]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
hw/core/loader: Add new function rom_ptr_for_as()
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qemu/datadir.h"
48 #include "qapi/error.h"
49 #include "trace.h"
50 #include "hw/hw.h"
51 #include "disas/disas.h"
52 #include "migration/vmstate.h"
53 #include "monitor/monitor.h"
54 #include "sysemu/reset.h"
55 #include "sysemu/sysemu.h"
56 #include "uboot_image.h"
57 #include "hw/loader.h"
58 #include "hw/nvram/fw_cfg.h"
59 #include "exec/memory.h"
60 #include "exec/address-spaces.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64
65 #include <zlib.h>
66
67 static int roms_loaded;
68
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
71 {
72 int fd;
73 int64_t size;
74 fd = open(filename, O_RDONLY | O_BINARY);
75 if (fd < 0)
76 return -1;
77 size = lseek(fd, 0, SEEK_END);
78 close(fd);
79 return size;
80 }
81
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
84 {
85 int fd;
86 ssize_t actsize, l = 0;
87
88 fd = open(filename, O_RDONLY | O_BINARY);
89 if (fd < 0) {
90 return -1;
91 }
92
93 while ((actsize = read(fd, addr + l, size - l)) > 0) {
94 l += actsize;
95 }
96
97 close(fd);
98
99 return actsize < 0 ? -1 : l;
100 }
101
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104 int fd, hwaddr dst_addr, size_t nbytes)
105 {
106 uint8_t *buf;
107 ssize_t did;
108
109 buf = g_malloc(nbytes);
110 did = read(fd, buf, nbytes);
111 if (did > 0)
112 rom_add_blob_fixed("read", buf, did, dst_addr);
113 g_free(buf);
114 return did;
115 }
116
117 int load_image_targphys(const char *filename,
118 hwaddr addr, uint64_t max_sz)
119 {
120 return load_image_targphys_as(filename, addr, max_sz, NULL);
121 }
122
123 /* return the size or -1 if error */
124 int load_image_targphys_as(const char *filename,
125 hwaddr addr, uint64_t max_sz, AddressSpace *as)
126 {
127 int size;
128
129 size = get_image_size(filename);
130 if (size < 0 || size > max_sz) {
131 return -1;
132 }
133 if (size > 0) {
134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135 return -1;
136 }
137 }
138 return size;
139 }
140
141 int load_image_mr(const char *filename, MemoryRegion *mr)
142 {
143 int size;
144
145 if (!memory_access_is_direct(mr, false)) {
146 /* Can only load an image into RAM or ROM */
147 return -1;
148 }
149
150 size = get_image_size(filename);
151
152 if (size < 0 || size > memory_region_size(mr)) {
153 return -1;
154 }
155 if (size > 0) {
156 if (rom_add_file_mr(filename, mr, -1) < 0) {
157 return -1;
158 }
159 }
160 return size;
161 }
162
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164 const char *source)
165 {
166 const char *nulp;
167 char *ptr;
168
169 if (buf_size <= 0) return;
170 nulp = memchr(source, 0, buf_size);
171 if (nulp) {
172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 } else {
174 rom_add_blob_fixed(name, source, buf_size, dest);
175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176 *ptr = 0;
177 }
178 }
179
180 /* A.OUT loader */
181
182 struct exec
183 {
184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
185 uint32_t a_text; /* length of text, in bytes */
186 uint32_t a_data; /* length of data, in bytes */
187 uint32_t a_bss; /* length of uninitialized data area, in bytes */
188 uint32_t a_syms; /* length of symbol table data in file, in bytes */
189 uint32_t a_entry; /* start address */
190 uint32_t a_trsize; /* length of relocation info for text, in bytes */
191 uint32_t a_drsize; /* length of relocation info for data, in bytes */
192 };
193
194 static void bswap_ahdr(struct exec *e)
195 {
196 bswap32s(&e->a_info);
197 bswap32s(&e->a_text);
198 bswap32s(&e->a_data);
199 bswap32s(&e->a_bss);
200 bswap32s(&e->a_syms);
201 bswap32s(&e->a_entry);
202 bswap32s(&e->a_trsize);
203 bswap32s(&e->a_drsize);
204 }
205
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x) \
213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
217
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
219
220 #define N_DATADDR(x, target_page_size) \
221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
223
224
225 int load_aout(const char *filename, hwaddr addr, int max_sz,
226 int bswap_needed, hwaddr target_page_size)
227 {
228 int fd;
229 ssize_t size, ret;
230 struct exec e;
231 uint32_t magic;
232
233 fd = open(filename, O_RDONLY | O_BINARY);
234 if (fd < 0)
235 return -1;
236
237 size = read(fd, &e, sizeof(e));
238 if (size < 0)
239 goto fail;
240
241 if (bswap_needed) {
242 bswap_ahdr(&e);
243 }
244
245 magic = N_MAGIC(e);
246 switch (magic) {
247 case ZMAGIC:
248 case QMAGIC:
249 case OMAGIC:
250 if (e.a_text + e.a_data > max_sz)
251 goto fail;
252 lseek(fd, N_TXTOFF(e), SEEK_SET);
253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254 if (size < 0)
255 goto fail;
256 break;
257 case NMAGIC:
258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 goto fail;
260 lseek(fd, N_TXTOFF(e), SEEK_SET);
261 size = read_targphys(filename, fd, addr, e.a_text);
262 if (size < 0)
263 goto fail;
264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265 e.a_data);
266 if (ret < 0)
267 goto fail;
268 size += ret;
269 break;
270 default:
271 goto fail;
272 }
273 close(fd);
274 return size;
275 fail:
276 close(fd);
277 return -1;
278 }
279
280 /* ELF loader */
281
282 static void *load_at(int fd, off_t offset, size_t size)
283 {
284 void *ptr;
285 if (lseek(fd, offset, SEEK_SET) < 0)
286 return NULL;
287 ptr = g_malloc(size);
288 if (read(fd, ptr, size) != size) {
289 g_free(ptr);
290 return NULL;
291 }
292 return ptr;
293 }
294
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
298
299 #define ELF_CLASS ELFCLASS32
300 #include "elf.h"
301
302 #define SZ 32
303 #define elf_word uint32_t
304 #define elf_sword int32_t
305 #define bswapSZs bswap32s
306 #include "hw/elf_ops.h"
307
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr elf64_hdr
319 #define elf_phdr elf64_phdr
320 #define elf_note elf64_note
321 #define elf_shdr elf64_shdr
322 #define elf_sym elf64_sym
323 #define elf_rela elf64_rela
324 #define elf_word uint64_t
325 #define elf_sword int64_t
326 #define bswapSZs bswap64s
327 #define SZ 64
328 #include "hw/elf_ops.h"
329
330 const char *load_elf_strerror(int error)
331 {
332 switch (error) {
333 case 0:
334 return "No error";
335 case ELF_LOAD_FAILED:
336 return "Failed to load ELF";
337 case ELF_LOAD_NOT_ELF:
338 return "The image is not ELF";
339 case ELF_LOAD_WRONG_ARCH:
340 return "The image is from incompatible architecture";
341 case ELF_LOAD_WRONG_ENDIAN:
342 return "The image has incorrect endianness";
343 case ELF_LOAD_TOO_BIG:
344 return "The image segments are too big to load";
345 default:
346 return "Unknown error";
347 }
348 }
349
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
351 {
352 int fd;
353 uint8_t e_ident_local[EI_NIDENT];
354 uint8_t *e_ident;
355 size_t hdr_size, off;
356 bool is64l;
357
358 if (!hdr) {
359 hdr = e_ident_local;
360 }
361 e_ident = hdr;
362
363 fd = open(filename, O_RDONLY | O_BINARY);
364 if (fd < 0) {
365 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366 return;
367 }
368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370 goto fail;
371 }
372 if (e_ident[0] != ELFMAG0 ||
373 e_ident[1] != ELFMAG1 ||
374 e_ident[2] != ELFMAG2 ||
375 e_ident[3] != ELFMAG3) {
376 error_setg(errp, "Bad ELF magic");
377 goto fail;
378 }
379
380 is64l = e_ident[EI_CLASS] == ELFCLASS64;
381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382 if (is64) {
383 *is64 = is64l;
384 }
385
386 off = EI_NIDENT;
387 while (hdr != e_ident_local && off < hdr_size) {
388 size_t br = read(fd, hdr + off, hdr_size - off);
389 switch (br) {
390 case 0:
391 error_setg(errp, "File too short: %s", filename);
392 goto fail;
393 case -1:
394 error_setg_errno(errp, errno, "Failed to read file: %s",
395 filename);
396 goto fail;
397 }
398 off += br;
399 }
400
401 fail:
402 close(fd);
403 }
404
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 int load_elf(const char *filename,
407 uint64_t (*elf_note_fn)(void *, void *, bool),
408 uint64_t (*translate_fn)(void *, uint64_t),
409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410 uint64_t *highaddr, uint32_t *pflags, int big_endian,
411 int elf_machine, int clear_lsb, int data_swab)
412 {
413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414 pentry, lowaddr, highaddr, pflags, big_endian,
415 elf_machine, clear_lsb, data_swab, NULL);
416 }
417
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 int load_elf_as(const char *filename,
420 uint64_t (*elf_note_fn)(void *, void *, bool),
421 uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, uint32_t *pflags, int big_endian,
424 int elf_machine, int clear_lsb, int data_swab, AddressSpace *as)
425 {
426 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
427 pentry, lowaddr, highaddr, pflags, big_endian,
428 elf_machine, clear_lsb, data_swab, as, true);
429 }
430
431 /* return < 0 if error, otherwise the number of bytes loaded in memory */
432 int load_elf_ram(const char *filename,
433 uint64_t (*elf_note_fn)(void *, void *, bool),
434 uint64_t (*translate_fn)(void *, uint64_t),
435 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
436 uint64_t *highaddr, uint32_t *pflags, int big_endian,
437 int elf_machine, int clear_lsb, int data_swab,
438 AddressSpace *as, bool load_rom)
439 {
440 return load_elf_ram_sym(filename, elf_note_fn,
441 translate_fn, translate_opaque,
442 pentry, lowaddr, highaddr, pflags, big_endian,
443 elf_machine, clear_lsb, data_swab, as,
444 load_rom, NULL);
445 }
446
447 /* return < 0 if error, otherwise the number of bytes loaded in memory */
448 int load_elf_ram_sym(const char *filename,
449 uint64_t (*elf_note_fn)(void *, void *, bool),
450 uint64_t (*translate_fn)(void *, uint64_t),
451 void *translate_opaque, uint64_t *pentry,
452 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
453 int big_endian, int elf_machine,
454 int clear_lsb, int data_swab,
455 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
456 {
457 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
458 uint8_t e_ident[EI_NIDENT];
459
460 fd = open(filename, O_RDONLY | O_BINARY);
461 if (fd < 0) {
462 perror(filename);
463 return -1;
464 }
465 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
466 goto fail;
467 if (e_ident[0] != ELFMAG0 ||
468 e_ident[1] != ELFMAG1 ||
469 e_ident[2] != ELFMAG2 ||
470 e_ident[3] != ELFMAG3) {
471 ret = ELF_LOAD_NOT_ELF;
472 goto fail;
473 }
474 #ifdef HOST_WORDS_BIGENDIAN
475 data_order = ELFDATA2MSB;
476 #else
477 data_order = ELFDATA2LSB;
478 #endif
479 must_swab = data_order != e_ident[EI_DATA];
480 if (big_endian) {
481 target_data_order = ELFDATA2MSB;
482 } else {
483 target_data_order = ELFDATA2LSB;
484 }
485
486 if (target_data_order != e_ident[EI_DATA]) {
487 ret = ELF_LOAD_WRONG_ENDIAN;
488 goto fail;
489 }
490
491 lseek(fd, 0, SEEK_SET);
492 if (e_ident[EI_CLASS] == ELFCLASS64) {
493 ret = load_elf64(filename, fd, elf_note_fn,
494 translate_fn, translate_opaque, must_swab,
495 pentry, lowaddr, highaddr, pflags, elf_machine,
496 clear_lsb, data_swab, as, load_rom, sym_cb);
497 } else {
498 ret = load_elf32(filename, fd, elf_note_fn,
499 translate_fn, translate_opaque, must_swab,
500 pentry, lowaddr, highaddr, pflags, elf_machine,
501 clear_lsb, data_swab, as, load_rom, sym_cb);
502 }
503
504 fail:
505 close(fd);
506 return ret;
507 }
508
509 static void bswap_uboot_header(uboot_image_header_t *hdr)
510 {
511 #ifndef HOST_WORDS_BIGENDIAN
512 bswap32s(&hdr->ih_magic);
513 bswap32s(&hdr->ih_hcrc);
514 bswap32s(&hdr->ih_time);
515 bswap32s(&hdr->ih_size);
516 bswap32s(&hdr->ih_load);
517 bswap32s(&hdr->ih_ep);
518 bswap32s(&hdr->ih_dcrc);
519 #endif
520 }
521
522
523 #define ZALLOC_ALIGNMENT 16
524
525 static void *zalloc(void *x, unsigned items, unsigned size)
526 {
527 void *p;
528
529 size *= items;
530 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
531
532 p = g_malloc(size);
533
534 return (p);
535 }
536
537 static void zfree(void *x, void *addr)
538 {
539 g_free(addr);
540 }
541
542
543 #define HEAD_CRC 2
544 #define EXTRA_FIELD 4
545 #define ORIG_NAME 8
546 #define COMMENT 0x10
547 #define RESERVED 0xe0
548
549 #define DEFLATED 8
550
551 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
552 {
553 z_stream s;
554 ssize_t dstbytes;
555 int r, i, flags;
556
557 /* skip header */
558 i = 10;
559 flags = src[3];
560 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
561 puts ("Error: Bad gzipped data\n");
562 return -1;
563 }
564 if ((flags & EXTRA_FIELD) != 0)
565 i = 12 + src[10] + (src[11] << 8);
566 if ((flags & ORIG_NAME) != 0)
567 while (src[i++] != 0)
568 ;
569 if ((flags & COMMENT) != 0)
570 while (src[i++] != 0)
571 ;
572 if ((flags & HEAD_CRC) != 0)
573 i += 2;
574 if (i >= srclen) {
575 puts ("Error: gunzip out of data in header\n");
576 return -1;
577 }
578
579 s.zalloc = zalloc;
580 s.zfree = zfree;
581
582 r = inflateInit2(&s, -MAX_WBITS);
583 if (r != Z_OK) {
584 printf ("Error: inflateInit2() returned %d\n", r);
585 return (-1);
586 }
587 s.next_in = src + i;
588 s.avail_in = srclen - i;
589 s.next_out = dst;
590 s.avail_out = dstlen;
591 r = inflate(&s, Z_FINISH);
592 if (r != Z_OK && r != Z_STREAM_END) {
593 printf ("Error: inflate() returned %d\n", r);
594 return -1;
595 }
596 dstbytes = s.next_out - (unsigned char *) dst;
597 inflateEnd(&s);
598
599 return dstbytes;
600 }
601
602 /* Load a U-Boot image. */
603 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
604 int *is_linux, uint8_t image_type,
605 uint64_t (*translate_fn)(void *, uint64_t),
606 void *translate_opaque, AddressSpace *as)
607 {
608 int fd;
609 int size;
610 hwaddr address;
611 uboot_image_header_t h;
612 uboot_image_header_t *hdr = &h;
613 uint8_t *data = NULL;
614 int ret = -1;
615 int do_uncompress = 0;
616
617 fd = open(filename, O_RDONLY | O_BINARY);
618 if (fd < 0)
619 return -1;
620
621 size = read(fd, hdr, sizeof(uboot_image_header_t));
622 if (size < sizeof(uboot_image_header_t)) {
623 goto out;
624 }
625
626 bswap_uboot_header(hdr);
627
628 if (hdr->ih_magic != IH_MAGIC)
629 goto out;
630
631 if (hdr->ih_type != image_type) {
632 if (!(image_type == IH_TYPE_KERNEL &&
633 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
634 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
635 image_type);
636 goto out;
637 }
638 }
639
640 /* TODO: Implement other image types. */
641 switch (hdr->ih_type) {
642 case IH_TYPE_KERNEL_NOLOAD:
643 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
644 fprintf(stderr, "this image format (kernel_noload) cannot be "
645 "loaded on this machine type");
646 goto out;
647 }
648
649 hdr->ih_load = *loadaddr + sizeof(*hdr);
650 hdr->ih_ep += hdr->ih_load;
651 /* fall through */
652 case IH_TYPE_KERNEL:
653 address = hdr->ih_load;
654 if (translate_fn) {
655 address = translate_fn(translate_opaque, address);
656 }
657 if (loadaddr) {
658 *loadaddr = hdr->ih_load;
659 }
660
661 switch (hdr->ih_comp) {
662 case IH_COMP_NONE:
663 break;
664 case IH_COMP_GZIP:
665 do_uncompress = 1;
666 break;
667 default:
668 fprintf(stderr,
669 "Unable to load u-boot images with compression type %d\n",
670 hdr->ih_comp);
671 goto out;
672 }
673
674 if (ep) {
675 *ep = hdr->ih_ep;
676 }
677
678 /* TODO: Check CPU type. */
679 if (is_linux) {
680 if (hdr->ih_os == IH_OS_LINUX) {
681 *is_linux = 1;
682 } else {
683 *is_linux = 0;
684 }
685 }
686
687 break;
688 case IH_TYPE_RAMDISK:
689 address = *loadaddr;
690 break;
691 default:
692 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
693 goto out;
694 }
695
696 data = g_malloc(hdr->ih_size);
697
698 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
699 fprintf(stderr, "Error reading file\n");
700 goto out;
701 }
702
703 if (do_uncompress) {
704 uint8_t *compressed_data;
705 size_t max_bytes;
706 ssize_t bytes;
707
708 compressed_data = data;
709 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
710 data = g_malloc(max_bytes);
711
712 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
713 g_free(compressed_data);
714 if (bytes < 0) {
715 fprintf(stderr, "Unable to decompress gzipped image!\n");
716 goto out;
717 }
718 hdr->ih_size = bytes;
719 }
720
721 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
722
723 ret = hdr->ih_size;
724
725 out:
726 g_free(data);
727 close(fd);
728 return ret;
729 }
730
731 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
732 int *is_linux,
733 uint64_t (*translate_fn)(void *, uint64_t),
734 void *translate_opaque)
735 {
736 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
737 translate_fn, translate_opaque, NULL);
738 }
739
740 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
741 int *is_linux,
742 uint64_t (*translate_fn)(void *, uint64_t),
743 void *translate_opaque, AddressSpace *as)
744 {
745 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
746 translate_fn, translate_opaque, as);
747 }
748
749 /* Load a ramdisk. */
750 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
751 {
752 return load_ramdisk_as(filename, addr, max_sz, NULL);
753 }
754
755 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
756 AddressSpace *as)
757 {
758 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
759 NULL, NULL, as);
760 }
761
762 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
763 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
764 uint8_t **buffer)
765 {
766 uint8_t *compressed_data = NULL;
767 uint8_t *data = NULL;
768 gsize len;
769 ssize_t bytes;
770 int ret = -1;
771
772 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
773 NULL)) {
774 goto out;
775 }
776
777 /* Is it a gzip-compressed file? */
778 if (len < 2 ||
779 compressed_data[0] != 0x1f ||
780 compressed_data[1] != 0x8b) {
781 goto out;
782 }
783
784 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
785 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
786 }
787
788 data = g_malloc(max_sz);
789 bytes = gunzip(data, max_sz, compressed_data, len);
790 if (bytes < 0) {
791 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
792 filename);
793 goto out;
794 }
795
796 /* trim to actual size and return to caller */
797 *buffer = g_realloc(data, bytes);
798 ret = bytes;
799 /* ownership has been transferred to caller */
800 data = NULL;
801
802 out:
803 g_free(compressed_data);
804 g_free(data);
805 return ret;
806 }
807
808 /* Load a gzip-compressed kernel. */
809 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
810 {
811 int bytes;
812 uint8_t *data;
813
814 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
815 if (bytes != -1) {
816 rom_add_blob_fixed(filename, data, bytes, addr);
817 g_free(data);
818 }
819 return bytes;
820 }
821
822 /*
823 * Functions for reboot-persistent memory regions.
824 * - used for vga bios and option roms.
825 * - also linux kernel (-kernel / -initrd).
826 */
827
828 typedef struct Rom Rom;
829
830 struct Rom {
831 char *name;
832 char *path;
833
834 /* datasize is the amount of memory allocated in "data". If datasize is less
835 * than romsize, it means that the area from datasize to romsize is filled
836 * with zeros.
837 */
838 size_t romsize;
839 size_t datasize;
840
841 uint8_t *data;
842 MemoryRegion *mr;
843 AddressSpace *as;
844 int isrom;
845 char *fw_dir;
846 char *fw_file;
847 GMappedFile *mapped_file;
848
849 bool committed;
850
851 hwaddr addr;
852 QTAILQ_ENTRY(Rom) next;
853 };
854
855 static FWCfgState *fw_cfg;
856 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
857
858 /*
859 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
860 * rom_add_elf_program())
861 */
862 static void rom_free_data(Rom *rom)
863 {
864 if (rom->mapped_file) {
865 g_mapped_file_unref(rom->mapped_file);
866 rom->mapped_file = NULL;
867 } else {
868 g_free(rom->data);
869 }
870
871 rom->data = NULL;
872 }
873
874 static void rom_free(Rom *rom)
875 {
876 rom_free_data(rom);
877 g_free(rom->path);
878 g_free(rom->name);
879 g_free(rom->fw_dir);
880 g_free(rom->fw_file);
881 g_free(rom);
882 }
883
884 static inline bool rom_order_compare(Rom *rom, Rom *item)
885 {
886 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
887 (rom->as == item->as && rom->addr >= item->addr);
888 }
889
890 static void rom_insert(Rom *rom)
891 {
892 Rom *item;
893
894 if (roms_loaded) {
895 hw_error ("ROM images must be loaded at startup\n");
896 }
897
898 /* The user didn't specify an address space, this is the default */
899 if (!rom->as) {
900 rom->as = &address_space_memory;
901 }
902
903 rom->committed = false;
904
905 /* List is ordered by load address in the same address space */
906 QTAILQ_FOREACH(item, &roms, next) {
907 if (rom_order_compare(rom, item)) {
908 continue;
909 }
910 QTAILQ_INSERT_BEFORE(item, rom, next);
911 return;
912 }
913 QTAILQ_INSERT_TAIL(&roms, rom, next);
914 }
915
916 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
917 {
918 if (fw_cfg) {
919 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
920 }
921 }
922
923 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
924 {
925 void *data;
926
927 rom->mr = g_malloc(sizeof(*rom->mr));
928 memory_region_init_resizeable_ram(rom->mr, owner, name,
929 rom->datasize, rom->romsize,
930 fw_cfg_resized,
931 &error_fatal);
932 memory_region_set_readonly(rom->mr, ro);
933 vmstate_register_ram_global(rom->mr);
934
935 data = memory_region_get_ram_ptr(rom->mr);
936 memcpy(data, rom->data, rom->datasize);
937
938 return data;
939 }
940
941 int rom_add_file(const char *file, const char *fw_dir,
942 hwaddr addr, int32_t bootindex,
943 bool option_rom, MemoryRegion *mr,
944 AddressSpace *as)
945 {
946 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
947 Rom *rom;
948 int rc, fd = -1;
949 char devpath[100];
950
951 if (as && mr) {
952 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
953 "not valid when loading a rom\n");
954 /* We haven't allocated anything so we don't need any cleanup */
955 return -1;
956 }
957
958 rom = g_malloc0(sizeof(*rom));
959 rom->name = g_strdup(file);
960 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
961 rom->as = as;
962 if (rom->path == NULL) {
963 rom->path = g_strdup(file);
964 }
965
966 fd = open(rom->path, O_RDONLY | O_BINARY);
967 if (fd == -1) {
968 fprintf(stderr, "Could not open option rom '%s': %s\n",
969 rom->path, strerror(errno));
970 goto err;
971 }
972
973 if (fw_dir) {
974 rom->fw_dir = g_strdup(fw_dir);
975 rom->fw_file = g_strdup(file);
976 }
977 rom->addr = addr;
978 rom->romsize = lseek(fd, 0, SEEK_END);
979 if (rom->romsize == -1) {
980 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
981 rom->name, strerror(errno));
982 goto err;
983 }
984
985 rom->datasize = rom->romsize;
986 rom->data = g_malloc0(rom->datasize);
987 lseek(fd, 0, SEEK_SET);
988 rc = read(fd, rom->data, rom->datasize);
989 if (rc != rom->datasize) {
990 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
991 rom->name, rc, rom->datasize);
992 goto err;
993 }
994 close(fd);
995 rom_insert(rom);
996 if (rom->fw_file && fw_cfg) {
997 const char *basename;
998 char fw_file_name[FW_CFG_MAX_FILE_PATH];
999 void *data;
1000
1001 basename = strrchr(rom->fw_file, '/');
1002 if (basename) {
1003 basename++;
1004 } else {
1005 basename = rom->fw_file;
1006 }
1007 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1008 basename);
1009 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1010
1011 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1012 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1013 } else {
1014 data = rom->data;
1015 }
1016
1017 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1018 } else {
1019 if (mr) {
1020 rom->mr = mr;
1021 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1022 } else {
1023 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1024 }
1025 }
1026
1027 add_boot_device_path(bootindex, NULL, devpath);
1028 return 0;
1029
1030 err:
1031 if (fd != -1)
1032 close(fd);
1033
1034 rom_free(rom);
1035 return -1;
1036 }
1037
1038 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1039 size_t max_len, hwaddr addr, const char *fw_file_name,
1040 FWCfgCallback fw_callback, void *callback_opaque,
1041 AddressSpace *as, bool read_only)
1042 {
1043 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1044 Rom *rom;
1045 MemoryRegion *mr = NULL;
1046
1047 rom = g_malloc0(sizeof(*rom));
1048 rom->name = g_strdup(name);
1049 rom->as = as;
1050 rom->addr = addr;
1051 rom->romsize = max_len ? max_len : len;
1052 rom->datasize = len;
1053 g_assert(rom->romsize >= rom->datasize);
1054 rom->data = g_malloc0(rom->datasize);
1055 memcpy(rom->data, blob, len);
1056 rom_insert(rom);
1057 if (fw_file_name && fw_cfg) {
1058 char devpath[100];
1059 void *data;
1060
1061 if (read_only) {
1062 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1063 } else {
1064 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1065 }
1066
1067 if (mc->rom_file_has_mr) {
1068 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1069 mr = rom->mr;
1070 } else {
1071 data = rom->data;
1072 }
1073
1074 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1075 fw_callback, NULL, callback_opaque,
1076 data, rom->datasize, read_only);
1077 }
1078 return mr;
1079 }
1080
1081 /* This function is specific for elf program because we don't need to allocate
1082 * all the rom. We just allocate the first part and the rest is just zeros. This
1083 * is why romsize and datasize are different. Also, this function takes its own
1084 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1085 */
1086 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1087 size_t datasize, size_t romsize, hwaddr addr,
1088 AddressSpace *as)
1089 {
1090 Rom *rom;
1091
1092 rom = g_malloc0(sizeof(*rom));
1093 rom->name = g_strdup(name);
1094 rom->addr = addr;
1095 rom->datasize = datasize;
1096 rom->romsize = romsize;
1097 rom->data = data;
1098 rom->as = as;
1099
1100 if (mapped_file && data) {
1101 g_mapped_file_ref(mapped_file);
1102 rom->mapped_file = mapped_file;
1103 }
1104
1105 rom_insert(rom);
1106 return 0;
1107 }
1108
1109 int rom_add_vga(const char *file)
1110 {
1111 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1112 }
1113
1114 int rom_add_option(const char *file, int32_t bootindex)
1115 {
1116 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1117 }
1118
1119 static void rom_reset(void *unused)
1120 {
1121 Rom *rom;
1122
1123 QTAILQ_FOREACH(rom, &roms, next) {
1124 if (rom->fw_file) {
1125 continue;
1126 }
1127 /*
1128 * We don't need to fill in the RAM with ROM data because we'll fill
1129 * the data in during the next incoming migration in all cases. Note
1130 * that some of those RAMs can actually be modified by the guest.
1131 */
1132 if (runstate_check(RUN_STATE_INMIGRATE)) {
1133 if (rom->data && rom->isrom) {
1134 /*
1135 * Free it so that a rom_reset after migration doesn't
1136 * overwrite a potentially modified 'rom'.
1137 */
1138 rom_free_data(rom);
1139 }
1140 continue;
1141 }
1142
1143 if (rom->data == NULL) {
1144 continue;
1145 }
1146 if (rom->mr) {
1147 void *host = memory_region_get_ram_ptr(rom->mr);
1148 memcpy(host, rom->data, rom->datasize);
1149 } else {
1150 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1151 rom->data, rom->datasize);
1152 }
1153 if (rom->isrom) {
1154 /* rom needs to be written only once */
1155 rom_free_data(rom);
1156 }
1157 /*
1158 * The rom loader is really on the same level as firmware in the guest
1159 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1160 * that the instruction cache for that new region is clear, so that the
1161 * CPU definitely fetches its instructions from the just written data.
1162 */
1163 cpu_flush_icache_range(rom->addr, rom->datasize);
1164
1165 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1166 }
1167 }
1168
1169 /* Return true if two consecutive ROMs in the ROM list overlap */
1170 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1171 {
1172 if (!last_rom) {
1173 return false;
1174 }
1175 return last_rom->as == this_rom->as &&
1176 last_rom->addr + last_rom->romsize > this_rom->addr;
1177 }
1178
1179 static const char *rom_as_name(Rom *rom)
1180 {
1181 const char *name = rom->as ? rom->as->name : NULL;
1182 return name ?: "anonymous";
1183 }
1184
1185 static void rom_print_overlap_error_header(void)
1186 {
1187 error_report("Some ROM regions are overlapping");
1188 error_printf(
1189 "These ROM regions might have been loaded by "
1190 "direct user request or by default.\n"
1191 "They could be BIOS/firmware images, a guest kernel, "
1192 "initrd or some other file loaded into guest memory.\n"
1193 "Check whether you intended to load all this guest code, and "
1194 "whether it has been built to load to the correct addresses.\n");
1195 }
1196
1197 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1198 {
1199 error_printf(
1200 "\nThe following two regions overlap (in the %s address space):\n",
1201 rom_as_name(rom));
1202 error_printf(
1203 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1204 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1205 error_printf(
1206 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1207 rom->name, rom->addr, rom->addr + rom->romsize);
1208 }
1209
1210 int rom_check_and_register_reset(void)
1211 {
1212 MemoryRegionSection section;
1213 Rom *rom, *last_rom = NULL;
1214 bool found_overlap = false;
1215
1216 QTAILQ_FOREACH(rom, &roms, next) {
1217 if (rom->fw_file) {
1218 continue;
1219 }
1220 if (!rom->mr) {
1221 if (roms_overlap(last_rom, rom)) {
1222 if (!found_overlap) {
1223 found_overlap = true;
1224 rom_print_overlap_error_header();
1225 }
1226 rom_print_one_overlap_error(last_rom, rom);
1227 /* Keep going through the list so we report all overlaps */
1228 }
1229 last_rom = rom;
1230 }
1231 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1232 rom->addr, 1);
1233 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1234 memory_region_unref(section.mr);
1235 }
1236 if (found_overlap) {
1237 return -1;
1238 }
1239
1240 qemu_register_reset(rom_reset, NULL);
1241 roms_loaded = 1;
1242 return 0;
1243 }
1244
1245 void rom_set_fw(FWCfgState *f)
1246 {
1247 fw_cfg = f;
1248 }
1249
1250 void rom_set_order_override(int order)
1251 {
1252 if (!fw_cfg)
1253 return;
1254 fw_cfg_set_order_override(fw_cfg, order);
1255 }
1256
1257 void rom_reset_order_override(void)
1258 {
1259 if (!fw_cfg)
1260 return;
1261 fw_cfg_reset_order_override(fw_cfg);
1262 }
1263
1264 void rom_transaction_begin(void)
1265 {
1266 Rom *rom;
1267
1268 /* Ignore ROMs added without the transaction API */
1269 QTAILQ_FOREACH(rom, &roms, next) {
1270 rom->committed = true;
1271 }
1272 }
1273
1274 void rom_transaction_end(bool commit)
1275 {
1276 Rom *rom;
1277 Rom *tmp;
1278
1279 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1280 if (rom->committed) {
1281 continue;
1282 }
1283 if (commit) {
1284 rom->committed = true;
1285 } else {
1286 QTAILQ_REMOVE(&roms, rom, next);
1287 rom_free(rom);
1288 }
1289 }
1290 }
1291
1292 static Rom *find_rom(hwaddr addr, size_t size)
1293 {
1294 Rom *rom;
1295
1296 QTAILQ_FOREACH(rom, &roms, next) {
1297 if (rom->fw_file) {
1298 continue;
1299 }
1300 if (rom->mr) {
1301 continue;
1302 }
1303 if (rom->addr > addr) {
1304 continue;
1305 }
1306 if (rom->addr + rom->romsize < addr + size) {
1307 continue;
1308 }
1309 return rom;
1310 }
1311 return NULL;
1312 }
1313
1314 /*
1315 * Copies memory from registered ROMs to dest. Any memory that is contained in
1316 * a ROM between addr and addr + size is copied. Note that this can involve
1317 * multiple ROMs, which need not start at addr and need not end at addr + size.
1318 */
1319 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1320 {
1321 hwaddr end = addr + size;
1322 uint8_t *s, *d = dest;
1323 size_t l = 0;
1324 Rom *rom;
1325
1326 QTAILQ_FOREACH(rom, &roms, next) {
1327 if (rom->fw_file) {
1328 continue;
1329 }
1330 if (rom->mr) {
1331 continue;
1332 }
1333 if (rom->addr + rom->romsize < addr) {
1334 continue;
1335 }
1336 if (rom->addr > end || rom->addr < addr) {
1337 break;
1338 }
1339
1340 d = dest + (rom->addr - addr);
1341 s = rom->data;
1342 l = rom->datasize;
1343
1344 if ((d + l) > (dest + size)) {
1345 l = dest - d;
1346 }
1347
1348 if (l > 0) {
1349 memcpy(d, s, l);
1350 }
1351
1352 if (rom->romsize > rom->datasize) {
1353 /* If datasize is less than romsize, it means that we didn't
1354 * allocate all the ROM because the trailing data are only zeros.
1355 */
1356
1357 d += l;
1358 l = rom->romsize - rom->datasize;
1359
1360 if ((d + l) > (dest + size)) {
1361 /* Rom size doesn't fit in the destination area. Adjust to avoid
1362 * overflow.
1363 */
1364 l = dest - d;
1365 }
1366
1367 if (l > 0) {
1368 memset(d, 0x0, l);
1369 }
1370 }
1371 }
1372
1373 return (d + l) - dest;
1374 }
1375
1376 void *rom_ptr(hwaddr addr, size_t size)
1377 {
1378 Rom *rom;
1379
1380 rom = find_rom(addr, size);
1381 if (!rom || !rom->data)
1382 return NULL;
1383 return rom->data + (addr - rom->addr);
1384 }
1385
1386 typedef struct FindRomCBData {
1387 size_t size; /* Amount of data we want from ROM, in bytes */
1388 MemoryRegion *mr; /* MR at the unaliased guest addr */
1389 hwaddr xlat; /* Offset of addr within mr */
1390 void *rom; /* Output: rom data pointer, if found */
1391 } FindRomCBData;
1392
1393 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1394 hwaddr offset_in_region, void *opaque)
1395 {
1396 FindRomCBData *cbdata = opaque;
1397 hwaddr alias_addr;
1398
1399 if (mr != cbdata->mr) {
1400 return false;
1401 }
1402
1403 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1404 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1405 if (!cbdata->rom) {
1406 return false;
1407 }
1408 /* Found a match, stop iterating */
1409 return true;
1410 }
1411
1412 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1413 {
1414 /*
1415 * Find any ROM data for the given guest address range. If there
1416 * is a ROM blob then return a pointer to the host memory
1417 * corresponding to 'addr'; otherwise return NULL.
1418 *
1419 * We look not only for ROM blobs that were loaded directly to
1420 * addr, but also for ROM blobs that were loaded to aliases of
1421 * that memory at other addresses within the AddressSpace.
1422 *
1423 * Note that we do not check @as against the 'as' member in the
1424 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1425 * AddressSpace which the rom blob should be written to, whereas
1426 * our @as argument is the AddressSpace which we are (effectively)
1427 * reading from, and the same underlying RAM will often be visible
1428 * in multiple AddressSpaces. (A common example is a ROM blob
1429 * written to the 'system' address space but then read back via a
1430 * CPU's cpu->as pointer.) This does mean we might potentially
1431 * return a false-positive match if a ROM blob was loaded into an
1432 * AS which is entirely separate and distinct from the one we're
1433 * querying, but this issue exists also for rom_ptr() and hasn't
1434 * caused any problems in practice.
1435 */
1436 FlatView *fv;
1437 void *rom;
1438 hwaddr len_unused;
1439 FindRomCBData cbdata = {};
1440
1441 /* Easy case: there's data at the actual address */
1442 rom = rom_ptr(addr, size);
1443 if (rom) {
1444 return rom;
1445 }
1446
1447 RCU_READ_LOCK_GUARD();
1448
1449 fv = address_space_to_flatview(as);
1450 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1451 false, MEMTXATTRS_UNSPECIFIED);
1452 if (!cbdata.mr) {
1453 /* Nothing at this address, so there can't be any aliasing */
1454 return NULL;
1455 }
1456 cbdata.size = size;
1457 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1458 return cbdata.rom;
1459 }
1460
1461 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1462 {
1463 Rom *rom;
1464
1465 QTAILQ_FOREACH(rom, &roms, next) {
1466 if (rom->mr) {
1467 monitor_printf(mon, "%s"
1468 " size=0x%06zx name=\"%s\"\n",
1469 memory_region_name(rom->mr),
1470 rom->romsize,
1471 rom->name);
1472 } else if (!rom->fw_file) {
1473 monitor_printf(mon, "addr=" TARGET_FMT_plx
1474 " size=0x%06zx mem=%s name=\"%s\"\n",
1475 rom->addr, rom->romsize,
1476 rom->isrom ? "rom" : "ram",
1477 rom->name);
1478 } else {
1479 monitor_printf(mon, "fw=%s/%s"
1480 " size=0x%06zx name=\"%s\"\n",
1481 rom->fw_dir,
1482 rom->fw_file,
1483 rom->romsize,
1484 rom->name);
1485 }
1486 }
1487 }
1488
1489 typedef enum HexRecord HexRecord;
1490 enum HexRecord {
1491 DATA_RECORD = 0,
1492 EOF_RECORD,
1493 EXT_SEG_ADDR_RECORD,
1494 START_SEG_ADDR_RECORD,
1495 EXT_LINEAR_ADDR_RECORD,
1496 START_LINEAR_ADDR_RECORD,
1497 };
1498
1499 /* Each record contains a 16-bit address which is combined with the upper 16
1500 * bits of the implicit "next address" to form a 32-bit address.
1501 */
1502 #define NEXT_ADDR_MASK 0xffff0000
1503
1504 #define DATA_FIELD_MAX_LEN 0xff
1505 #define LEN_EXCEPT_DATA 0x5
1506 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1507 * sizeof(checksum) */
1508 typedef struct {
1509 uint8_t byte_count;
1510 uint16_t address;
1511 uint8_t record_type;
1512 uint8_t data[DATA_FIELD_MAX_LEN];
1513 uint8_t checksum;
1514 } HexLine;
1515
1516 /* return 0 or -1 if error */
1517 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1518 uint32_t *index, const bool in_process)
1519 {
1520 /* +-------+---------------+-------+---------------------+--------+
1521 * | byte | |record | | |
1522 * | count | address | type | data |checksum|
1523 * +-------+---------------+-------+---------------------+--------+
1524 * ^ ^ ^ ^ ^ ^
1525 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1526 */
1527 uint8_t value = 0;
1528 uint32_t idx = *index;
1529 /* ignore space */
1530 if (g_ascii_isspace(c)) {
1531 return true;
1532 }
1533 if (!g_ascii_isxdigit(c) || !in_process) {
1534 return false;
1535 }
1536 value = g_ascii_xdigit_value(c);
1537 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1538 if (idx < 2) {
1539 line->byte_count |= value;
1540 } else if (2 <= idx && idx < 6) {
1541 line->address <<= 4;
1542 line->address += g_ascii_xdigit_value(c);
1543 } else if (6 <= idx && idx < 8) {
1544 line->record_type |= value;
1545 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1546 line->data[(idx - 8) >> 1] |= value;
1547 } else if (8 + 2 * line->byte_count <= idx &&
1548 idx < 10 + 2 * line->byte_count) {
1549 line->checksum |= value;
1550 } else {
1551 return false;
1552 }
1553 *our_checksum += value;
1554 ++(*index);
1555 return true;
1556 }
1557
1558 typedef struct {
1559 const char *filename;
1560 HexLine line;
1561 uint8_t *bin_buf;
1562 hwaddr *start_addr;
1563 int total_size;
1564 uint32_t next_address_to_write;
1565 uint32_t current_address;
1566 uint32_t current_rom_index;
1567 uint32_t rom_start_address;
1568 AddressSpace *as;
1569 bool complete;
1570 } HexParser;
1571
1572 /* return size or -1 if error */
1573 static int handle_record_type(HexParser *parser)
1574 {
1575 HexLine *line = &(parser->line);
1576 switch (line->record_type) {
1577 case DATA_RECORD:
1578 parser->current_address =
1579 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1580 /* verify this is a contiguous block of memory */
1581 if (parser->current_address != parser->next_address_to_write) {
1582 if (parser->current_rom_index != 0) {
1583 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1584 parser->current_rom_index,
1585 parser->rom_start_address, parser->as);
1586 }
1587 parser->rom_start_address = parser->current_address;
1588 parser->current_rom_index = 0;
1589 }
1590
1591 /* copy from line buffer to output bin_buf */
1592 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1593 line->byte_count);
1594 parser->current_rom_index += line->byte_count;
1595 parser->total_size += line->byte_count;
1596 /* save next address to write */
1597 parser->next_address_to_write =
1598 parser->current_address + line->byte_count;
1599 break;
1600
1601 case EOF_RECORD:
1602 if (parser->current_rom_index != 0) {
1603 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1604 parser->current_rom_index,
1605 parser->rom_start_address, parser->as);
1606 }
1607 parser->complete = true;
1608 return parser->total_size;
1609 case EXT_SEG_ADDR_RECORD:
1610 case EXT_LINEAR_ADDR_RECORD:
1611 if (line->byte_count != 2 && line->address != 0) {
1612 return -1;
1613 }
1614
1615 if (parser->current_rom_index != 0) {
1616 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1617 parser->current_rom_index,
1618 parser->rom_start_address, parser->as);
1619 }
1620
1621 /* save next address to write,
1622 * in case of non-contiguous block of memory */
1623 parser->next_address_to_write = (line->data[0] << 12) |
1624 (line->data[1] << 4);
1625 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1626 parser->next_address_to_write <<= 12;
1627 }
1628
1629 parser->rom_start_address = parser->next_address_to_write;
1630 parser->current_rom_index = 0;
1631 break;
1632
1633 case START_SEG_ADDR_RECORD:
1634 if (line->byte_count != 4 && line->address != 0) {
1635 return -1;
1636 }
1637
1638 /* x86 16-bit CS:IP segmented addressing */
1639 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1640 ((line->data[2] << 8) | line->data[3]);
1641 break;
1642
1643 case START_LINEAR_ADDR_RECORD:
1644 if (line->byte_count != 4 && line->address != 0) {
1645 return -1;
1646 }
1647
1648 *(parser->start_addr) = ldl_be_p(line->data);
1649 break;
1650
1651 default:
1652 return -1;
1653 }
1654
1655 return parser->total_size;
1656 }
1657
1658 /* return size or -1 if error */
1659 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1660 size_t hex_blob_size, AddressSpace *as)
1661 {
1662 bool in_process = false; /* avoid re-enter and
1663 * check whether record begin with ':' */
1664 uint8_t *end = hex_blob + hex_blob_size;
1665 uint8_t our_checksum = 0;
1666 uint32_t record_index = 0;
1667 HexParser parser = {
1668 .filename = filename,
1669 .bin_buf = g_malloc(hex_blob_size),
1670 .start_addr = addr,
1671 .as = as,
1672 .complete = false
1673 };
1674
1675 rom_transaction_begin();
1676
1677 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1678 switch (*hex_blob) {
1679 case '\r':
1680 case '\n':
1681 if (!in_process) {
1682 break;
1683 }
1684
1685 in_process = false;
1686 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1687 record_index ||
1688 our_checksum != 0) {
1689 parser.total_size = -1;
1690 goto out;
1691 }
1692
1693 if (handle_record_type(&parser) == -1) {
1694 parser.total_size = -1;
1695 goto out;
1696 }
1697 break;
1698
1699 /* start of a new record. */
1700 case ':':
1701 memset(&parser.line, 0, sizeof(HexLine));
1702 in_process = true;
1703 record_index = 0;
1704 break;
1705
1706 /* decoding lines */
1707 default:
1708 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1709 &record_index, in_process)) {
1710 parser.total_size = -1;
1711 goto out;
1712 }
1713 break;
1714 }
1715 }
1716
1717 out:
1718 g_free(parser.bin_buf);
1719 rom_transaction_end(parser.total_size != -1);
1720 return parser.total_size;
1721 }
1722
1723 /* return size or -1 if error */
1724 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1725 {
1726 gsize hex_blob_size;
1727 gchar *hex_blob;
1728 int total_size = 0;
1729
1730 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1731 return -1;
1732 }
1733
1734 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1735 hex_blob_size, as);
1736
1737 g_free(hex_blob);
1738 return total_size;
1739 }