]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
Include hw/irq.h a lot less
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "hw/irq.h"
29 #include "chardev/char-serial.h"
30 #include "qapi/error.h"
31 #include "qemu/timer.h"
32 #include "sysemu/reset.h"
33 #include "qemu/error-report.h"
34 #include "trace.h"
35
36 //#define DEBUG_SERIAL
37
38 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
39
40 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
41 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
42 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
43 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
44
45 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
46 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
47
48 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
49 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
50 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
51 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
52 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
53
54 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
55 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56
57 /*
58 * These are the definitions for the Modem Control Register
59 */
60 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
61 #define UART_MCR_OUT2 0x08 /* Out2 complement */
62 #define UART_MCR_OUT1 0x04 /* Out1 complement */
63 #define UART_MCR_RTS 0x02 /* RTS complement */
64 #define UART_MCR_DTR 0x01 /* DTR complement */
65
66 /*
67 * These are the definitions for the Modem Status Register
68 */
69 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
70 #define UART_MSR_RI 0x40 /* Ring Indicator */
71 #define UART_MSR_DSR 0x20 /* Data Set Ready */
72 #define UART_MSR_CTS 0x10 /* Clear to Send */
73 #define UART_MSR_DDCD 0x08 /* Delta DCD */
74 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
75 #define UART_MSR_DDSR 0x02 /* Delta DSR */
76 #define UART_MSR_DCTS 0x01 /* Delta CTS */
77 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
78
79 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
80 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
81 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
82 #define UART_LSR_FE 0x08 /* Frame error indicator */
83 #define UART_LSR_PE 0x04 /* Parity error indicator */
84 #define UART_LSR_OE 0x02 /* Overrun error indicator */
85 #define UART_LSR_DR 0x01 /* Receiver data ready */
86 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
87
88 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
89
90 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
91 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
92 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
93 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
94
95 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
96 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
97 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
98 #define UART_FCR_FE 0x01 /* FIFO Enable */
99
100 #define MAX_XMIT_RETRY 4
101
102 #ifdef DEBUG_SERIAL
103 #define DPRINTF(fmt, ...) \
104 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
105 #else
106 #define DPRINTF(fmt, ...) \
107 do {} while (0)
108 #endif
109
110 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
111 static void serial_xmit(SerialState *s);
112
113 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
114 {
115 /* Receive overruns do not overwrite FIFO contents. */
116 if (!fifo8_is_full(&s->recv_fifo)) {
117 fifo8_push(&s->recv_fifo, chr);
118 } else {
119 s->lsr |= UART_LSR_OE;
120 }
121 }
122
123 static void serial_update_irq(SerialState *s)
124 {
125 uint8_t tmp_iir = UART_IIR_NO_INT;
126
127 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
128 tmp_iir = UART_IIR_RLSI;
129 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
130 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
131 * this is not in the specification but is observed on existing
132 * hardware. */
133 tmp_iir = UART_IIR_CTI;
134 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
135 (!(s->fcr & UART_FCR_FE) ||
136 s->recv_fifo.num >= s->recv_fifo_itl)) {
137 tmp_iir = UART_IIR_RDI;
138 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
139 tmp_iir = UART_IIR_THRI;
140 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
141 tmp_iir = UART_IIR_MSI;
142 }
143
144 s->iir = tmp_iir | (s->iir & 0xF0);
145
146 if (tmp_iir != UART_IIR_NO_INT) {
147 qemu_irq_raise(s->irq);
148 } else {
149 qemu_irq_lower(s->irq);
150 }
151 }
152
153 static void serial_update_parameters(SerialState *s)
154 {
155 float speed;
156 int parity, data_bits, stop_bits, frame_size;
157 QEMUSerialSetParams ssp;
158
159 /* Start bit. */
160 frame_size = 1;
161 if (s->lcr & 0x08) {
162 /* Parity bit. */
163 frame_size++;
164 if (s->lcr & 0x10)
165 parity = 'E';
166 else
167 parity = 'O';
168 } else {
169 parity = 'N';
170 }
171 if (s->lcr & 0x04) {
172 stop_bits = 2;
173 } else {
174 stop_bits = 1;
175 }
176
177 data_bits = (s->lcr & 0x03) + 5;
178 frame_size += data_bits + stop_bits;
179 /* Zero divisor should give about 3500 baud */
180 speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
181 ssp.speed = speed;
182 ssp.parity = parity;
183 ssp.data_bits = data_bits;
184 ssp.stop_bits = stop_bits;
185 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
186 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
187
188 DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n",
189 speed, parity, data_bits, stop_bits);
190 }
191
192 static void serial_update_msl(SerialState *s)
193 {
194 uint8_t omsr;
195 int flags;
196
197 timer_del(s->modem_status_poll);
198
199 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
200 &flags) == -ENOTSUP) {
201 s->poll_msl = -1;
202 return;
203 }
204
205 omsr = s->msr;
206
207 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
208 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
209 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
210 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
211
212 if (s->msr != omsr) {
213 /* Set delta bits */
214 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
215 /* UART_MSR_TERI only if change was from 1 -> 0 */
216 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
217 s->msr &= ~UART_MSR_TERI;
218 serial_update_irq(s);
219 }
220
221 /* The real 16550A apparently has a 250ns response latency to line status changes.
222 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
223
224 if (s->poll_msl) {
225 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
226 NANOSECONDS_PER_SECOND / 100);
227 }
228 }
229
230 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
231 void *opaque)
232 {
233 SerialState *s = opaque;
234 s->watch_tag = 0;
235 serial_xmit(s);
236 return FALSE;
237 }
238
239 static void serial_xmit(SerialState *s)
240 {
241 do {
242 assert(!(s->lsr & UART_LSR_TEMT));
243 if (s->tsr_retry == 0) {
244 assert(!(s->lsr & UART_LSR_THRE));
245
246 if (s->fcr & UART_FCR_FE) {
247 assert(!fifo8_is_empty(&s->xmit_fifo));
248 s->tsr = fifo8_pop(&s->xmit_fifo);
249 if (!s->xmit_fifo.num) {
250 s->lsr |= UART_LSR_THRE;
251 }
252 } else {
253 s->tsr = s->thr;
254 s->lsr |= UART_LSR_THRE;
255 }
256 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
257 s->thr_ipending = 1;
258 serial_update_irq(s);
259 }
260 }
261
262 if (s->mcr & UART_MCR_LOOP) {
263 /* in loopback mode, say that we just received a char */
264 serial_receive1(s, &s->tsr, 1);
265 } else {
266 int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
267
268 if ((rc == 0 ||
269 (rc == -1 && errno == EAGAIN)) &&
270 s->tsr_retry < MAX_XMIT_RETRY) {
271 assert(s->watch_tag == 0);
272 s->watch_tag =
273 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
274 serial_watch_cb, s);
275 if (s->watch_tag > 0) {
276 s->tsr_retry++;
277 return;
278 }
279 }
280 }
281 s->tsr_retry = 0;
282
283 /* Transmit another byte if it is already available. It is only
284 possible when FIFO is enabled and not empty. */
285 } while (!(s->lsr & UART_LSR_THRE));
286
287 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
288 s->lsr |= UART_LSR_TEMT;
289 }
290
291 /* Setter for FCR.
292 is_load flag means, that value is set while loading VM state
293 and interrupt should not be invoked */
294 static void serial_write_fcr(SerialState *s, uint8_t val)
295 {
296 /* Set fcr - val only has the bits that are supposed to "stick" */
297 s->fcr = val;
298
299 if (val & UART_FCR_FE) {
300 s->iir |= UART_IIR_FE;
301 /* Set recv_fifo trigger Level */
302 switch (val & 0xC0) {
303 case UART_FCR_ITL_1:
304 s->recv_fifo_itl = 1;
305 break;
306 case UART_FCR_ITL_2:
307 s->recv_fifo_itl = 4;
308 break;
309 case UART_FCR_ITL_3:
310 s->recv_fifo_itl = 8;
311 break;
312 case UART_FCR_ITL_4:
313 s->recv_fifo_itl = 14;
314 break;
315 }
316 } else {
317 s->iir &= ~UART_IIR_FE;
318 }
319 }
320
321 static void serial_update_tiocm(SerialState *s)
322 {
323 int flags;
324
325 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
326
327 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
328
329 if (s->mcr & UART_MCR_RTS) {
330 flags |= CHR_TIOCM_RTS;
331 }
332 if (s->mcr & UART_MCR_DTR) {
333 flags |= CHR_TIOCM_DTR;
334 }
335
336 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
337 }
338
339 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
340 unsigned size)
341 {
342 SerialState *s = opaque;
343
344 addr &= 7;
345 trace_serial_ioport_write(addr, val);
346 switch(addr) {
347 default:
348 case 0:
349 if (s->lcr & UART_LCR_DLAB) {
350 if (size == 1) {
351 s->divider = (s->divider & 0xff00) | val;
352 } else {
353 s->divider = val;
354 }
355 serial_update_parameters(s);
356 } else {
357 s->thr = (uint8_t) val;
358 if(s->fcr & UART_FCR_FE) {
359 /* xmit overruns overwrite data, so make space if needed */
360 if (fifo8_is_full(&s->xmit_fifo)) {
361 fifo8_pop(&s->xmit_fifo);
362 }
363 fifo8_push(&s->xmit_fifo, s->thr);
364 }
365 s->thr_ipending = 0;
366 s->lsr &= ~UART_LSR_THRE;
367 s->lsr &= ~UART_LSR_TEMT;
368 serial_update_irq(s);
369 if (s->tsr_retry == 0) {
370 serial_xmit(s);
371 }
372 }
373 break;
374 case 1:
375 if (s->lcr & UART_LCR_DLAB) {
376 s->divider = (s->divider & 0x00ff) | (val << 8);
377 serial_update_parameters(s);
378 } else {
379 uint8_t changed = (s->ier ^ val) & 0x0f;
380 s->ier = val & 0x0f;
381 /* If the backend device is a real serial port, turn polling of the modem
382 * status lines on physical port on or off depending on UART_IER_MSI state.
383 */
384 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
385 if (s->ier & UART_IER_MSI) {
386 s->poll_msl = 1;
387 serial_update_msl(s);
388 } else {
389 timer_del(s->modem_status_poll);
390 s->poll_msl = 0;
391 }
392 }
393
394 /* Turning on the THRE interrupt on IER can trigger the interrupt
395 * if LSR.THRE=1, even if it had been masked before by reading IIR.
396 * This is not in the datasheet, but Windows relies on it. It is
397 * unclear if THRE has to be resampled every time THRI becomes
398 * 1, or only on the rising edge. Bochs does the latter, and Windows
399 * always toggles IER to all zeroes and back to all ones, so do the
400 * same.
401 *
402 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
403 * so that the thr_ipending subsection is not migrated.
404 */
405 if (changed & UART_IER_THRI) {
406 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
407 s->thr_ipending = 1;
408 } else {
409 s->thr_ipending = 0;
410 }
411 }
412
413 if (changed) {
414 serial_update_irq(s);
415 }
416 }
417 break;
418 case 2:
419 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
420 if ((val ^ s->fcr) & UART_FCR_FE) {
421 val |= UART_FCR_XFR | UART_FCR_RFR;
422 }
423
424 /* FIFO clear */
425
426 if (val & UART_FCR_RFR) {
427 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
428 timer_del(s->fifo_timeout_timer);
429 s->timeout_ipending = 0;
430 fifo8_reset(&s->recv_fifo);
431 }
432
433 if (val & UART_FCR_XFR) {
434 s->lsr |= UART_LSR_THRE;
435 s->thr_ipending = 1;
436 fifo8_reset(&s->xmit_fifo);
437 }
438
439 serial_write_fcr(s, val & 0xC9);
440 serial_update_irq(s);
441 break;
442 case 3:
443 {
444 int break_enable;
445 s->lcr = val;
446 serial_update_parameters(s);
447 break_enable = (val >> 6) & 1;
448 if (break_enable != s->last_break_enable) {
449 s->last_break_enable = break_enable;
450 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
451 &break_enable);
452 }
453 }
454 break;
455 case 4:
456 {
457 int old_mcr = s->mcr;
458 s->mcr = val & 0x1f;
459 if (val & UART_MCR_LOOP)
460 break;
461
462 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
463 serial_update_tiocm(s);
464 /* Update the modem status after a one-character-send wait-time, since there may be a response
465 from the device/computer at the other end of the serial line */
466 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
467 }
468 }
469 break;
470 case 5:
471 break;
472 case 6:
473 break;
474 case 7:
475 s->scr = val;
476 break;
477 }
478 }
479
480 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
481 {
482 SerialState *s = opaque;
483 uint32_t ret;
484
485 addr &= 7;
486 switch(addr) {
487 default:
488 case 0:
489 if (s->lcr & UART_LCR_DLAB) {
490 ret = s->divider & 0xff;
491 } else {
492 if(s->fcr & UART_FCR_FE) {
493 ret = fifo8_is_empty(&s->recv_fifo) ?
494 0 : fifo8_pop(&s->recv_fifo);
495 if (s->recv_fifo.num == 0) {
496 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
497 } else {
498 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
499 }
500 s->timeout_ipending = 0;
501 } else {
502 ret = s->rbr;
503 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
504 }
505 serial_update_irq(s);
506 if (!(s->mcr & UART_MCR_LOOP)) {
507 /* in loopback mode, don't receive any data */
508 qemu_chr_fe_accept_input(&s->chr);
509 }
510 }
511 break;
512 case 1:
513 if (s->lcr & UART_LCR_DLAB) {
514 ret = (s->divider >> 8) & 0xff;
515 } else {
516 ret = s->ier;
517 }
518 break;
519 case 2:
520 ret = s->iir;
521 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
522 s->thr_ipending = 0;
523 serial_update_irq(s);
524 }
525 break;
526 case 3:
527 ret = s->lcr;
528 break;
529 case 4:
530 ret = s->mcr;
531 break;
532 case 5:
533 ret = s->lsr;
534 /* Clear break and overrun interrupts */
535 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
536 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
537 serial_update_irq(s);
538 }
539 break;
540 case 6:
541 if (s->mcr & UART_MCR_LOOP) {
542 /* in loopback, the modem output pins are connected to the
543 inputs */
544 ret = (s->mcr & 0x0c) << 4;
545 ret |= (s->mcr & 0x02) << 3;
546 ret |= (s->mcr & 0x01) << 5;
547 } else {
548 if (s->poll_msl >= 0)
549 serial_update_msl(s);
550 ret = s->msr;
551 /* Clear delta bits & msr int after read, if they were set */
552 if (s->msr & UART_MSR_ANY_DELTA) {
553 s->msr &= 0xF0;
554 serial_update_irq(s);
555 }
556 }
557 break;
558 case 7:
559 ret = s->scr;
560 break;
561 }
562 trace_serial_ioport_read(addr, ret);
563 return ret;
564 }
565
566 static int serial_can_receive(SerialState *s)
567 {
568 if(s->fcr & UART_FCR_FE) {
569 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
570 /*
571 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
572 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
573 * effect will be to almost always fill the fifo completely before
574 * the guest has a chance to respond, effectively overriding the ITL
575 * that the guest has set.
576 */
577 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
578 s->recv_fifo_itl - s->recv_fifo.num : 1;
579 } else {
580 return 0;
581 }
582 } else {
583 return !(s->lsr & UART_LSR_DR);
584 }
585 }
586
587 static void serial_receive_break(SerialState *s)
588 {
589 s->rbr = 0;
590 /* When the LSR_DR is set a null byte is pushed into the fifo */
591 recv_fifo_put(s, '\0');
592 s->lsr |= UART_LSR_BI | UART_LSR_DR;
593 serial_update_irq(s);
594 }
595
596 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
597 static void fifo_timeout_int (void *opaque) {
598 SerialState *s = opaque;
599 if (s->recv_fifo.num) {
600 s->timeout_ipending = 1;
601 serial_update_irq(s);
602 }
603 }
604
605 static int serial_can_receive1(void *opaque)
606 {
607 SerialState *s = opaque;
608 return serial_can_receive(s);
609 }
610
611 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
612 {
613 SerialState *s = opaque;
614
615 if (s->wakeup) {
616 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
617 }
618 if(s->fcr & UART_FCR_FE) {
619 int i;
620 for (i = 0; i < size; i++) {
621 recv_fifo_put(s, buf[i]);
622 }
623 s->lsr |= UART_LSR_DR;
624 /* call the timeout receive callback in 4 char transmit time */
625 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
626 } else {
627 if (s->lsr & UART_LSR_DR)
628 s->lsr |= UART_LSR_OE;
629 s->rbr = buf[0];
630 s->lsr |= UART_LSR_DR;
631 }
632 serial_update_irq(s);
633 }
634
635 static void serial_event(void *opaque, int event)
636 {
637 SerialState *s = opaque;
638 DPRINTF("event %x\n", event);
639 if (event == CHR_EVENT_BREAK)
640 serial_receive_break(s);
641 }
642
643 static int serial_pre_save(void *opaque)
644 {
645 SerialState *s = opaque;
646 s->fcr_vmstate = s->fcr;
647
648 return 0;
649 }
650
651 static int serial_pre_load(void *opaque)
652 {
653 SerialState *s = opaque;
654 s->thr_ipending = -1;
655 s->poll_msl = -1;
656 return 0;
657 }
658
659 static int serial_post_load(void *opaque, int version_id)
660 {
661 SerialState *s = opaque;
662
663 if (version_id < 3) {
664 s->fcr_vmstate = 0;
665 }
666 if (s->thr_ipending == -1) {
667 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
668 }
669
670 if (s->tsr_retry > 0) {
671 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
672 if (s->lsr & UART_LSR_TEMT) {
673 error_report("inconsistent state in serial device "
674 "(tsr empty, tsr_retry=%d", s->tsr_retry);
675 return -1;
676 }
677
678 if (s->tsr_retry > MAX_XMIT_RETRY) {
679 s->tsr_retry = MAX_XMIT_RETRY;
680 }
681
682 assert(s->watch_tag == 0);
683 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
684 serial_watch_cb, s);
685 } else {
686 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
687 if (!(s->lsr & UART_LSR_TEMT)) {
688 error_report("inconsistent state in serial device "
689 "(tsr not empty, tsr_retry=0");
690 return -1;
691 }
692 }
693
694 s->last_break_enable = (s->lcr >> 6) & 1;
695 /* Initialize fcr via setter to perform essential side-effects */
696 serial_write_fcr(s, s->fcr_vmstate);
697 serial_update_parameters(s);
698 return 0;
699 }
700
701 static bool serial_thr_ipending_needed(void *opaque)
702 {
703 SerialState *s = opaque;
704
705 if (s->ier & UART_IER_THRI) {
706 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
707 return s->thr_ipending != expected_value;
708 } else {
709 /* LSR.THRE will be sampled again when the interrupt is
710 * enabled. thr_ipending is not used in this case, do
711 * not migrate it.
712 */
713 return false;
714 }
715 }
716
717 static const VMStateDescription vmstate_serial_thr_ipending = {
718 .name = "serial/thr_ipending",
719 .version_id = 1,
720 .minimum_version_id = 1,
721 .needed = serial_thr_ipending_needed,
722 .fields = (VMStateField[]) {
723 VMSTATE_INT32(thr_ipending, SerialState),
724 VMSTATE_END_OF_LIST()
725 }
726 };
727
728 static bool serial_tsr_needed(void *opaque)
729 {
730 SerialState *s = (SerialState *)opaque;
731 return s->tsr_retry != 0;
732 }
733
734 static const VMStateDescription vmstate_serial_tsr = {
735 .name = "serial/tsr",
736 .version_id = 1,
737 .minimum_version_id = 1,
738 .needed = serial_tsr_needed,
739 .fields = (VMStateField[]) {
740 VMSTATE_UINT32(tsr_retry, SerialState),
741 VMSTATE_UINT8(thr, SerialState),
742 VMSTATE_UINT8(tsr, SerialState),
743 VMSTATE_END_OF_LIST()
744 }
745 };
746
747 static bool serial_recv_fifo_needed(void *opaque)
748 {
749 SerialState *s = (SerialState *)opaque;
750 return !fifo8_is_empty(&s->recv_fifo);
751
752 }
753
754 static const VMStateDescription vmstate_serial_recv_fifo = {
755 .name = "serial/recv_fifo",
756 .version_id = 1,
757 .minimum_version_id = 1,
758 .needed = serial_recv_fifo_needed,
759 .fields = (VMStateField[]) {
760 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
761 VMSTATE_END_OF_LIST()
762 }
763 };
764
765 static bool serial_xmit_fifo_needed(void *opaque)
766 {
767 SerialState *s = (SerialState *)opaque;
768 return !fifo8_is_empty(&s->xmit_fifo);
769 }
770
771 static const VMStateDescription vmstate_serial_xmit_fifo = {
772 .name = "serial/xmit_fifo",
773 .version_id = 1,
774 .minimum_version_id = 1,
775 .needed = serial_xmit_fifo_needed,
776 .fields = (VMStateField[]) {
777 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
778 VMSTATE_END_OF_LIST()
779 }
780 };
781
782 static bool serial_fifo_timeout_timer_needed(void *opaque)
783 {
784 SerialState *s = (SerialState *)opaque;
785 return timer_pending(s->fifo_timeout_timer);
786 }
787
788 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
789 .name = "serial/fifo_timeout_timer",
790 .version_id = 1,
791 .minimum_version_id = 1,
792 .needed = serial_fifo_timeout_timer_needed,
793 .fields = (VMStateField[]) {
794 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
795 VMSTATE_END_OF_LIST()
796 }
797 };
798
799 static bool serial_timeout_ipending_needed(void *opaque)
800 {
801 SerialState *s = (SerialState *)opaque;
802 return s->timeout_ipending != 0;
803 }
804
805 static const VMStateDescription vmstate_serial_timeout_ipending = {
806 .name = "serial/timeout_ipending",
807 .version_id = 1,
808 .minimum_version_id = 1,
809 .needed = serial_timeout_ipending_needed,
810 .fields = (VMStateField[]) {
811 VMSTATE_INT32(timeout_ipending, SerialState),
812 VMSTATE_END_OF_LIST()
813 }
814 };
815
816 static bool serial_poll_needed(void *opaque)
817 {
818 SerialState *s = (SerialState *)opaque;
819 return s->poll_msl >= 0;
820 }
821
822 static const VMStateDescription vmstate_serial_poll = {
823 .name = "serial/poll",
824 .version_id = 1,
825 .needed = serial_poll_needed,
826 .minimum_version_id = 1,
827 .fields = (VMStateField[]) {
828 VMSTATE_INT32(poll_msl, SerialState),
829 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
830 VMSTATE_END_OF_LIST()
831 }
832 };
833
834 const VMStateDescription vmstate_serial = {
835 .name = "serial",
836 .version_id = 3,
837 .minimum_version_id = 2,
838 .pre_save = serial_pre_save,
839 .pre_load = serial_pre_load,
840 .post_load = serial_post_load,
841 .fields = (VMStateField[]) {
842 VMSTATE_UINT16_V(divider, SerialState, 2),
843 VMSTATE_UINT8(rbr, SerialState),
844 VMSTATE_UINT8(ier, SerialState),
845 VMSTATE_UINT8(iir, SerialState),
846 VMSTATE_UINT8(lcr, SerialState),
847 VMSTATE_UINT8(mcr, SerialState),
848 VMSTATE_UINT8(lsr, SerialState),
849 VMSTATE_UINT8(msr, SerialState),
850 VMSTATE_UINT8(scr, SerialState),
851 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
852 VMSTATE_END_OF_LIST()
853 },
854 .subsections = (const VMStateDescription*[]) {
855 &vmstate_serial_thr_ipending,
856 &vmstate_serial_tsr,
857 &vmstate_serial_recv_fifo,
858 &vmstate_serial_xmit_fifo,
859 &vmstate_serial_fifo_timeout_timer,
860 &vmstate_serial_timeout_ipending,
861 &vmstate_serial_poll,
862 NULL
863 }
864 };
865
866 static void serial_reset(void *opaque)
867 {
868 SerialState *s = opaque;
869
870 if (s->watch_tag > 0) {
871 g_source_remove(s->watch_tag);
872 s->watch_tag = 0;
873 }
874
875 s->rbr = 0;
876 s->ier = 0;
877 s->iir = UART_IIR_NO_INT;
878 s->lcr = 0;
879 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
880 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
881 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
882 s->divider = 0x0C;
883 s->mcr = UART_MCR_OUT2;
884 s->scr = 0;
885 s->tsr_retry = 0;
886 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
887 s->poll_msl = 0;
888
889 s->timeout_ipending = 0;
890 timer_del(s->fifo_timeout_timer);
891 timer_del(s->modem_status_poll);
892
893 fifo8_reset(&s->recv_fifo);
894 fifo8_reset(&s->xmit_fifo);
895
896 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
897
898 s->thr_ipending = 0;
899 s->last_break_enable = 0;
900 qemu_irq_lower(s->irq);
901
902 serial_update_msl(s);
903 s->msr &= ~UART_MSR_ANY_DELTA;
904 }
905
906 static int serial_be_change(void *opaque)
907 {
908 SerialState *s = opaque;
909
910 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
911 serial_event, serial_be_change, s, NULL, true);
912
913 serial_update_parameters(s);
914
915 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
916 &s->last_break_enable);
917
918 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
919 serial_update_msl(s);
920
921 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
922 serial_update_tiocm(s);
923 }
924
925 if (s->watch_tag > 0) {
926 g_source_remove(s->watch_tag);
927 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
928 serial_watch_cb, s);
929 }
930
931 return 0;
932 }
933
934 void serial_realize_core(SerialState *s, Error **errp)
935 {
936 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
937
938 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
939 qemu_register_reset(serial_reset, s);
940
941 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
942 serial_event, serial_be_change, s, NULL, true);
943 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
944 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
945 serial_reset(s);
946 }
947
948 void serial_exit_core(SerialState *s)
949 {
950 qemu_chr_fe_deinit(&s->chr, false);
951
952 timer_del(s->modem_status_poll);
953 timer_free(s->modem_status_poll);
954
955 timer_del(s->fifo_timeout_timer);
956 timer_free(s->fifo_timeout_timer);
957
958 fifo8_destroy(&s->recv_fifo);
959 fifo8_destroy(&s->xmit_fifo);
960
961 qemu_unregister_reset(serial_reset, s);
962 }
963
964 /* Change the main reference oscillator frequency. */
965 void serial_set_frequency(SerialState *s, uint32_t frequency)
966 {
967 s->baudbase = frequency;
968 serial_update_parameters(s);
969 }
970
971 const MemoryRegionOps serial_io_ops = {
972 .read = serial_ioport_read,
973 .write = serial_ioport_write,
974 .impl = {
975 .min_access_size = 1,
976 .max_access_size = 1,
977 },
978 .endianness = DEVICE_LITTLE_ENDIAN,
979 };
980
981 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
982 Chardev *chr, MemoryRegion *system_io)
983 {
984 SerialState *s;
985
986 s = g_malloc0(sizeof(SerialState));
987
988 s->irq = irq;
989 s->baudbase = baudbase;
990 qemu_chr_fe_init(&s->chr, chr, &error_abort);
991 serial_realize_core(s, &error_fatal);
992
993 vmstate_register(NULL, base, &vmstate_serial, s);
994
995 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
996 memory_region_add_subregion(system_io, base, &s->io);
997
998 return s;
999 }
1000
1001 /* Memory mapped interface */
1002 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
1003 unsigned size)
1004 {
1005 SerialState *s = opaque;
1006 return serial_ioport_read(s, addr >> s->it_shift, 1);
1007 }
1008
1009 static void serial_mm_write(void *opaque, hwaddr addr,
1010 uint64_t value, unsigned size)
1011 {
1012 SerialState *s = opaque;
1013 value &= 255;
1014 serial_ioport_write(s, addr >> s->it_shift, value, 1);
1015 }
1016
1017 static const MemoryRegionOps serial_mm_ops[3] = {
1018 [DEVICE_NATIVE_ENDIAN] = {
1019 .read = serial_mm_read,
1020 .write = serial_mm_write,
1021 .endianness = DEVICE_NATIVE_ENDIAN,
1022 .valid.max_access_size = 8,
1023 .impl.max_access_size = 8,
1024 },
1025 [DEVICE_LITTLE_ENDIAN] = {
1026 .read = serial_mm_read,
1027 .write = serial_mm_write,
1028 .endianness = DEVICE_LITTLE_ENDIAN,
1029 .valid.max_access_size = 8,
1030 .impl.max_access_size = 8,
1031 },
1032 [DEVICE_BIG_ENDIAN] = {
1033 .read = serial_mm_read,
1034 .write = serial_mm_write,
1035 .endianness = DEVICE_BIG_ENDIAN,
1036 .valid.max_access_size = 8,
1037 .impl.max_access_size = 8,
1038 },
1039 };
1040
1041 SerialState *serial_mm_init(MemoryRegion *address_space,
1042 hwaddr base, int it_shift,
1043 qemu_irq irq, int baudbase,
1044 Chardev *chr, enum device_endian end)
1045 {
1046 SerialState *s;
1047
1048 s = g_malloc0(sizeof(SerialState));
1049
1050 s->it_shift = it_shift;
1051 s->irq = irq;
1052 s->baudbase = baudbase;
1053 qemu_chr_fe_init(&s->chr, chr, &error_abort);
1054
1055 serial_realize_core(s, &error_fatal);
1056 vmstate_register(NULL, base, &vmstate_serial, s);
1057
1058 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
1059 "serial", 8 << it_shift);
1060 memory_region_add_subregion(address_space, base, &s->io);
1061 return s;
1062 }