 .endianness = DEVICE_BIG_ENDIAN,
942 },
943 };
944
945 SerialState *serial_mm_init(MemoryRegion *address_space,
946 hwaddr base, int it_shift,
947 qemu_irq irq, int baudbase,
948 CharDriverState *chr, enum device_endian end)
949 {
950 SerialState *s;
951
952 s = g_malloc0(sizeof(SerialState));
953
954 s->it_shift = it_shift;
955 s->irq = irq;
956 s->baudbase = baudbase;
957 s->chr = chr;
958
959 serial_realize_core(s, &error_fatal);
960 vmstate_register(NULL, base, &vmstate_serial, s);
961
962 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
963 "serial", 8 << it_shift);
964 memory_region_add_subregion(address_space, base, &s->io);
965 return s;
966 }