]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "hw/char/serial.h"
27 #include "sysemu/char.h"
28 #include "qemu/timer.h"
29 #include "exec/address-spaces.h"
30 #include "qemu/error-report.h"
31
32 //#define DEBUG_SERIAL
33
34 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
35
36 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
37 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
38 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
39 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
40
41 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
42 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
43
44 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
45 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
46 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
47 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
48 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
49
50 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
51 #define UART_IIR_FE 0xC0 /* Fifo enabled */
52
53 /*
54 * These are the definitions for the Modem Control Register
55 */
56 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
57 #define UART_MCR_OUT2 0x08 /* Out2 complement */
58 #define UART_MCR_OUT1 0x04 /* Out1 complement */
59 #define UART_MCR_RTS 0x02 /* RTS complement */
60 #define UART_MCR_DTR 0x01 /* DTR complement */
61
62 /*
63 * These are the definitions for the Modem Status Register
64 */
65 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
66 #define UART_MSR_RI 0x40 /* Ring Indicator */
67 #define UART_MSR_DSR 0x20 /* Data Set Ready */
68 #define UART_MSR_CTS 0x10 /* Clear to Send */
69 #define UART_MSR_DDCD 0x08 /* Delta DCD */
70 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
71 #define UART_MSR_DDSR 0x02 /* Delta DSR */
72 #define UART_MSR_DCTS 0x01 /* Delta CTS */
73 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
74
75 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
76 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
77 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
78 #define UART_LSR_FE 0x08 /* Frame error indicator */
79 #define UART_LSR_PE 0x04 /* Parity error indicator */
80 #define UART_LSR_OE 0x02 /* Overrun error indicator */
81 #define UART_LSR_DR 0x01 /* Receiver data ready */
82 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
83
84 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
85
86 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
87 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
88 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
89 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
90
91 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
92 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
93 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
94 #define UART_FCR_FE 0x01 /* FIFO Enable */
95
96 #define MAX_XMIT_RETRY 4
97
98 #ifdef DEBUG_SERIAL
99 #define DPRINTF(fmt, ...) \
100 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
101 #else
102 #define DPRINTF(fmt, ...) \
103 do {} while (0)
104 #endif
105
106 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
107
108 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
109 {
110 /* Receive overruns do not overwrite FIFO contents. */
111 if (!fifo8_is_full(&s->recv_fifo)) {
112 fifo8_push(&s->recv_fifo, chr);
113 } else {
114 s->lsr |= UART_LSR_OE;
115 }
116 }
117
118 static void serial_update_irq(SerialState *s)
119 {
120 uint8_t tmp_iir = UART_IIR_NO_INT;
121
122 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
123 tmp_iir = UART_IIR_RLSI;
124 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
125 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
126 * this is not in the specification but is observed on existing
127 * hardware. */
128 tmp_iir = UART_IIR_CTI;
129 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
130 (!(s->fcr & UART_FCR_FE) ||
131 s->recv_fifo.num >= s->recv_fifo_itl)) {
132 tmp_iir = UART_IIR_RDI;
133 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
134 tmp_iir = UART_IIR_THRI;
135 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
136 tmp_iir = UART_IIR_MSI;
137 }
138
139 s->iir = tmp_iir | (s->iir & 0xF0);
140
141 if (tmp_iir != UART_IIR_NO_INT) {
142 qemu_irq_raise(s->irq);
143 } else {
144 qemu_irq_lower(s->irq);
145 }
146 }
147
148 static void serial_update_parameters(SerialState *s)
149 {
150 int speed, parity, data_bits, stop_bits, frame_size;
151 QEMUSerialSetParams ssp;
152
153 if (s->divider == 0)
154 return;
155
156 /* Start bit. */
157 frame_size = 1;
158 if (s->lcr & 0x08) {
159 /* Parity bit. */
160 frame_size++;
161 if (s->lcr & 0x10)
162 parity = 'E';
163 else
164 parity = 'O';
165 } else {
166 parity = 'N';
167 }
168 if (s->lcr & 0x04)
169 stop_bits = 2;
170 else
171 stop_bits = 1;
172
173 data_bits = (s->lcr & 0x03) + 5;
174 frame_size += data_bits + stop_bits;
175 speed = s->baudbase / s->divider;
176 ssp.speed = speed;
177 ssp.parity = parity;
178 ssp.data_bits = data_bits;
179 ssp.stop_bits = stop_bits;
180 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
181 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
182
183 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
184 speed, parity, data_bits, stop_bits);
185 }
186
187 static void serial_update_msl(SerialState *s)
188 {
189 uint8_t omsr;
190 int flags;
191
192 timer_del(s->modem_status_poll);
193
194 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
195 s->poll_msl = -1;
196 return;
197 }
198
199 omsr = s->msr;
200
201 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
202 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
203 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
204 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
205
206 if (s->msr != omsr) {
207 /* Set delta bits */
208 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
209 /* UART_MSR_TERI only if change was from 1 -> 0 */
210 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
211 s->msr &= ~UART_MSR_TERI;
212 serial_update_irq(s);
213 }
214
215 /* The real 16550A apparently has a 250ns response latency to line status changes.
216 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
217
218 if (s->poll_msl)
219 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + get_ticks_per_sec() / 100);
220 }
221
222 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
223 {
224 SerialState *s = opaque;
225
226 do {
227 if (s->tsr_retry <= 0) {
228 if (s->fcr & UART_FCR_FE) {
229 if (fifo8_is_empty(&s->xmit_fifo)) {
230 return FALSE;
231 }
232 s->tsr = fifo8_pop(&s->xmit_fifo);
233 if (!s->xmit_fifo.num) {
234 s->lsr |= UART_LSR_THRE;
235 }
236 } else if ((s->lsr & UART_LSR_THRE)) {
237 return FALSE;
238 } else {
239 s->tsr = s->thr;
240 s->lsr |= UART_LSR_THRE;
241 s->lsr &= ~UART_LSR_TEMT;
242 }
243 }
244
245 if (s->mcr & UART_MCR_LOOP) {
246 /* in loopback mode, say that we just received a char */
247 serial_receive1(s, &s->tsr, 1);
248 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) {
249 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY &&
250 qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
251 serial_xmit, s) > 0) {
252 s->tsr_retry++;
253 return FALSE;
254 }
255 s->tsr_retry = 0;
256 } else {
257 s->tsr_retry = 0;
258 }
259 /* Transmit another byte if it is already available. It is only
260 possible when FIFO is enabled and not empty. */
261 } while ((s->fcr & UART_FCR_FE) && !fifo8_is_empty(&s->xmit_fifo));
262
263 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
264
265 if (s->lsr & UART_LSR_THRE) {
266 s->lsr |= UART_LSR_TEMT;
267 s->thr_ipending = 1;
268 serial_update_irq(s);
269 }
270
271 return FALSE;
272 }
273
274
275 /* Setter for FCR.
276 is_load flag means, that value is set while loading VM state
277 and interrupt should not be invoked */
278 static void serial_write_fcr(SerialState *s, uint8_t val)
279 {
280 /* Set fcr - val only has the bits that are supposed to "stick" */
281 s->fcr = val;
282
283 if (val & UART_FCR_FE) {
284 s->iir |= UART_IIR_FE;
285 /* Set recv_fifo trigger Level */
286 switch (val & 0xC0) {
287 case UART_FCR_ITL_1:
288 s->recv_fifo_itl = 1;
289 break;
290 case UART_FCR_ITL_2:
291 s->recv_fifo_itl = 4;
292 break;
293 case UART_FCR_ITL_3:
294 s->recv_fifo_itl = 8;
295 break;
296 case UART_FCR_ITL_4:
297 s->recv_fifo_itl = 14;
298 break;
299 }
300 } else {
301 s->iir &= ~UART_IIR_FE;
302 }
303 }
304
305 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
306 unsigned size)
307 {
308 SerialState *s = opaque;
309
310 addr &= 7;
311 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
312 switch(addr) {
313 default:
314 case 0:
315 if (s->lcr & UART_LCR_DLAB) {
316 s->divider = (s->divider & 0xff00) | val;
317 serial_update_parameters(s);
318 } else {
319 s->thr = (uint8_t) val;
320 if(s->fcr & UART_FCR_FE) {
321 /* xmit overruns overwrite data, so make space if needed */
322 if (fifo8_is_full(&s->xmit_fifo)) {
323 fifo8_pop(&s->xmit_fifo);
324 }
325 fifo8_push(&s->xmit_fifo, s->thr);
326 s->lsr &= ~UART_LSR_TEMT;
327 }
328 s->thr_ipending = 0;
329 s->lsr &= ~UART_LSR_THRE;
330 serial_update_irq(s);
331 if (s->tsr_retry <= 0) {
332 serial_xmit(NULL, G_IO_OUT, s);
333 }
334 }
335 break;
336 case 1:
337 if (s->lcr & UART_LCR_DLAB) {
338 s->divider = (s->divider & 0x00ff) | (val << 8);
339 serial_update_parameters(s);
340 } else {
341 s->ier = val & 0x0f;
342 /* If the backend device is a real serial port, turn polling of the modem
343 status lines on physical port on or off depending on UART_IER_MSI state */
344 if (s->poll_msl >= 0) {
345 if (s->ier & UART_IER_MSI) {
346 s->poll_msl = 1;
347 serial_update_msl(s);
348 } else {
349 timer_del(s->modem_status_poll);
350 s->poll_msl = 0;
351 }
352 }
353 if (s->lsr & UART_LSR_THRE) {
354 s->thr_ipending = 1;
355 serial_update_irq(s);
356 }
357 }
358 break;
359 case 2:
360 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
361 if ((val ^ s->fcr) & UART_FCR_FE) {
362 val |= UART_FCR_XFR | UART_FCR_RFR;
363 }
364
365 /* FIFO clear */
366
367 if (val & UART_FCR_RFR) {
368 timer_del(s->fifo_timeout_timer);
369 s->timeout_ipending = 0;
370 fifo8_reset(&s->recv_fifo);
371 }
372
373 if (val & UART_FCR_XFR) {
374 fifo8_reset(&s->xmit_fifo);
375 }
376
377 serial_write_fcr(s, val & 0xC9);
378 serial_update_irq(s);
379 break;
380 case 3:
381 {
382 int break_enable;
383 s->lcr = val;
384 serial_update_parameters(s);
385 break_enable = (val >> 6) & 1;
386 if (break_enable != s->last_break_enable) {
387 s->last_break_enable = break_enable;
388 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
389 &break_enable);
390 }
391 }
392 break;
393 case 4:
394 {
395 int flags;
396 int old_mcr = s->mcr;
397 s->mcr = val & 0x1f;
398 if (val & UART_MCR_LOOP)
399 break;
400
401 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
402
403 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
404
405 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
406
407 if (val & UART_MCR_RTS)
408 flags |= CHR_TIOCM_RTS;
409 if (val & UART_MCR_DTR)
410 flags |= CHR_TIOCM_DTR;
411
412 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
413 /* Update the modem status after a one-character-send wait-time, since there may be a response
414 from the device/computer at the other end of the serial line */
415 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
416 }
417 }
418 break;
419 case 5:
420 break;
421 case 6:
422 break;
423 case 7:
424 s->scr = val;
425 break;
426 }
427 }
428
429 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
430 {
431 SerialState *s = opaque;
432 uint32_t ret;
433
434 addr &= 7;
435 switch(addr) {
436 default:
437 case 0:
438 if (s->lcr & UART_LCR_DLAB) {
439 ret = s->divider & 0xff;
440 } else {
441 if(s->fcr & UART_FCR_FE) {
442 ret = fifo8_is_empty(&s->recv_fifo) ?
443 0 : fifo8_pop(&s->recv_fifo);
444 if (s->recv_fifo.num == 0) {
445 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
446 } else {
447 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
448 }
449 s->timeout_ipending = 0;
450 } else {
451 ret = s->rbr;
452 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
453 }
454 serial_update_irq(s);
455 if (!(s->mcr & UART_MCR_LOOP)) {
456 /* in loopback mode, don't receive any data */
457 qemu_chr_accept_input(s->chr);
458 }
459 }
460 break;
461 case 1:
462 if (s->lcr & UART_LCR_DLAB) {
463 ret = (s->divider >> 8) & 0xff;
464 } else {
465 ret = s->ier;
466 }
467 break;
468 case 2:
469 ret = s->iir;
470 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
471 s->thr_ipending = 0;
472 serial_update_irq(s);
473 }
474 break;
475 case 3:
476 ret = s->lcr;
477 break;
478 case 4:
479 ret = s->mcr;
480 break;
481 case 5:
482 ret = s->lsr;
483 /* Clear break and overrun interrupts */
484 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
485 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
486 serial_update_irq(s);
487 }
488 break;
489 case 6:
490 if (s->mcr & UART_MCR_LOOP) {
491 /* in loopback, the modem output pins are connected to the
492 inputs */
493 ret = (s->mcr & 0x0c) << 4;
494 ret |= (s->mcr & 0x02) << 3;
495 ret |= (s->mcr & 0x01) << 5;
496 } else {
497 if (s->poll_msl >= 0)
498 serial_update_msl(s);
499 ret = s->msr;
500 /* Clear delta bits & msr int after read, if they were set */
501 if (s->msr & UART_MSR_ANY_DELTA) {
502 s->msr &= 0xF0;
503 serial_update_irq(s);
504 }
505 }
506 break;
507 case 7:
508 ret = s->scr;
509 break;
510 }
511 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
512 return ret;
513 }
514
515 static int serial_can_receive(SerialState *s)
516 {
517 if(s->fcr & UART_FCR_FE) {
518 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
519 /*
520 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
521 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
522 * effect will be to almost always fill the fifo completely before
523 * the guest has a chance to respond, effectively overriding the ITL
524 * that the guest has set.
525 */
526 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
527 s->recv_fifo_itl - s->recv_fifo.num : 1;
528 } else {
529 return 0;
530 }
531 } else {
532 return !(s->lsr & UART_LSR_DR);
533 }
534 }
535
536 static void serial_receive_break(SerialState *s)
537 {
538 s->rbr = 0;
539 /* When the LSR_DR is set a null byte is pushed into the fifo */
540 recv_fifo_put(s, '\0');
541 s->lsr |= UART_LSR_BI | UART_LSR_DR;
542 serial_update_irq(s);
543 }
544
545 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
546 static void fifo_timeout_int (void *opaque) {
547 SerialState *s = opaque;
548 if (s->recv_fifo.num) {
549 s->timeout_ipending = 1;
550 serial_update_irq(s);
551 }
552 }
553
554 static int serial_can_receive1(void *opaque)
555 {
556 SerialState *s = opaque;
557 return serial_can_receive(s);
558 }
559
560 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
561 {
562 SerialState *s = opaque;
563
564 if (s->wakeup) {
565 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
566 }
567 if(s->fcr & UART_FCR_FE) {
568 int i;
569 for (i = 0; i < size; i++) {
570 recv_fifo_put(s, buf[i]);
571 }
572 s->lsr |= UART_LSR_DR;
573 /* call the timeout receive callback in 4 char transmit time */
574 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
575 } else {
576 if (s->lsr & UART_LSR_DR)
577 s->lsr |= UART_LSR_OE;
578 s->rbr = buf[0];
579 s->lsr |= UART_LSR_DR;
580 }
581 serial_update_irq(s);
582 }
583
584 static void serial_event(void *opaque, int event)
585 {
586 SerialState *s = opaque;
587 DPRINTF("event %x\n", event);
588 if (event == CHR_EVENT_BREAK)
589 serial_receive_break(s);
590 }
591
592 static void serial_pre_save(void *opaque)
593 {
594 SerialState *s = opaque;
595 s->fcr_vmstate = s->fcr;
596 }
597
598 static int serial_pre_load(void *opaque)
599 {
600 SerialState *s = opaque;
601 s->thr_ipending = -1;
602 s->poll_msl = -1;
603 return 0;
604 }
605
606 static int serial_post_load(void *opaque, int version_id)
607 {
608 SerialState *s = opaque;
609
610 if (version_id < 3) {
611 s->fcr_vmstate = 0;
612 }
613 if (s->thr_ipending == -1) {
614 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
615 }
616 s->last_break_enable = (s->lcr >> 6) & 1;
617 /* Initialize fcr via setter to perform essential side-effects */
618 serial_write_fcr(s, s->fcr_vmstate);
619 serial_update_parameters(s);
620 return 0;
621 }
622
623 static bool serial_thr_ipending_needed(void *opaque)
624 {
625 SerialState *s = opaque;
626 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
627 return s->thr_ipending != expected_value;
628 }
629
630 const VMStateDescription vmstate_serial_thr_ipending = {
631 .name = "serial/thr_ipending",
632 .version_id = 1,
633 .minimum_version_id = 1,
634 .fields = (VMStateField[]) {
635 VMSTATE_INT32(thr_ipending, SerialState),
636 VMSTATE_END_OF_LIST()
637 }
638 };
639
640 static bool serial_tsr_needed(void *opaque)
641 {
642 SerialState *s = (SerialState *)opaque;
643 return s->tsr_retry != 0;
644 }
645
646 const VMStateDescription vmstate_serial_tsr = {
647 .name = "serial/tsr",
648 .version_id = 1,
649 .minimum_version_id = 1,
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(tsr_retry, SerialState),
652 VMSTATE_UINT8(thr, SerialState),
653 VMSTATE_UINT8(tsr, SerialState),
654 VMSTATE_END_OF_LIST()
655 }
656 };
657
658 static bool serial_recv_fifo_needed(void *opaque)
659 {
660 SerialState *s = (SerialState *)opaque;
661 return !fifo8_is_empty(&s->recv_fifo);
662
663 }
664
665 const VMStateDescription vmstate_serial_recv_fifo = {
666 .name = "serial/recv_fifo",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .fields = (VMStateField[]) {
670 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
671 VMSTATE_END_OF_LIST()
672 }
673 };
674
675 static bool serial_xmit_fifo_needed(void *opaque)
676 {
677 SerialState *s = (SerialState *)opaque;
678 return !fifo8_is_empty(&s->xmit_fifo);
679 }
680
681 const VMStateDescription vmstate_serial_xmit_fifo = {
682 .name = "serial/xmit_fifo",
683 .version_id = 1,
684 .minimum_version_id = 1,
685 .fields = (VMStateField[]) {
686 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
687 VMSTATE_END_OF_LIST()
688 }
689 };
690
691 static bool serial_fifo_timeout_timer_needed(void *opaque)
692 {
693 SerialState *s = (SerialState *)opaque;
694 return timer_pending(s->fifo_timeout_timer);
695 }
696
697 const VMStateDescription vmstate_serial_fifo_timeout_timer = {
698 .name = "serial/fifo_timeout_timer",
699 .version_id = 1,
700 .minimum_version_id = 1,
701 .fields = (VMStateField[]) {
702 VMSTATE_TIMER(fifo_timeout_timer, SerialState),
703 VMSTATE_END_OF_LIST()
704 }
705 };
706
707 static bool serial_timeout_ipending_needed(void *opaque)
708 {
709 SerialState *s = (SerialState *)opaque;
710 return s->timeout_ipending != 0;
711 }
712
713 const VMStateDescription vmstate_serial_timeout_ipending = {
714 .name = "serial/timeout_ipending",
715 .version_id = 1,
716 .minimum_version_id = 1,
717 .fields = (VMStateField[]) {
718 VMSTATE_INT32(timeout_ipending, SerialState),
719 VMSTATE_END_OF_LIST()
720 }
721 };
722
723 static bool serial_poll_needed(void *opaque)
724 {
725 SerialState *s = (SerialState *)opaque;
726 return s->poll_msl >= 0;
727 }
728
729 const VMStateDescription vmstate_serial_poll = {
730 .name = "serial/poll",
731 .version_id = 1,
732 .minimum_version_id = 1,
733 .fields = (VMStateField[]) {
734 VMSTATE_INT32(poll_msl, SerialState),
735 VMSTATE_TIMER(modem_status_poll, SerialState),
736 VMSTATE_END_OF_LIST()
737 }
738 };
739
740 const VMStateDescription vmstate_serial = {
741 .name = "serial",
742 .version_id = 3,
743 .minimum_version_id = 2,
744 .pre_save = serial_pre_save,
745 .pre_load = serial_pre_load,
746 .post_load = serial_post_load,
747 .fields = (VMStateField[]) {
748 VMSTATE_UINT16_V(divider, SerialState, 2),
749 VMSTATE_UINT8(rbr, SerialState),
750 VMSTATE_UINT8(ier, SerialState),
751 VMSTATE_UINT8(iir, SerialState),
752 VMSTATE_UINT8(lcr, SerialState),
753 VMSTATE_UINT8(mcr, SerialState),
754 VMSTATE_UINT8(lsr, SerialState),
755 VMSTATE_UINT8(msr, SerialState),
756 VMSTATE_UINT8(scr, SerialState),
757 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
758 VMSTATE_END_OF_LIST()
759 },
760 .subsections = (VMStateSubsection[]) {
761 {
762 .vmsd = &vmstate_serial_thr_ipending,
763 .needed = &serial_thr_ipending_needed,
764 } , {
765 .vmsd = &vmstate_serial_tsr,
766 .needed = &serial_tsr_needed,
767 } , {
768 .vmsd = &vmstate_serial_recv_fifo,
769 .needed = &serial_recv_fifo_needed,
770 } , {
771 .vmsd = &vmstate_serial_xmit_fifo,
772 .needed = &serial_xmit_fifo_needed,
773 } , {
774 .vmsd = &vmstate_serial_fifo_timeout_timer,
775 .needed = &serial_fifo_timeout_timer_needed,
776 } , {
777 .vmsd = &vmstate_serial_timeout_ipending,
778 .needed = &serial_timeout_ipending_needed,
779 } , {
780 .vmsd = &vmstate_serial_poll,
781 .needed = &serial_poll_needed,
782 } , {
783 /* empty */
784 }
785 }
786 };
787
788 static void serial_reset(void *opaque)
789 {
790 SerialState *s = opaque;
791
792 s->rbr = 0;
793 s->ier = 0;
794 s->iir = UART_IIR_NO_INT;
795 s->lcr = 0;
796 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
797 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
798 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
799 s->divider = 0x0C;
800 s->mcr = UART_MCR_OUT2;
801 s->scr = 0;
802 s->tsr_retry = 0;
803 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10;
804 s->poll_msl = 0;
805
806 s->timeout_ipending = 0;
807 timer_del(s->fifo_timeout_timer);
808 timer_del(s->modem_status_poll);
809
810 fifo8_reset(&s->recv_fifo);
811 fifo8_reset(&s->xmit_fifo);
812
813 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
814
815 s->thr_ipending = 0;
816 s->last_break_enable = 0;
817 qemu_irq_lower(s->irq);
818 }
819
820 void serial_realize_core(SerialState *s, Error **errp)
821 {
822 if (!s->chr) {
823 error_setg(errp, "Can't create serial device, empty char device");
824 return;
825 }
826
827 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
828
829 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
830 qemu_register_reset(serial_reset, s);
831
832 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
833 serial_event, s);
834 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
835 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
836 }
837
838 void serial_exit_core(SerialState *s)
839 {
840 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
841 qemu_unregister_reset(serial_reset, s);
842 }
843
844 /* Change the main reference oscillator frequency. */
845 void serial_set_frequency(SerialState *s, uint32_t frequency)
846 {
847 s->baudbase = frequency;
848 serial_update_parameters(s);
849 }
850
851 const MemoryRegionOps serial_io_ops = {
852 .read = serial_ioport_read,
853 .write = serial_ioport_write,
854 .impl = {
855 .min_access_size = 1,
856 .max_access_size = 1,
857 },
858 .endianness = DEVICE_LITTLE_ENDIAN,
859 };
860
861 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
862 CharDriverState *chr, MemoryRegion *system_io)
863 {
864 SerialState *s;
865 Error *err = NULL;
866
867 s = g_malloc0(sizeof(SerialState));
868
869 s->irq = irq;
870 s->baudbase = baudbase;
871 s->chr = chr;
872 serial_realize_core(s, &err);
873 if (err != NULL) {
874 error_report("%s", error_get_pretty(err));
875 error_free(err);
876 exit(1);
877 }
878
879 vmstate_register(NULL, base, &vmstate_serial, s);
880
881 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
882 memory_region_add_subregion(system_io, base, &s->io);
883
884 return s;
885 }
886
887 /* Memory mapped interface */
888 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
889 unsigned size)
890 {
891 SerialState *s = opaque;
892 return serial_ioport_read(s, addr >> s->it_shift, 1);
893 }
894
895 static void serial_mm_write(void *opaque, hwaddr addr,
896 uint64_t value, unsigned size)
897 {
898 SerialState *s = opaque;
899 value &= ~0u >> (32 - (size * 8));
900 serial_ioport_write(s, addr >> s->it_shift, value, 1);
901 }
902
903 static const MemoryRegionOps serial_mm_ops[3] = {
904 [DEVICE_NATIVE_ENDIAN] = {
905 .read = serial_mm_read,
906 .write = serial_mm_write,
907 .endianness = DEVICE_NATIVE_ENDIAN,
908 },
909 [DEVICE_LITTLE_ENDIAN] = {
910 .read = serial_mm_read,
911 .write = serial_mm_write,
912 .endianness = DEVICE_LITTLE_ENDIAN,
913 },
914 [DEVICE_BIG_ENDIAN] = {
915 .read = serial_mm_read,
916 .write = serial_mm_write,
917 .endianness = DEVICE_BIG_ENDIAN,
918 },
919 };
920
921 SerialState *serial_mm_init(MemoryRegion *address_space,
922 hwaddr base, int it_shift,
923 qemu_irq irq, int baudbase,
924 CharDriverState *chr, enum device_endian end)
925 {
926 SerialState *s;
927 Error *err = NULL;
928
929 s = g_malloc0(sizeof(SerialState));
930
931 s->it_shift = it_shift;
932 s->irq = irq;
933 s->baudbase = baudbase;
934 s->chr = chr;
935
936 serial_realize_core(s, &err);
937 if (err != NULL) {
938 error_report("%s", error_get_pretty(err));
939 error_free(err);
940 exit(1);
941 }
942 vmstate_register(NULL, base, &vmstate_serial, s);
943
944 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
945 "serial", 8 << it_shift);
946 memory_region_add_subregion(address_space, base, &s->io);
947
948 serial_update_msl(s);
949 return s;
950 }