]> git.proxmox.com Git - mirror_qemu.git/blob - hw/char/serial.c
Include sysemu/reset.h a lot less
[mirror_qemu.git] / hw / char / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "chardev/char-serial.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "sysemu/reset.h"
32 #include "qemu/error-report.h"
33 #include "trace.h"
34
35 //#define DEBUG_SERIAL
36
37 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38
39 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
40 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
41 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
42 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43
44 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
45 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46
47 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
48 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
49 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
50 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
51 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52
53 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
54 #define UART_IIR_FE 0xC0 /* Fifo enabled */
55
56 /*
57 * These are the definitions for the Modem Control Register
58 */
59 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
60 #define UART_MCR_OUT2 0x08 /* Out2 complement */
61 #define UART_MCR_OUT1 0x04 /* Out1 complement */
62 #define UART_MCR_RTS 0x02 /* RTS complement */
63 #define UART_MCR_DTR 0x01 /* DTR complement */
64
65 /*
66 * These are the definitions for the Modem Status Register
67 */
68 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
69 #define UART_MSR_RI 0x40 /* Ring Indicator */
70 #define UART_MSR_DSR 0x20 /* Data Set Ready */
71 #define UART_MSR_CTS 0x10 /* Clear to Send */
72 #define UART_MSR_DDCD 0x08 /* Delta DCD */
73 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
74 #define UART_MSR_DDSR 0x02 /* Delta DSR */
75 #define UART_MSR_DCTS 0x01 /* Delta CTS */
76 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77
78 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
79 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
80 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
81 #define UART_LSR_FE 0x08 /* Frame error indicator */
82 #define UART_LSR_PE 0x04 /* Parity error indicator */
83 #define UART_LSR_OE 0x02 /* Overrun error indicator */
84 #define UART_LSR_DR 0x01 /* Receiver data ready */
85 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86
87 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88
89 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
90 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
91 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
92 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93
94 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
95 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
96 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
97 #define UART_FCR_FE 0x01 /* FIFO Enable */
98
99 #define MAX_XMIT_RETRY 4
100
101 #ifdef DEBUG_SERIAL
102 #define DPRINTF(fmt, ...) \
103 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
104 #else
105 #define DPRINTF(fmt, ...) \
106 do {} while (0)
107 #endif
108
109 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
110 static void serial_xmit(SerialState *s);
111
112 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
113 {
114 /* Receive overruns do not overwrite FIFO contents. */
115 if (!fifo8_is_full(&s->recv_fifo)) {
116 fifo8_push(&s->recv_fifo, chr);
117 } else {
118 s->lsr |= UART_LSR_OE;
119 }
120 }
121
122 static void serial_update_irq(SerialState *s)
123 {
124 uint8_t tmp_iir = UART_IIR_NO_INT;
125
126 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
127 tmp_iir = UART_IIR_RLSI;
128 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
129 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
130 * this is not in the specification but is observed on existing
131 * hardware. */
132 tmp_iir = UART_IIR_CTI;
133 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
134 (!(s->fcr & UART_FCR_FE) ||
135 s->recv_fifo.num >= s->recv_fifo_itl)) {
136 tmp_iir = UART_IIR_RDI;
137 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
138 tmp_iir = UART_IIR_THRI;
139 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
140 tmp_iir = UART_IIR_MSI;
141 }
142
143 s->iir = tmp_iir | (s->iir & 0xF0);
144
145 if (tmp_iir != UART_IIR_NO_INT) {
146 qemu_irq_raise(s->irq);
147 } else {
148 qemu_irq_lower(s->irq);
149 }
150 }
151
152 static void serial_update_parameters(SerialState *s)
153 {
154 float speed;
155 int parity, data_bits, stop_bits, frame_size;
156 QEMUSerialSetParams ssp;
157
158 /* Start bit. */
159 frame_size = 1;
160 if (s->lcr & 0x08) {
161 /* Parity bit. */
162 frame_size++;
163 if (s->lcr & 0x10)
164 parity = 'E';
165 else
166 parity = 'O';
167 } else {
168 parity = 'N';
169 }
170 if (s->lcr & 0x04) {
171 stop_bits = 2;
172 } else {
173 stop_bits = 1;
174 }
175
176 data_bits = (s->lcr & 0x03) + 5;
177 frame_size += data_bits + stop_bits;
178 /* Zero divisor should give about 3500 baud */
179 speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
180 ssp.speed = speed;
181 ssp.parity = parity;
182 ssp.data_bits = data_bits;
183 ssp.stop_bits = stop_bits;
184 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
185 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
186
187 DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n",
188 speed, parity, data_bits, stop_bits);
189 }
190
191 static void serial_update_msl(SerialState *s)
192 {
193 uint8_t omsr;
194 int flags;
195
196 timer_del(s->modem_status_poll);
197
198 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
199 &flags) == -ENOTSUP) {
200 s->poll_msl = -1;
201 return;
202 }
203
204 omsr = s->msr;
205
206 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
207 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
208 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
209 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
210
211 if (s->msr != omsr) {
212 /* Set delta bits */
213 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
214 /* UART_MSR_TERI only if change was from 1 -> 0 */
215 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
216 s->msr &= ~UART_MSR_TERI;
217 serial_update_irq(s);
218 }
219
220 /* The real 16550A apparently has a 250ns response latency to line status changes.
221 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
222
223 if (s->poll_msl) {
224 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
225 NANOSECONDS_PER_SECOND / 100);
226 }
227 }
228
229 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
230 void *opaque)
231 {
232 SerialState *s = opaque;
233 s->watch_tag = 0;
234 serial_xmit(s);
235 return FALSE;
236 }
237
238 static void serial_xmit(SerialState *s)
239 {
240 do {
241 assert(!(s->lsr & UART_LSR_TEMT));
242 if (s->tsr_retry == 0) {
243 assert(!(s->lsr & UART_LSR_THRE));
244
245 if (s->fcr & UART_FCR_FE) {
246 assert(!fifo8_is_empty(&s->xmit_fifo));
247 s->tsr = fifo8_pop(&s->xmit_fifo);
248 if (!s->xmit_fifo.num) {
249 s->lsr |= UART_LSR_THRE;
250 }
251 } else {
252 s->tsr = s->thr;
253 s->lsr |= UART_LSR_THRE;
254 }
255 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
256 s->thr_ipending = 1;
257 serial_update_irq(s);
258 }
259 }
260
261 if (s->mcr & UART_MCR_LOOP) {
262 /* in loopback mode, say that we just received a char */
263 serial_receive1(s, &s->tsr, 1);
264 } else {
265 int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
266
267 if ((rc == 0 ||
268 (rc == -1 && errno == EAGAIN)) &&
269 s->tsr_retry < MAX_XMIT_RETRY) {
270 assert(s->watch_tag == 0);
271 s->watch_tag =
272 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
273 serial_watch_cb, s);
274 if (s->watch_tag > 0) {
275 s->tsr_retry++;
276 return;
277 }
278 }
279 }
280 s->tsr_retry = 0;
281
282 /* Transmit another byte if it is already available. It is only
283 possible when FIFO is enabled and not empty. */
284 } while (!(s->lsr & UART_LSR_THRE));
285
286 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
287 s->lsr |= UART_LSR_TEMT;
288 }
289
290 /* Setter for FCR.
291 is_load flag means, that value is set while loading VM state
292 and interrupt should not be invoked */
293 static void serial_write_fcr(SerialState *s, uint8_t val)
294 {
295 /* Set fcr - val only has the bits that are supposed to "stick" */
296 s->fcr = val;
297
298 if (val & UART_FCR_FE) {
299 s->iir |= UART_IIR_FE;
300 /* Set recv_fifo trigger Level */
301 switch (val & 0xC0) {
302 case UART_FCR_ITL_1:
303 s->recv_fifo_itl = 1;
304 break;
305 case UART_FCR_ITL_2:
306 s->recv_fifo_itl = 4;
307 break;
308 case UART_FCR_ITL_3:
309 s->recv_fifo_itl = 8;
310 break;
311 case UART_FCR_ITL_4:
312 s->recv_fifo_itl = 14;
313 break;
314 }
315 } else {
316 s->iir &= ~UART_IIR_FE;
317 }
318 }
319
320 static void serial_update_tiocm(SerialState *s)
321 {
322 int flags;
323
324 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
325
326 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
327
328 if (s->mcr & UART_MCR_RTS) {
329 flags |= CHR_TIOCM_RTS;
330 }
331 if (s->mcr & UART_MCR_DTR) {
332 flags |= CHR_TIOCM_DTR;
333 }
334
335 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
336 }
337
338 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
339 unsigned size)
340 {
341 SerialState *s = opaque;
342
343 addr &= 7;
344 trace_serial_ioport_write(addr, val);
345 switch(addr) {
346 default:
347 case 0:
348 if (s->lcr & UART_LCR_DLAB) {
349 if (size == 1) {
350 s->divider = (s->divider & 0xff00) | val;
351 } else {
352 s->divider = val;
353 }
354 serial_update_parameters(s);
355 } else {
356 s->thr = (uint8_t) val;
357 if(s->fcr & UART_FCR_FE) {
358 /* xmit overruns overwrite data, so make space if needed */
359 if (fifo8_is_full(&s->xmit_fifo)) {
360 fifo8_pop(&s->xmit_fifo);
361 }
362 fifo8_push(&s->xmit_fifo, s->thr);
363 }
364 s->thr_ipending = 0;
365 s->lsr &= ~UART_LSR_THRE;
366 s->lsr &= ~UART_LSR_TEMT;
367 serial_update_irq(s);
368 if (s->tsr_retry == 0) {
369 serial_xmit(s);
370 }
371 }
372 break;
373 case 1:
374 if (s->lcr & UART_LCR_DLAB) {
375 s->divider = (s->divider & 0x00ff) | (val << 8);
376 serial_update_parameters(s);
377 } else {
378 uint8_t changed = (s->ier ^ val) & 0x0f;
379 s->ier = val & 0x0f;
380 /* If the backend device is a real serial port, turn polling of the modem
381 * status lines on physical port on or off depending on UART_IER_MSI state.
382 */
383 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
384 if (s->ier & UART_IER_MSI) {
385 s->poll_msl = 1;
386 serial_update_msl(s);
387 } else {
388 timer_del(s->modem_status_poll);
389 s->poll_msl = 0;
390 }
391 }
392
393 /* Turning on the THRE interrupt on IER can trigger the interrupt
394 * if LSR.THRE=1, even if it had been masked before by reading IIR.
395 * This is not in the datasheet, but Windows relies on it. It is
396 * unclear if THRE has to be resampled every time THRI becomes
397 * 1, or only on the rising edge. Bochs does the latter, and Windows
398 * always toggles IER to all zeroes and back to all ones, so do the
399 * same.
400 *
401 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
402 * so that the thr_ipending subsection is not migrated.
403 */
404 if (changed & UART_IER_THRI) {
405 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
406 s->thr_ipending = 1;
407 } else {
408 s->thr_ipending = 0;
409 }
410 }
411
412 if (changed) {
413 serial_update_irq(s);
414 }
415 }
416 break;
417 case 2:
418 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
419 if ((val ^ s->fcr) & UART_FCR_FE) {
420 val |= UART_FCR_XFR | UART_FCR_RFR;
421 }
422
423 /* FIFO clear */
424
425 if (val & UART_FCR_RFR) {
426 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
427 timer_del(s->fifo_timeout_timer);
428 s->timeout_ipending = 0;
429 fifo8_reset(&s->recv_fifo);
430 }
431
432 if (val & UART_FCR_XFR) {
433 s->lsr |= UART_LSR_THRE;
434 s->thr_ipending = 1;
435 fifo8_reset(&s->xmit_fifo);
436 }
437
438 serial_write_fcr(s, val & 0xC9);
439 serial_update_irq(s);
440 break;
441 case 3:
442 {
443 int break_enable;
444 s->lcr = val;
445 serial_update_parameters(s);
446 break_enable = (val >> 6) & 1;
447 if (break_enable != s->last_break_enable) {
448 s->last_break_enable = break_enable;
449 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
450 &break_enable);
451 }
452 }
453 break;
454 case 4:
455 {
456 int old_mcr = s->mcr;
457 s->mcr = val & 0x1f;
458 if (val & UART_MCR_LOOP)
459 break;
460
461 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
462 serial_update_tiocm(s);
463 /* Update the modem status after a one-character-send wait-time, since there may be a response
464 from the device/computer at the other end of the serial line */
465 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
466 }
467 }
468 break;
469 case 5:
470 break;
471 case 6:
472 break;
473 case 7:
474 s->scr = val;
475 break;
476 }
477 }
478
479 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
480 {
481 SerialState *s = opaque;
482 uint32_t ret;
483
484 addr &= 7;
485 switch(addr) {
486 default:
487 case 0:
488 if (s->lcr & UART_LCR_DLAB) {
489 ret = s->divider & 0xff;
490 } else {
491 if(s->fcr & UART_FCR_FE) {
492 ret = fifo8_is_empty(&s->recv_fifo) ?
493 0 : fifo8_pop(&s->recv_fifo);
494 if (s->recv_fifo.num == 0) {
495 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
496 } else {
497 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
498 }
499 s->timeout_ipending = 0;
500 } else {
501 ret = s->rbr;
502 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
503 }
504 serial_update_irq(s);
505 if (!(s->mcr & UART_MCR_LOOP)) {
506 /* in loopback mode, don't receive any data */
507 qemu_chr_fe_accept_input(&s->chr);
508 }
509 }
510 break;
511 case 1:
512 if (s->lcr & UART_LCR_DLAB) {
513 ret = (s->divider >> 8) & 0xff;
514 } else {
515 ret = s->ier;
516 }
517 break;
518 case 2:
519 ret = s->iir;
520 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
521 s->thr_ipending = 0;
522 serial_update_irq(s);
523 }
524 break;
525 case 3:
526 ret = s->lcr;
527 break;
528 case 4:
529 ret = s->mcr;
530 break;
531 case 5:
532 ret = s->lsr;
533 /* Clear break and overrun interrupts */
534 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
535 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
536 serial_update_irq(s);
537 }
538 break;
539 case 6:
540 if (s->mcr & UART_MCR_LOOP) {
541 /* in loopback, the modem output pins are connected to the
542 inputs */
543 ret = (s->mcr & 0x0c) << 4;
544 ret |= (s->mcr & 0x02) << 3;
545 ret |= (s->mcr & 0x01) << 5;
546 } else {
547 if (s->poll_msl >= 0)
548 serial_update_msl(s);
549 ret = s->msr;
550 /* Clear delta bits & msr int after read, if they were set */
551 if (s->msr & UART_MSR_ANY_DELTA) {
552 s->msr &= 0xF0;
553 serial_update_irq(s);
554 }
555 }
556 break;
557 case 7:
558 ret = s->scr;
559 break;
560 }
561 trace_serial_ioport_read(addr, ret);
562 return ret;
563 }
564
565 static int serial_can_receive(SerialState *s)
566 {
567 if(s->fcr & UART_FCR_FE) {
568 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
569 /*
570 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
571 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
572 * effect will be to almost always fill the fifo completely before
573 * the guest has a chance to respond, effectively overriding the ITL
574 * that the guest has set.
575 */
576 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
577 s->recv_fifo_itl - s->recv_fifo.num : 1;
578 } else {
579 return 0;
580 }
581 } else {
582 return !(s->lsr & UART_LSR_DR);
583 }
584 }
585
586 static void serial_receive_break(SerialState *s)
587 {
588 s->rbr = 0;
589 /* When the LSR_DR is set a null byte is pushed into the fifo */
590 recv_fifo_put(s, '\0');
591 s->lsr |= UART_LSR_BI | UART_LSR_DR;
592 serial_update_irq(s);
593 }
594
595 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
596 static void fifo_timeout_int (void *opaque) {
597 SerialState *s = opaque;
598 if (s->recv_fifo.num) {
599 s->timeout_ipending = 1;
600 serial_update_irq(s);
601 }
602 }
603
604 static int serial_can_receive1(void *opaque)
605 {
606 SerialState *s = opaque;
607 return serial_can_receive(s);
608 }
609
610 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
611 {
612 SerialState *s = opaque;
613
614 if (s->wakeup) {
615 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
616 }
617 if(s->fcr & UART_FCR_FE) {
618 int i;
619 for (i = 0; i < size; i++) {
620 recv_fifo_put(s, buf[i]);
621 }
622 s->lsr |= UART_LSR_DR;
623 /* call the timeout receive callback in 4 char transmit time */
624 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
625 } else {
626 if (s->lsr & UART_LSR_DR)
627 s->lsr |= UART_LSR_OE;
628 s->rbr = buf[0];
629 s->lsr |= UART_LSR_DR;
630 }
631 serial_update_irq(s);
632 }
633
634 static void serial_event(void *opaque, int event)
635 {
636 SerialState *s = opaque;
637 DPRINTF("event %x\n", event);
638 if (event == CHR_EVENT_BREAK)
639 serial_receive_break(s);
640 }
641
642 static int serial_pre_save(void *opaque)
643 {
644 SerialState *s = opaque;
645 s->fcr_vmstate = s->fcr;
646
647 return 0;
648 }
649
650 static int serial_pre_load(void *opaque)
651 {
652 SerialState *s = opaque;
653 s->thr_ipending = -1;
654 s->poll_msl = -1;
655 return 0;
656 }
657
658 static int serial_post_load(void *opaque, int version_id)
659 {
660 SerialState *s = opaque;
661
662 if (version_id < 3) {
663 s->fcr_vmstate = 0;
664 }
665 if (s->thr_ipending == -1) {
666 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
667 }
668
669 if (s->tsr_retry > 0) {
670 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
671 if (s->lsr & UART_LSR_TEMT) {
672 error_report("inconsistent state in serial device "
673 "(tsr empty, tsr_retry=%d", s->tsr_retry);
674 return -1;
675 }
676
677 if (s->tsr_retry > MAX_XMIT_RETRY) {
678 s->tsr_retry = MAX_XMIT_RETRY;
679 }
680
681 assert(s->watch_tag == 0);
682 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
683 serial_watch_cb, s);
684 } else {
685 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
686 if (!(s->lsr & UART_LSR_TEMT)) {
687 error_report("inconsistent state in serial device "
688 "(tsr not empty, tsr_retry=0");
689 return -1;
690 }
691 }
692
693 s->last_break_enable = (s->lcr >> 6) & 1;
694 /* Initialize fcr via setter to perform essential side-effects */
695 serial_write_fcr(s, s->fcr_vmstate);
696 serial_update_parameters(s);
697 return 0;
698 }
699
700 static bool serial_thr_ipending_needed(void *opaque)
701 {
702 SerialState *s = opaque;
703
704 if (s->ier & UART_IER_THRI) {
705 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
706 return s->thr_ipending != expected_value;
707 } else {
708 /* LSR.THRE will be sampled again when the interrupt is
709 * enabled. thr_ipending is not used in this case, do
710 * not migrate it.
711 */
712 return false;
713 }
714 }
715
716 static const VMStateDescription vmstate_serial_thr_ipending = {
717 .name = "serial/thr_ipending",
718 .version_id = 1,
719 .minimum_version_id = 1,
720 .needed = serial_thr_ipending_needed,
721 .fields = (VMStateField[]) {
722 VMSTATE_INT32(thr_ipending, SerialState),
723 VMSTATE_END_OF_LIST()
724 }
725 };
726
727 static bool serial_tsr_needed(void *opaque)
728 {
729 SerialState *s = (SerialState *)opaque;
730 return s->tsr_retry != 0;
731 }
732
733 static const VMStateDescription vmstate_serial_tsr = {
734 .name = "serial/tsr",
735 .version_id = 1,
736 .minimum_version_id = 1,
737 .needed = serial_tsr_needed,
738 .fields = (VMStateField[]) {
739 VMSTATE_UINT32(tsr_retry, SerialState),
740 VMSTATE_UINT8(thr, SerialState),
741 VMSTATE_UINT8(tsr, SerialState),
742 VMSTATE_END_OF_LIST()
743 }
744 };
745
746 static bool serial_recv_fifo_needed(void *opaque)
747 {
748 SerialState *s = (SerialState *)opaque;
749 return !fifo8_is_empty(&s->recv_fifo);
750
751 }
752
753 static const VMStateDescription vmstate_serial_recv_fifo = {
754 .name = "serial/recv_fifo",
755 .version_id = 1,
756 .minimum_version_id = 1,
757 .needed = serial_recv_fifo_needed,
758 .fields = (VMStateField[]) {
759 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
760 VMSTATE_END_OF_LIST()
761 }
762 };
763
764 static bool serial_xmit_fifo_needed(void *opaque)
765 {
766 SerialState *s = (SerialState *)opaque;
767 return !fifo8_is_empty(&s->xmit_fifo);
768 }
769
770 static const VMStateDescription vmstate_serial_xmit_fifo = {
771 .name = "serial/xmit_fifo",
772 .version_id = 1,
773 .minimum_version_id = 1,
774 .needed = serial_xmit_fifo_needed,
775 .fields = (VMStateField[]) {
776 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
777 VMSTATE_END_OF_LIST()
778 }
779 };
780
781 static bool serial_fifo_timeout_timer_needed(void *opaque)
782 {
783 SerialState *s = (SerialState *)opaque;
784 return timer_pending(s->fifo_timeout_timer);
785 }
786
787 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
788 .name = "serial/fifo_timeout_timer",
789 .version_id = 1,
790 .minimum_version_id = 1,
791 .needed = serial_fifo_timeout_timer_needed,
792 .fields = (VMStateField[]) {
793 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
794 VMSTATE_END_OF_LIST()
795 }
796 };
797
798 static bool serial_timeout_ipending_needed(void *opaque)
799 {
800 SerialState *s = (SerialState *)opaque;
801 return s->timeout_ipending != 0;
802 }
803
804 static const VMStateDescription vmstate_serial_timeout_ipending = {
805 .name = "serial/timeout_ipending",
806 .version_id = 1,
807 .minimum_version_id = 1,
808 .needed = serial_timeout_ipending_needed,
809 .fields = (VMStateField[]) {
810 VMSTATE_INT32(timeout_ipending, SerialState),
811 VMSTATE_END_OF_LIST()
812 }
813 };
814
815 static bool serial_poll_needed(void *opaque)
816 {
817 SerialState *s = (SerialState *)opaque;
818 return s->poll_msl >= 0;
819 }
820
821 static const VMStateDescription vmstate_serial_poll = {
822 .name = "serial/poll",
823 .version_id = 1,
824 .needed = serial_poll_needed,
825 .minimum_version_id = 1,
826 .fields = (VMStateField[]) {
827 VMSTATE_INT32(poll_msl, SerialState),
828 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
829 VMSTATE_END_OF_LIST()
830 }
831 };
832
833 const VMStateDescription vmstate_serial = {
834 .name = "serial",
835 .version_id = 3,
836 .minimum_version_id = 2,
837 .pre_save = serial_pre_save,
838 .pre_load = serial_pre_load,
839 .post_load = serial_post_load,
840 .fields = (VMStateField[]) {
841 VMSTATE_UINT16_V(divider, SerialState, 2),
842 VMSTATE_UINT8(rbr, SerialState),
843 VMSTATE_UINT8(ier, SerialState),
844 VMSTATE_UINT8(iir, SerialState),
845 VMSTATE_UINT8(lcr, SerialState),
846 VMSTATE_UINT8(mcr, SerialState),
847 VMSTATE_UINT8(lsr, SerialState),
848 VMSTATE_UINT8(msr, SerialState),
849 VMSTATE_UINT8(scr, SerialState),
850 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
851 VMSTATE_END_OF_LIST()
852 },
853 .subsections = (const VMStateDescription*[]) {
854 &vmstate_serial_thr_ipending,
855 &vmstate_serial_tsr,
856 &vmstate_serial_recv_fifo,
857 &vmstate_serial_xmit_fifo,
858 &vmstate_serial_fifo_timeout_timer,
859 &vmstate_serial_timeout_ipending,
860 &vmstate_serial_poll,
861 NULL
862 }
863 };
864
865 static void serial_reset(void *opaque)
866 {
867 SerialState *s = opaque;
868
869 if (s->watch_tag > 0) {
870 g_source_remove(s->watch_tag);
871 s->watch_tag = 0;
872 }
873
874 s->rbr = 0;
875 s->ier = 0;
876 s->iir = UART_IIR_NO_INT;
877 s->lcr = 0;
878 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
879 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
880 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
881 s->divider = 0x0C;
882 s->mcr = UART_MCR_OUT2;
883 s->scr = 0;
884 s->tsr_retry = 0;
885 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
886 s->poll_msl = 0;
887
888 s->timeout_ipending = 0;
889 timer_del(s->fifo_timeout_timer);
890 timer_del(s->modem_status_poll);
891
892 fifo8_reset(&s->recv_fifo);
893 fifo8_reset(&s->xmit_fifo);
894
895 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
896
897 s->thr_ipending = 0;
898 s->last_break_enable = 0;
899 qemu_irq_lower(s->irq);
900
901 serial_update_msl(s);
902 s->msr &= ~UART_MSR_ANY_DELTA;
903 }
904
905 static int serial_be_change(void *opaque)
906 {
907 SerialState *s = opaque;
908
909 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
910 serial_event, serial_be_change, s, NULL, true);
911
912 serial_update_parameters(s);
913
914 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
915 &s->last_break_enable);
916
917 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
918 serial_update_msl(s);
919
920 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
921 serial_update_tiocm(s);
922 }
923
924 if (s->watch_tag > 0) {
925 g_source_remove(s->watch_tag);
926 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
927 serial_watch_cb, s);
928 }
929
930 return 0;
931 }
932
933 void serial_realize_core(SerialState *s, Error **errp)
934 {
935 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
936
937 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
938 qemu_register_reset(serial_reset, s);
939
940 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
941 serial_event, serial_be_change, s, NULL, true);
942 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
943 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
944 serial_reset(s);
945 }
946
947 void serial_exit_core(SerialState *s)
948 {
949 qemu_chr_fe_deinit(&s->chr, false);
950
951 timer_del(s->modem_status_poll);
952 timer_free(s->modem_status_poll);
953
954 timer_del(s->fifo_timeout_timer);
955 timer_free(s->fifo_timeout_timer);
956
957 fifo8_destroy(&s->recv_fifo);
958 fifo8_destroy(&s->xmit_fifo);
959
960 qemu_unregister_reset(serial_reset, s);
961 }
962
963 /* Change the main reference oscillator frequency. */
964 void serial_set_frequency(SerialState *s, uint32_t frequency)
965 {
966 s->baudbase = frequency;
967 serial_update_parameters(s);
968 }
969
970 const MemoryRegionOps serial_io_ops = {
971 .read = serial_ioport_read,
972 .write = serial_ioport_write,
973 .impl = {
974 .min_access_size = 1,
975 .max_access_size = 1,
976 },
977 .endianness = DEVICE_LITTLE_ENDIAN,
978 };
979
980 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
981 Chardev *chr, MemoryRegion *system_io)
982 {
983 SerialState *s;
984
985 s = g_malloc0(sizeof(SerialState));
986
987 s->irq = irq;
988 s->baudbase = baudbase;
989 qemu_chr_fe_init(&s->chr, chr, &error_abort);
990 serial_realize_core(s, &error_fatal);
991
992 vmstate_register(NULL, base, &vmstate_serial, s);
993
994 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
995 memory_region_add_subregion(system_io, base, &s->io);
996
997 return s;
998 }
999
1000 /* Memory mapped interface */
1001 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
1002 unsigned size)
1003 {
1004 SerialState *s = opaque;
1005 return serial_ioport_read(s, addr >> s->it_shift, 1);
1006 }
1007
1008 static void serial_mm_write(void *opaque, hwaddr addr,
1009 uint64_t value, unsigned size)
1010 {
1011 SerialState *s = opaque;
1012 value &= 255;
1013 serial_ioport_write(s, addr >> s->it_shift, value, 1);
1014 }
1015
1016 static const MemoryRegionOps serial_mm_ops[3] = {
1017 [DEVICE_NATIVE_ENDIAN] = {
1018 .read = serial_mm_read,
1019 .write = serial_mm_write,
1020 .endianness = DEVICE_NATIVE_ENDIAN,
1021 .valid.max_access_size = 8,
1022 .impl.max_access_size = 8,
1023 },
1024 [DEVICE_LITTLE_ENDIAN] = {
1025 .read = serial_mm_read,
1026 .write = serial_mm_write,
1027 .endianness = DEVICE_LITTLE_ENDIAN,
1028 .valid.max_access_size = 8,
1029 .impl.max_access_size = 8,
1030 },
1031 [DEVICE_BIG_ENDIAN] = {
1032 .read = serial_mm_read,
1033 .write = serial_mm_write,
1034 .endianness = DEVICE_BIG_ENDIAN,
1035 .valid.max_access_size = 8,
1036 .impl.max_access_size = 8,
1037 },
1038 };
1039
1040 SerialState *serial_mm_init(MemoryRegion *address_space,
1041 hwaddr base, int it_shift,
1042 qemu_irq irq, int baudbase,
1043 Chardev *chr, enum device_endian end)
1044 {
1045 SerialState *s;
1046
1047 s = g_malloc0(sizeof(SerialState));
1048
1049 s->it_shift = it_shift;
1050 s->irq = irq;
1051 s->baudbase = baudbase;
1052 qemu_chr_fe_init(&s->chr, chr, &error_abort);
1053
1054 serial_realize_core(s, &error_fatal);
1055 vmstate_register(NULL, base, &vmstate_serial, s);
1056
1057 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
1058 "serial", 8 << it_shift);
1059 memory_region_add_subregion(address_space, base, &s->io);
1060 return s;
1061 }