]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
Merge remote-tracking branch 'remotes/kraxel/tags/vga-20180604-pull-request' into...
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "chardev/char-serial.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "qemu/error-report.h"
32
33 //#define DEBUG_SERIAL
34
35 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
36
37 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
38 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
39 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
40 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
41
42 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
43 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
44
45 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
46 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
47 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
48 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
49 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
50
51 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
52 #define UART_IIR_FE 0xC0 /* Fifo enabled */
53
54 /*
55 * These are the definitions for the Modem Control Register
56 */
57 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
58 #define UART_MCR_OUT2 0x08 /* Out2 complement */
59 #define UART_MCR_OUT1 0x04 /* Out1 complement */
60 #define UART_MCR_RTS 0x02 /* RTS complement */
61 #define UART_MCR_DTR 0x01 /* DTR complement */
62
63 /*
64 * These are the definitions for the Modem Status Register
65 */
66 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
67 #define UART_MSR_RI 0x40 /* Ring Indicator */
68 #define UART_MSR_DSR 0x20 /* Data Set Ready */
69 #define UART_MSR_CTS 0x10 /* Clear to Send */
70 #define UART_MSR_DDCD 0x08 /* Delta DCD */
71 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
72 #define UART_MSR_DDSR 0x02 /* Delta DSR */
73 #define UART_MSR_DCTS 0x01 /* Delta CTS */
74 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
75
76 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
77 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
78 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
79 #define UART_LSR_FE 0x08 /* Frame error indicator */
80 #define UART_LSR_PE 0x04 /* Parity error indicator */
81 #define UART_LSR_OE 0x02 /* Overrun error indicator */
82 #define UART_LSR_DR 0x01 /* Receiver data ready */
83 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
84
85 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
86
87 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
88 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
89 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
90 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
91
92 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
93 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
94 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
95 #define UART_FCR_FE 0x01 /* FIFO Enable */
96
97 #define MAX_XMIT_RETRY 4
98
99 #ifdef DEBUG_SERIAL
100 #define DPRINTF(fmt, ...) \
101 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
102 #else
103 #define DPRINTF(fmt, ...) \
104 do {} while (0)
105 #endif
106
107 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
108 static void serial_xmit(SerialState *s);
109
110 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
111 {
112 /* Receive overruns do not overwrite FIFO contents. */
113 if (!fifo8_is_full(&s->recv_fifo)) {
114 fifo8_push(&s->recv_fifo, chr);
115 } else {
116 s->lsr |= UART_LSR_OE;
117 }
118 }
119
120 static void serial_update_irq(SerialState *s)
121 {
122 uint8_t tmp_iir = UART_IIR_NO_INT;
123
124 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
125 tmp_iir = UART_IIR_RLSI;
126 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
127 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
128 * this is not in the specification but is observed on existing
129 * hardware. */
130 tmp_iir = UART_IIR_CTI;
131 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
132 (!(s->fcr & UART_FCR_FE) ||
133 s->recv_fifo.num >= s->recv_fifo_itl)) {
134 tmp_iir = UART_IIR_RDI;
135 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
136 tmp_iir = UART_IIR_THRI;
137 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
138 tmp_iir = UART_IIR_MSI;
139 }
140
141 s->iir = tmp_iir | (s->iir & 0xF0);
142
143 if (tmp_iir != UART_IIR_NO_INT) {
144 qemu_irq_raise(s->irq);
145 } else {
146 qemu_irq_lower(s->irq);
147 }
148 }
149
150 static void serial_update_parameters(SerialState *s)
151 {
152 int speed, parity, data_bits, stop_bits, frame_size;
153 QEMUSerialSetParams ssp;
154
155 if (s->divider == 0 || s->divider > s->baudbase) {
156 return;
157 }
158
159 /* Start bit. */
160 frame_size = 1;
161 if (s->lcr & 0x08) {
162 /* Parity bit. */
163 frame_size++;
164 if (s->lcr & 0x10)
165 parity = 'E';
166 else
167 parity = 'O';
168 } else {
169 parity = 'N';
170 }
171 if (s->lcr & 0x04)
172 stop_bits = 2;
173 else
174 stop_bits = 1;
175
176 data_bits = (s->lcr & 0x03) + 5;
177 frame_size += data_bits + stop_bits;
178 speed = s->baudbase / s->divider;
179 ssp.speed = speed;
180 ssp.parity = parity;
181 ssp.data_bits = data_bits;
182 ssp.stop_bits = stop_bits;
183 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
184 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
185
186 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
187 speed, parity, data_bits, stop_bits);
188 }
189
190 static void serial_update_msl(SerialState *s)
191 {
192 uint8_t omsr;
193 int flags;
194
195 timer_del(s->modem_status_poll);
196
197 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
198 &flags) == -ENOTSUP) {
199 s->poll_msl = -1;
200 return;
201 }
202
203 omsr = s->msr;
204
205 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
206 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
207 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
208 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
209
210 if (s->msr != omsr) {
211 /* Set delta bits */
212 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
213 /* UART_MSR_TERI only if change was from 1 -> 0 */
214 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
215 s->msr &= ~UART_MSR_TERI;
216 serial_update_irq(s);
217 }
218
219 /* The real 16550A apparently has a 250ns response latency to line status changes.
220 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
221
222 if (s->poll_msl) {
223 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
224 NANOSECONDS_PER_SECOND / 100);
225 }
226 }
227
228 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
229 void *opaque)
230 {
231 SerialState *s = opaque;
232 s->watch_tag = 0;
233 serial_xmit(s);
234 return FALSE;
235 }
236
237 static void serial_xmit(SerialState *s)
238 {
239 do {
240 assert(!(s->lsr & UART_LSR_TEMT));
241 if (s->tsr_retry == 0) {
242 assert(!(s->lsr & UART_LSR_THRE));
243
244 if (s->fcr & UART_FCR_FE) {
245 assert(!fifo8_is_empty(&s->xmit_fifo));
246 s->tsr = fifo8_pop(&s->xmit_fifo);
247 if (!s->xmit_fifo.num) {
248 s->lsr |= UART_LSR_THRE;
249 }
250 } else {
251 s->tsr = s->thr;
252 s->lsr |= UART_LSR_THRE;
253 }
254 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
255 s->thr_ipending = 1;
256 serial_update_irq(s);
257 }
258 }
259
260 if (s->mcr & UART_MCR_LOOP) {
261 /* in loopback mode, say that we just received a char */
262 serial_receive1(s, &s->tsr, 1);
263 } else if (qemu_chr_fe_write(&s->chr, &s->tsr, 1) != 1 &&
264 s->tsr_retry < MAX_XMIT_RETRY) {
265 assert(s->watch_tag == 0);
266 s->watch_tag =
267 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
268 serial_watch_cb, s);
269 if (s->watch_tag > 0) {
270 s->tsr_retry++;
271 return;
272 }
273 }
274 s->tsr_retry = 0;
275
276 /* Transmit another byte if it is already available. It is only
277 possible when FIFO is enabled and not empty. */
278 } while (!(s->lsr & UART_LSR_THRE));
279
280 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
281 s->lsr |= UART_LSR_TEMT;
282 }
283
284 /* Setter for FCR.
285 is_load flag means, that value is set while loading VM state
286 and interrupt should not be invoked */
287 static void serial_write_fcr(SerialState *s, uint8_t val)
288 {
289 /* Set fcr - val only has the bits that are supposed to "stick" */
290 s->fcr = val;
291
292 if (val & UART_FCR_FE) {
293 s->iir |= UART_IIR_FE;
294 /* Set recv_fifo trigger Level */
295 switch (val & 0xC0) {
296 case UART_FCR_ITL_1:
297 s->recv_fifo_itl = 1;
298 break;
299 case UART_FCR_ITL_2:
300 s->recv_fifo_itl = 4;
301 break;
302 case UART_FCR_ITL_3:
303 s->recv_fifo_itl = 8;
304 break;
305 case UART_FCR_ITL_4:
306 s->recv_fifo_itl = 14;
307 break;
308 }
309 } else {
310 s->iir &= ~UART_IIR_FE;
311 }
312 }
313
314 static void serial_update_tiocm(SerialState *s)
315 {
316 int flags;
317
318 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
319
320 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
321
322 if (s->mcr & UART_MCR_RTS) {
323 flags |= CHR_TIOCM_RTS;
324 }
325 if (s->mcr & UART_MCR_DTR) {
326 flags |= CHR_TIOCM_DTR;
327 }
328
329 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
330 }
331
332 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
333 unsigned size)
334 {
335 SerialState *s = opaque;
336
337 addr &= 7;
338 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
339 switch(addr) {
340 default:
341 case 0:
342 if (s->lcr & UART_LCR_DLAB) {
343 s->divider = (s->divider & 0xff00) | val;
344 serial_update_parameters(s);
345 } else {
346 s->thr = (uint8_t) val;
347 if(s->fcr & UART_FCR_FE) {
348 /* xmit overruns overwrite data, so make space if needed */
349 if (fifo8_is_full(&s->xmit_fifo)) {
350 fifo8_pop(&s->xmit_fifo);
351 }
352 fifo8_push(&s->xmit_fifo, s->thr);
353 }
354 s->thr_ipending = 0;
355 s->lsr &= ~UART_LSR_THRE;
356 s->lsr &= ~UART_LSR_TEMT;
357 serial_update_irq(s);
358 if (s->tsr_retry == 0) {
359 serial_xmit(s);
360 }
361 }
362 break;
363 case 1:
364 if (s->lcr & UART_LCR_DLAB) {
365 s->divider = (s->divider & 0x00ff) | (val << 8);
366 serial_update_parameters(s);
367 } else {
368 uint8_t changed = (s->ier ^ val) & 0x0f;
369 s->ier = val & 0x0f;
370 /* If the backend device is a real serial port, turn polling of the modem
371 * status lines on physical port on or off depending on UART_IER_MSI state.
372 */
373 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
374 if (s->ier & UART_IER_MSI) {
375 s->poll_msl = 1;
376 serial_update_msl(s);
377 } else {
378 timer_del(s->modem_status_poll);
379 s->poll_msl = 0;
380 }
381 }
382
383 /* Turning on the THRE interrupt on IER can trigger the interrupt
384 * if LSR.THRE=1, even if it had been masked before by reading IIR.
385 * This is not in the datasheet, but Windows relies on it. It is
386 * unclear if THRE has to be resampled every time THRI becomes
387 * 1, or only on the rising edge. Bochs does the latter, and Windows
388 * always toggles IER to all zeroes and back to all ones, so do the
389 * same.
390 *
391 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
392 * so that the thr_ipending subsection is not migrated.
393 */
394 if (changed & UART_IER_THRI) {
395 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
396 s->thr_ipending = 1;
397 } else {
398 s->thr_ipending = 0;
399 }
400 }
401
402 if (changed) {
403 serial_update_irq(s);
404 }
405 }
406 break;
407 case 2:
408 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
409 if ((val ^ s->fcr) & UART_FCR_FE) {
410 val |= UART_FCR_XFR | UART_FCR_RFR;
411 }
412
413 /* FIFO clear */
414
415 if (val & UART_FCR_RFR) {
416 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
417 timer_del(s->fifo_timeout_timer);
418 s->timeout_ipending = 0;
419 fifo8_reset(&s->recv_fifo);
420 }
421
422 if (val & UART_FCR_XFR) {
423 s->lsr |= UART_LSR_THRE;
424 s->thr_ipending = 1;
425 fifo8_reset(&s->xmit_fifo);
426 }
427
428 serial_write_fcr(s, val & 0xC9);
429 serial_update_irq(s);
430 break;
431 case 3:
432 {
433 int break_enable;
434 s->lcr = val;
435 serial_update_parameters(s);
436 break_enable = (val >> 6) & 1;
437 if (break_enable != s->last_break_enable) {
438 s->last_break_enable = break_enable;
439 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
440 &break_enable);
441 }
442 }
443 break;
444 case 4:
445 {
446 int old_mcr = s->mcr;
447 s->mcr = val & 0x1f;
448 if (val & UART_MCR_LOOP)
449 break;
450
451 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
452 serial_update_tiocm(s);
453 /* Update the modem status after a one-character-send wait-time, since there may be a response
454 from the device/computer at the other end of the serial line */
455 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
456 }
457 }
458 break;
459 case 5:
460 break;
461 case 6:
462 break;
463 case 7:
464 s->scr = val;
465 break;
466 }
467 }
468
469 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
470 {
471 SerialState *s = opaque;
472 uint32_t ret;
473
474 addr &= 7;
475 switch(addr) {
476 default:
477 case 0:
478 if (s->lcr & UART_LCR_DLAB) {
479 ret = s->divider & 0xff;
480 } else {
481 if(s->fcr & UART_FCR_FE) {
482 ret = fifo8_is_empty(&s->recv_fifo) ?
483 0 : fifo8_pop(&s->recv_fifo);
484 if (s->recv_fifo.num == 0) {
485 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
486 } else {
487 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
488 }
489 s->timeout_ipending = 0;
490 } else {
491 ret = s->rbr;
492 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
493 }
494 serial_update_irq(s);
495 if (!(s->mcr & UART_MCR_LOOP)) {
496 /* in loopback mode, don't receive any data */
497 qemu_chr_fe_accept_input(&s->chr);
498 }
499 }
500 break;
501 case 1:
502 if (s->lcr & UART_LCR_DLAB) {
503 ret = (s->divider >> 8) & 0xff;
504 } else {
505 ret = s->ier;
506 }
507 break;
508 case 2:
509 ret = s->iir;
510 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
511 s->thr_ipending = 0;
512 serial_update_irq(s);
513 }
514 break;
515 case 3:
516 ret = s->lcr;
517 break;
518 case 4:
519 ret = s->mcr;
520 break;
521 case 5:
522 ret = s->lsr;
523 /* Clear break and overrun interrupts */
524 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
525 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
526 serial_update_irq(s);
527 }
528 break;
529 case 6:
530 if (s->mcr & UART_MCR_LOOP) {
531 /* in loopback, the modem output pins are connected to the
532 inputs */
533 ret = (s->mcr & 0x0c) << 4;
534 ret |= (s->mcr & 0x02) << 3;
535 ret |= (s->mcr & 0x01) << 5;
536 } else {
537 if (s->poll_msl >= 0)
538 serial_update_msl(s);
539 ret = s->msr;
540 /* Clear delta bits & msr int after read, if they were set */
541 if (s->msr & UART_MSR_ANY_DELTA) {
542 s->msr &= 0xF0;
543 serial_update_irq(s);
544 }
545 }
546 break;
547 case 7:
548 ret = s->scr;
549 break;
550 }
551 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
552 return ret;
553 }
554
555 static int serial_can_receive(SerialState *s)
556 {
557 if(s->fcr & UART_FCR_FE) {
558 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
559 /*
560 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
561 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
562 * effect will be to almost always fill the fifo completely before
563 * the guest has a chance to respond, effectively overriding the ITL
564 * that the guest has set.
565 */
566 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
567 s->recv_fifo_itl - s->recv_fifo.num : 1;
568 } else {
569 return 0;
570 }
571 } else {
572 return !(s->lsr & UART_LSR_DR);
573 }
574 }
575
576 static void serial_receive_break(SerialState *s)
577 {
578 s->rbr = 0;
579 /* When the LSR_DR is set a null byte is pushed into the fifo */
580 recv_fifo_put(s, '\0');
581 s->lsr |= UART_LSR_BI | UART_LSR_DR;
582 serial_update_irq(s);
583 }
584
585 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
586 static void fifo_timeout_int (void *opaque) {
587 SerialState *s = opaque;
588 if (s->recv_fifo.num) {
589 s->timeout_ipending = 1;
590 serial_update_irq(s);
591 }
592 }
593
594 static int serial_can_receive1(void *opaque)
595 {
596 SerialState *s = opaque;
597 return serial_can_receive(s);
598 }
599
600 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
601 {
602 SerialState *s = opaque;
603
604 if (s->wakeup) {
605 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
606 }
607 if(s->fcr & UART_FCR_FE) {
608 int i;
609 for (i = 0; i < size; i++) {
610 recv_fifo_put(s, buf[i]);
611 }
612 s->lsr |= UART_LSR_DR;
613 /* call the timeout receive callback in 4 char transmit time */
614 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
615 } else {
616 if (s->lsr & UART_LSR_DR)
617 s->lsr |= UART_LSR_OE;
618 s->rbr = buf[0];
619 s->lsr |= UART_LSR_DR;
620 }
621 serial_update_irq(s);
622 }
623
624 static void serial_event(void *opaque, int event)
625 {
626 SerialState *s = opaque;
627 DPRINTF("event %x\n", event);
628 if (event == CHR_EVENT_BREAK)
629 serial_receive_break(s);
630 }
631
632 static int serial_pre_save(void *opaque)
633 {
634 SerialState *s = opaque;
635 s->fcr_vmstate = s->fcr;
636
637 return 0;
638 }
639
640 static int serial_pre_load(void *opaque)
641 {
642 SerialState *s = opaque;
643 s->thr_ipending = -1;
644 s->poll_msl = -1;
645 return 0;
646 }
647
648 static int serial_post_load(void *opaque, int version_id)
649 {
650 SerialState *s = opaque;
651
652 if (version_id < 3) {
653 s->fcr_vmstate = 0;
654 }
655 if (s->thr_ipending == -1) {
656 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
657 }
658
659 if (s->tsr_retry > 0) {
660 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
661 if (s->lsr & UART_LSR_TEMT) {
662 error_report("inconsistent state in serial device "
663 "(tsr empty, tsr_retry=%d", s->tsr_retry);
664 return -1;
665 }
666
667 if (s->tsr_retry > MAX_XMIT_RETRY) {
668 s->tsr_retry = MAX_XMIT_RETRY;
669 }
670
671 assert(s->watch_tag == 0);
672 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
673 serial_watch_cb, s);
674 } else {
675 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
676 if (!(s->lsr & UART_LSR_TEMT)) {
677 error_report("inconsistent state in serial device "
678 "(tsr not empty, tsr_retry=0");
679 return -1;
680 }
681 }
682
683 s->last_break_enable = (s->lcr >> 6) & 1;
684 /* Initialize fcr via setter to perform essential side-effects */
685 serial_write_fcr(s, s->fcr_vmstate);
686 serial_update_parameters(s);
687 return 0;
688 }
689
690 static bool serial_thr_ipending_needed(void *opaque)
691 {
692 SerialState *s = opaque;
693
694 if (s->ier & UART_IER_THRI) {
695 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
696 return s->thr_ipending != expected_value;
697 } else {
698 /* LSR.THRE will be sampled again when the interrupt is
699 * enabled. thr_ipending is not used in this case, do
700 * not migrate it.
701 */
702 return false;
703 }
704 }
705
706 static const VMStateDescription vmstate_serial_thr_ipending = {
707 .name = "serial/thr_ipending",
708 .version_id = 1,
709 .minimum_version_id = 1,
710 .needed = serial_thr_ipending_needed,
711 .fields = (VMStateField[]) {
712 VMSTATE_INT32(thr_ipending, SerialState),
713 VMSTATE_END_OF_LIST()
714 }
715 };
716
717 static bool serial_tsr_needed(void *opaque)
718 {
719 SerialState *s = (SerialState *)opaque;
720 return s->tsr_retry != 0;
721 }
722
723 static const VMStateDescription vmstate_serial_tsr = {
724 .name = "serial/tsr",
725 .version_id = 1,
726 .minimum_version_id = 1,
727 .needed = serial_tsr_needed,
728 .fields = (VMStateField[]) {
729 VMSTATE_UINT32(tsr_retry, SerialState),
730 VMSTATE_UINT8(thr, SerialState),
731 VMSTATE_UINT8(tsr, SerialState),
732 VMSTATE_END_OF_LIST()
733 }
734 };
735
736 static bool serial_recv_fifo_needed(void *opaque)
737 {
738 SerialState *s = (SerialState *)opaque;
739 return !fifo8_is_empty(&s->recv_fifo);
740
741 }
742
743 static const VMStateDescription vmstate_serial_recv_fifo = {
744 .name = "serial/recv_fifo",
745 .version_id = 1,
746 .minimum_version_id = 1,
747 .needed = serial_recv_fifo_needed,
748 .fields = (VMStateField[]) {
749 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
750 VMSTATE_END_OF_LIST()
751 }
752 };
753
754 static bool serial_xmit_fifo_needed(void *opaque)
755 {
756 SerialState *s = (SerialState *)opaque;
757 return !fifo8_is_empty(&s->xmit_fifo);
758 }
759
760 static const VMStateDescription vmstate_serial_xmit_fifo = {
761 .name = "serial/xmit_fifo",
762 .version_id = 1,
763 .minimum_version_id = 1,
764 .needed = serial_xmit_fifo_needed,
765 .fields = (VMStateField[]) {
766 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
767 VMSTATE_END_OF_LIST()
768 }
769 };
770
771 static bool serial_fifo_timeout_timer_needed(void *opaque)
772 {
773 SerialState *s = (SerialState *)opaque;
774 return timer_pending(s->fifo_timeout_timer);
775 }
776
777 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
778 .name = "serial/fifo_timeout_timer",
779 .version_id = 1,
780 .minimum_version_id = 1,
781 .needed = serial_fifo_timeout_timer_needed,
782 .fields = (VMStateField[]) {
783 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
784 VMSTATE_END_OF_LIST()
785 }
786 };
787
788 static bool serial_timeout_ipending_needed(void *opaque)
789 {
790 SerialState *s = (SerialState *)opaque;
791 return s->timeout_ipending != 0;
792 }
793
794 static const VMStateDescription vmstate_serial_timeout_ipending = {
795 .name = "serial/timeout_ipending",
796 .version_id = 1,
797 .minimum_version_id = 1,
798 .needed = serial_timeout_ipending_needed,
799 .fields = (VMStateField[]) {
800 VMSTATE_INT32(timeout_ipending, SerialState),
801 VMSTATE_END_OF_LIST()
802 }
803 };
804
805 static bool serial_poll_needed(void *opaque)
806 {
807 SerialState *s = (SerialState *)opaque;
808 return s->poll_msl >= 0;
809 }
810
811 static const VMStateDescription vmstate_serial_poll = {
812 .name = "serial/poll",
813 .version_id = 1,
814 .needed = serial_poll_needed,
815 .minimum_version_id = 1,
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(poll_msl, SerialState),
818 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
819 VMSTATE_END_OF_LIST()
820 }
821 };
822
823 const VMStateDescription vmstate_serial = {
824 .name = "serial",
825 .version_id = 3,
826 .minimum_version_id = 2,
827 .pre_save = serial_pre_save,
828 .pre_load = serial_pre_load,
829 .post_load = serial_post_load,
830 .fields = (VMStateField[]) {
831 VMSTATE_UINT16_V(divider, SerialState, 2),
832 VMSTATE_UINT8(rbr, SerialState),
833 VMSTATE_UINT8(ier, SerialState),
834 VMSTATE_UINT8(iir, SerialState),
835 VMSTATE_UINT8(lcr, SerialState),
836 VMSTATE_UINT8(mcr, SerialState),
837 VMSTATE_UINT8(lsr, SerialState),
838 VMSTATE_UINT8(msr, SerialState),
839 VMSTATE_UINT8(scr, SerialState),
840 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
841 VMSTATE_END_OF_LIST()
842 },
843 .subsections = (const VMStateDescription*[]) {
844 &vmstate_serial_thr_ipending,
845 &vmstate_serial_tsr,
846 &vmstate_serial_recv_fifo,
847 &vmstate_serial_xmit_fifo,
848 &vmstate_serial_fifo_timeout_timer,
849 &vmstate_serial_timeout_ipending,
850 &vmstate_serial_poll,
851 NULL
852 }
853 };
854
855 static void serial_reset(void *opaque)
856 {
857 SerialState *s = opaque;
858
859 if (s->watch_tag > 0) {
860 g_source_remove(s->watch_tag);
861 s->watch_tag = 0;
862 }
863
864 s->rbr = 0;
865 s->ier = 0;
866 s->iir = UART_IIR_NO_INT;
867 s->lcr = 0;
868 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
869 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
870 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
871 s->divider = 0x0C;
872 s->mcr = UART_MCR_OUT2;
873 s->scr = 0;
874 s->tsr_retry = 0;
875 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
876 s->poll_msl = 0;
877
878 s->timeout_ipending = 0;
879 timer_del(s->fifo_timeout_timer);
880 timer_del(s->modem_status_poll);
881
882 fifo8_reset(&s->recv_fifo);
883 fifo8_reset(&s->xmit_fifo);
884
885 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
886
887 s->thr_ipending = 0;
888 s->last_break_enable = 0;
889 qemu_irq_lower(s->irq);
890
891 serial_update_msl(s);
892 s->msr &= ~UART_MSR_ANY_DELTA;
893 }
894
895 static int serial_be_change(void *opaque)
896 {
897 SerialState *s = opaque;
898
899 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
900 serial_event, serial_be_change, s, NULL, true);
901
902 serial_update_parameters(s);
903
904 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
905 &s->last_break_enable);
906
907 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
908 serial_update_msl(s);
909
910 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
911 serial_update_tiocm(s);
912 }
913
914 if (s->watch_tag > 0) {
915 g_source_remove(s->watch_tag);
916 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
917 serial_watch_cb, s);
918 }
919
920 return 0;
921 }
922
923 void serial_realize_core(SerialState *s, Error **errp)
924 {
925 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
926
927 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
928 qemu_register_reset(serial_reset, s);
929
930 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
931 serial_event, serial_be_change, s, NULL, true);
932 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
933 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
934 serial_reset(s);
935 }
936
937 void serial_exit_core(SerialState *s)
938 {
939 qemu_chr_fe_deinit(&s->chr, false);
940
941 timer_del(s->modem_status_poll);
942 timer_free(s->modem_status_poll);
943
944 timer_del(s->fifo_timeout_timer);
945 timer_free(s->fifo_timeout_timer);
946
947 fifo8_destroy(&s->recv_fifo);
948 fifo8_destroy(&s->xmit_fifo);
949
950 qemu_unregister_reset(serial_reset, s);
951 }
952
953 /* Change the main reference oscillator frequency. */
954 void serial_set_frequency(SerialState *s, uint32_t frequency)
955 {
956 s->baudbase = frequency;
957 serial_update_parameters(s);
958 }
959
960 const MemoryRegionOps serial_io_ops = {
961 .read = serial_ioport_read,
962 .write = serial_ioport_write,
963 .impl = {
964 .min_access_size = 1,
965 .max_access_size = 1,
966 },
967 .endianness = DEVICE_LITTLE_ENDIAN,
968 };
969
970 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
971 Chardev *chr, MemoryRegion *system_io)
972 {
973 SerialState *s;
974
975 s = g_malloc0(sizeof(SerialState));
976
977 s->irq = irq;
978 s->baudbase = baudbase;
979 qemu_chr_fe_init(&s->chr, chr, &error_abort);
980 serial_realize_core(s, &error_fatal);
981
982 vmstate_register(NULL, base, &vmstate_serial, s);
983
984 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
985 memory_region_add_subregion(system_io, base, &s->io);
986
987 return s;
988 }
989
990 /* Memory mapped interface */
991 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
992 unsigned size)
993 {
994 SerialState *s = opaque;
995 return serial_ioport_read(s, addr >> s->it_shift, 1);
996 }
997
998 static void serial_mm_write(void *opaque, hwaddr addr,
999 uint64_t value, unsigned size)
1000 {
1001 SerialState *s = opaque;
1002 value &= 255;
1003 serial_ioport_write(s, addr >> s->it_shift, value, 1);
1004 }
1005
1006 static const MemoryRegionOps serial_mm_ops[3] = {
1007 [DEVICE_NATIVE_ENDIAN] = {
1008 .read = serial_mm_read,
1009 .write = serial_mm_write,
1010 .endianness = DEVICE_NATIVE_ENDIAN,
1011 .valid.max_access_size = 8,
1012 .impl.max_access_size = 8,
1013 },
1014 [DEVICE_LITTLE_ENDIAN] = {
1015 .read = serial_mm_read,
1016 .write = serial_mm_write,
1017 .endianness = DEVICE_LITTLE_ENDIAN,
1018 .valid.max_access_size = 8,
1019 .impl.max_access_size = 8,
1020 },
1021 [DEVICE_BIG_ENDIAN] = {
1022 .read = serial_mm_read,
1023 .write = serial_mm_write,
1024 .endianness = DEVICE_BIG_ENDIAN,
1025 .valid.max_access_size = 8,
1026 .impl.max_access_size = 8,
1027 },
1028 };
1029
1030 SerialState *serial_mm_init(MemoryRegion *address_space,
1031 hwaddr base, int it_shift,
1032 qemu_irq irq, int baudbase,
1033 Chardev *chr, enum device_endian end)
1034 {
1035 SerialState *s;
1036
1037 s = g_malloc0(sizeof(SerialState));
1038
1039 s->it_shift = it_shift;
1040 s->irq = irq;
1041 s->baudbase = baudbase;
1042 qemu_chr_fe_init(&s->chr, chr, &error_abort);
1043
1044 serial_realize_core(s, &error_fatal);
1045 vmstate_register(NULL, base, &vmstate_serial, s);
1046
1047 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
1048 "serial", 8 << it_shift);
1049 memory_region_add_subregion(address_space, base, &s->io);
1050 return s;
1051 }