]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
elf-ops.h: fix int overflow in load_elf()
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "migration/vmstate.h"
51 #include "monitor/monitor.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/sysemu.h"
54 #include "uboot_image.h"
55 #include "hw/loader.h"
56 #include "hw/nvram/fw_cfg.h"
57 #include "exec/memory.h"
58 #include "exec/address-spaces.h"
59 #include "hw/boards.h"
60 #include "qemu/cutils.h"
61 #include "sysemu/runstate.h"
62
63 #include <zlib.h>
64
65 static int roms_loaded;
66
67 /* return the size or -1 if error */
68 int64_t get_image_size(const char *filename)
69 {
70 int fd;
71 int64_t size;
72 fd = open(filename, O_RDONLY | O_BINARY);
73 if (fd < 0)
74 return -1;
75 size = lseek(fd, 0, SEEK_END);
76 close(fd);
77 return size;
78 }
79
80 /* return the size or -1 if error */
81 ssize_t load_image_size(const char *filename, void *addr, size_t size)
82 {
83 int fd;
84 ssize_t actsize, l = 0;
85
86 fd = open(filename, O_RDONLY | O_BINARY);
87 if (fd < 0) {
88 return -1;
89 }
90
91 while ((actsize = read(fd, addr + l, size - l)) > 0) {
92 l += actsize;
93 }
94
95 close(fd);
96
97 return actsize < 0 ? -1 : l;
98 }
99
100 /* read()-like version */
101 ssize_t read_targphys(const char *name,
102 int fd, hwaddr dst_addr, size_t nbytes)
103 {
104 uint8_t *buf;
105 ssize_t did;
106
107 buf = g_malloc(nbytes);
108 did = read(fd, buf, nbytes);
109 if (did > 0)
110 rom_add_blob_fixed("read", buf, did, dst_addr);
111 g_free(buf);
112 return did;
113 }
114
115 int load_image_targphys(const char *filename,
116 hwaddr addr, uint64_t max_sz)
117 {
118 return load_image_targphys_as(filename, addr, max_sz, NULL);
119 }
120
121 /* return the size or -1 if error */
122 int load_image_targphys_as(const char *filename,
123 hwaddr addr, uint64_t max_sz, AddressSpace *as)
124 {
125 int size;
126
127 size = get_image_size(filename);
128 if (size < 0 || size > max_sz) {
129 return -1;
130 }
131 if (size > 0) {
132 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
133 return -1;
134 }
135 }
136 return size;
137 }
138
139 int load_image_mr(const char *filename, MemoryRegion *mr)
140 {
141 int size;
142
143 if (!memory_access_is_direct(mr, false)) {
144 /* Can only load an image into RAM or ROM */
145 return -1;
146 }
147
148 size = get_image_size(filename);
149
150 if (size < 0 || size > memory_region_size(mr)) {
151 return -1;
152 }
153 if (size > 0) {
154 if (rom_add_file_mr(filename, mr, -1) < 0) {
155 return -1;
156 }
157 }
158 return size;
159 }
160
161 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
162 const char *source)
163 {
164 const char *nulp;
165 char *ptr;
166
167 if (buf_size <= 0) return;
168 nulp = memchr(source, 0, buf_size);
169 if (nulp) {
170 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
171 } else {
172 rom_add_blob_fixed(name, source, buf_size, dest);
173 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
174 *ptr = 0;
175 }
176 }
177
178 /* A.OUT loader */
179
180 struct exec
181 {
182 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
183 uint32_t a_text; /* length of text, in bytes */
184 uint32_t a_data; /* length of data, in bytes */
185 uint32_t a_bss; /* length of uninitialized data area, in bytes */
186 uint32_t a_syms; /* length of symbol table data in file, in bytes */
187 uint32_t a_entry; /* start address */
188 uint32_t a_trsize; /* length of relocation info for text, in bytes */
189 uint32_t a_drsize; /* length of relocation info for data, in bytes */
190 };
191
192 static void bswap_ahdr(struct exec *e)
193 {
194 bswap32s(&e->a_info);
195 bswap32s(&e->a_text);
196 bswap32s(&e->a_data);
197 bswap32s(&e->a_bss);
198 bswap32s(&e->a_syms);
199 bswap32s(&e->a_entry);
200 bswap32s(&e->a_trsize);
201 bswap32s(&e->a_drsize);
202 }
203
204 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
205 #define OMAGIC 0407
206 #define NMAGIC 0410
207 #define ZMAGIC 0413
208 #define QMAGIC 0314
209 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
210 #define N_TXTOFF(x) \
211 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
212 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
213 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
214 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
215
216 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
217
218 #define N_DATADDR(x, target_page_size) \
219 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
220 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
221
222
223 int load_aout(const char *filename, hwaddr addr, int max_sz,
224 int bswap_needed, hwaddr target_page_size)
225 {
226 int fd;
227 ssize_t size, ret;
228 struct exec e;
229 uint32_t magic;
230
231 fd = open(filename, O_RDONLY | O_BINARY);
232 if (fd < 0)
233 return -1;
234
235 size = read(fd, &e, sizeof(e));
236 if (size < 0)
237 goto fail;
238
239 if (bswap_needed) {
240 bswap_ahdr(&e);
241 }
242
243 magic = N_MAGIC(e);
244 switch (magic) {
245 case ZMAGIC:
246 case QMAGIC:
247 case OMAGIC:
248 if (e.a_text + e.a_data > max_sz)
249 goto fail;
250 lseek(fd, N_TXTOFF(e), SEEK_SET);
251 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
252 if (size < 0)
253 goto fail;
254 break;
255 case NMAGIC:
256 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
257 goto fail;
258 lseek(fd, N_TXTOFF(e), SEEK_SET);
259 size = read_targphys(filename, fd, addr, e.a_text);
260 if (size < 0)
261 goto fail;
262 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
263 e.a_data);
264 if (ret < 0)
265 goto fail;
266 size += ret;
267 break;
268 default:
269 goto fail;
270 }
271 close(fd);
272 return size;
273 fail:
274 close(fd);
275 return -1;
276 }
277
278 /* ELF loader */
279
280 static void *load_at(int fd, off_t offset, size_t size)
281 {
282 void *ptr;
283 if (lseek(fd, offset, SEEK_SET) < 0)
284 return NULL;
285 ptr = g_malloc(size);
286 if (read(fd, ptr, size) != size) {
287 g_free(ptr);
288 return NULL;
289 }
290 return ptr;
291 }
292
293 #ifdef ELF_CLASS
294 #undef ELF_CLASS
295 #endif
296
297 #define ELF_CLASS ELFCLASS32
298 #include "elf.h"
299
300 #define SZ 32
301 #define elf_word uint32_t
302 #define elf_sword int32_t
303 #define bswapSZs bswap32s
304 #include "hw/elf_ops.h"
305
306 #undef elfhdr
307 #undef elf_phdr
308 #undef elf_shdr
309 #undef elf_sym
310 #undef elf_rela
311 #undef elf_note
312 #undef elf_word
313 #undef elf_sword
314 #undef bswapSZs
315 #undef SZ
316 #define elfhdr elf64_hdr
317 #define elf_phdr elf64_phdr
318 #define elf_note elf64_note
319 #define elf_shdr elf64_shdr
320 #define elf_sym elf64_sym
321 #define elf_rela elf64_rela
322 #define elf_word uint64_t
323 #define elf_sword int64_t
324 #define bswapSZs bswap64s
325 #define SZ 64
326 #include "hw/elf_ops.h"
327
328 const char *load_elf_strerror(int error)
329 {
330 switch (error) {
331 case 0:
332 return "No error";
333 case ELF_LOAD_FAILED:
334 return "Failed to load ELF";
335 case ELF_LOAD_NOT_ELF:
336 return "The image is not ELF";
337 case ELF_LOAD_WRONG_ARCH:
338 return "The image is from incompatible architecture";
339 case ELF_LOAD_WRONG_ENDIAN:
340 return "The image has incorrect endianness";
341 case ELF_LOAD_TOO_BIG:
342 return "The image segments are too big to load";
343 default:
344 return "Unknown error";
345 }
346 }
347
348 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
349 {
350 int fd;
351 uint8_t e_ident_local[EI_NIDENT];
352 uint8_t *e_ident;
353 size_t hdr_size, off;
354 bool is64l;
355
356 if (!hdr) {
357 hdr = e_ident_local;
358 }
359 e_ident = hdr;
360
361 fd = open(filename, O_RDONLY | O_BINARY);
362 if (fd < 0) {
363 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
364 return;
365 }
366 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
367 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
368 goto fail;
369 }
370 if (e_ident[0] != ELFMAG0 ||
371 e_ident[1] != ELFMAG1 ||
372 e_ident[2] != ELFMAG2 ||
373 e_ident[3] != ELFMAG3) {
374 error_setg(errp, "Bad ELF magic");
375 goto fail;
376 }
377
378 is64l = e_ident[EI_CLASS] == ELFCLASS64;
379 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
380 if (is64) {
381 *is64 = is64l;
382 }
383
384 off = EI_NIDENT;
385 while (hdr != e_ident_local && off < hdr_size) {
386 size_t br = read(fd, hdr + off, hdr_size - off);
387 switch (br) {
388 case 0:
389 error_setg(errp, "File too short: %s", filename);
390 goto fail;
391 case -1:
392 error_setg_errno(errp, errno, "Failed to read file: %s",
393 filename);
394 goto fail;
395 }
396 off += br;
397 }
398
399 fail:
400 close(fd);
401 }
402
403 /* return < 0 if error, otherwise the number of bytes loaded in memory */
404 int load_elf(const char *filename,
405 uint64_t (*elf_note_fn)(void *, void *, bool),
406 uint64_t (*translate_fn)(void *, uint64_t),
407 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
408 uint64_t *highaddr, int big_endian, int elf_machine,
409 int clear_lsb, int data_swab)
410 {
411 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
412 pentry, lowaddr, highaddr, big_endian, elf_machine,
413 clear_lsb, data_swab, NULL);
414 }
415
416 /* return < 0 if error, otherwise the number of bytes loaded in memory */
417 int load_elf_as(const char *filename,
418 uint64_t (*elf_note_fn)(void *, void *, bool),
419 uint64_t (*translate_fn)(void *, uint64_t),
420 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
421 uint64_t *highaddr, int big_endian, int elf_machine,
422 int clear_lsb, int data_swab, AddressSpace *as)
423 {
424 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
425 pentry, lowaddr, highaddr, big_endian, elf_machine,
426 clear_lsb, data_swab, as, true);
427 }
428
429 /* return < 0 if error, otherwise the number of bytes loaded in memory */
430 int load_elf_ram(const char *filename,
431 uint64_t (*elf_note_fn)(void *, void *, bool),
432 uint64_t (*translate_fn)(void *, uint64_t),
433 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
434 uint64_t *highaddr, int big_endian, int elf_machine,
435 int clear_lsb, int data_swab, AddressSpace *as,
436 bool load_rom)
437 {
438 return load_elf_ram_sym(filename, elf_note_fn,
439 translate_fn, translate_opaque,
440 pentry, lowaddr, highaddr, big_endian,
441 elf_machine, clear_lsb, data_swab, as,
442 load_rom, NULL);
443 }
444
445 /* return < 0 if error, otherwise the number of bytes loaded in memory */
446 int load_elf_ram_sym(const char *filename,
447 uint64_t (*elf_note_fn)(void *, void *, bool),
448 uint64_t (*translate_fn)(void *, uint64_t),
449 void *translate_opaque, uint64_t *pentry,
450 uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
451 int elf_machine, int clear_lsb, int data_swab,
452 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
453 {
454 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
455 uint8_t e_ident[EI_NIDENT];
456
457 fd = open(filename, O_RDONLY | O_BINARY);
458 if (fd < 0) {
459 perror(filename);
460 return -1;
461 }
462 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
463 goto fail;
464 if (e_ident[0] != ELFMAG0 ||
465 e_ident[1] != ELFMAG1 ||
466 e_ident[2] != ELFMAG2 ||
467 e_ident[3] != ELFMAG3) {
468 ret = ELF_LOAD_NOT_ELF;
469 goto fail;
470 }
471 #ifdef HOST_WORDS_BIGENDIAN
472 data_order = ELFDATA2MSB;
473 #else
474 data_order = ELFDATA2LSB;
475 #endif
476 must_swab = data_order != e_ident[EI_DATA];
477 if (big_endian) {
478 target_data_order = ELFDATA2MSB;
479 } else {
480 target_data_order = ELFDATA2LSB;
481 }
482
483 if (target_data_order != e_ident[EI_DATA]) {
484 ret = ELF_LOAD_WRONG_ENDIAN;
485 goto fail;
486 }
487
488 lseek(fd, 0, SEEK_SET);
489 if (e_ident[EI_CLASS] == ELFCLASS64) {
490 ret = load_elf64(filename, fd, elf_note_fn,
491 translate_fn, translate_opaque, must_swab,
492 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
493 data_swab, as, load_rom, sym_cb);
494 } else {
495 ret = load_elf32(filename, fd, elf_note_fn,
496 translate_fn, translate_opaque, must_swab,
497 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
498 data_swab, as, load_rom, sym_cb);
499 }
500
501 fail:
502 close(fd);
503 return ret;
504 }
505
506 static void bswap_uboot_header(uboot_image_header_t *hdr)
507 {
508 #ifndef HOST_WORDS_BIGENDIAN
509 bswap32s(&hdr->ih_magic);
510 bswap32s(&hdr->ih_hcrc);
511 bswap32s(&hdr->ih_time);
512 bswap32s(&hdr->ih_size);
513 bswap32s(&hdr->ih_load);
514 bswap32s(&hdr->ih_ep);
515 bswap32s(&hdr->ih_dcrc);
516 #endif
517 }
518
519
520 #define ZALLOC_ALIGNMENT 16
521
522 static void *zalloc(void *x, unsigned items, unsigned size)
523 {
524 void *p;
525
526 size *= items;
527 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
528
529 p = g_malloc(size);
530
531 return (p);
532 }
533
534 static void zfree(void *x, void *addr)
535 {
536 g_free(addr);
537 }
538
539
540 #define HEAD_CRC 2
541 #define EXTRA_FIELD 4
542 #define ORIG_NAME 8
543 #define COMMENT 0x10
544 #define RESERVED 0xe0
545
546 #define DEFLATED 8
547
548 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
549 {
550 z_stream s;
551 ssize_t dstbytes;
552 int r, i, flags;
553
554 /* skip header */
555 i = 10;
556 flags = src[3];
557 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
558 puts ("Error: Bad gzipped data\n");
559 return -1;
560 }
561 if ((flags & EXTRA_FIELD) != 0)
562 i = 12 + src[10] + (src[11] << 8);
563 if ((flags & ORIG_NAME) != 0)
564 while (src[i++] != 0)
565 ;
566 if ((flags & COMMENT) != 0)
567 while (src[i++] != 0)
568 ;
569 if ((flags & HEAD_CRC) != 0)
570 i += 2;
571 if (i >= srclen) {
572 puts ("Error: gunzip out of data in header\n");
573 return -1;
574 }
575
576 s.zalloc = zalloc;
577 s.zfree = zfree;
578
579 r = inflateInit2(&s, -MAX_WBITS);
580 if (r != Z_OK) {
581 printf ("Error: inflateInit2() returned %d\n", r);
582 return (-1);
583 }
584 s.next_in = src + i;
585 s.avail_in = srclen - i;
586 s.next_out = dst;
587 s.avail_out = dstlen;
588 r = inflate(&s, Z_FINISH);
589 if (r != Z_OK && r != Z_STREAM_END) {
590 printf ("Error: inflate() returned %d\n", r);
591 return -1;
592 }
593 dstbytes = s.next_out - (unsigned char *) dst;
594 inflateEnd(&s);
595
596 return dstbytes;
597 }
598
599 /* Load a U-Boot image. */
600 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
601 int *is_linux, uint8_t image_type,
602 uint64_t (*translate_fn)(void *, uint64_t),
603 void *translate_opaque, AddressSpace *as)
604 {
605 int fd;
606 int size;
607 hwaddr address;
608 uboot_image_header_t h;
609 uboot_image_header_t *hdr = &h;
610 uint8_t *data = NULL;
611 int ret = -1;
612 int do_uncompress = 0;
613
614 fd = open(filename, O_RDONLY | O_BINARY);
615 if (fd < 0)
616 return -1;
617
618 size = read(fd, hdr, sizeof(uboot_image_header_t));
619 if (size < sizeof(uboot_image_header_t)) {
620 goto out;
621 }
622
623 bswap_uboot_header(hdr);
624
625 if (hdr->ih_magic != IH_MAGIC)
626 goto out;
627
628 if (hdr->ih_type != image_type) {
629 if (!(image_type == IH_TYPE_KERNEL &&
630 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
631 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
632 image_type);
633 goto out;
634 }
635 }
636
637 /* TODO: Implement other image types. */
638 switch (hdr->ih_type) {
639 case IH_TYPE_KERNEL_NOLOAD:
640 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
641 fprintf(stderr, "this image format (kernel_noload) cannot be "
642 "loaded on this machine type");
643 goto out;
644 }
645
646 hdr->ih_load = *loadaddr + sizeof(*hdr);
647 hdr->ih_ep += hdr->ih_load;
648 /* fall through */
649 case IH_TYPE_KERNEL:
650 address = hdr->ih_load;
651 if (translate_fn) {
652 address = translate_fn(translate_opaque, address);
653 }
654 if (loadaddr) {
655 *loadaddr = hdr->ih_load;
656 }
657
658 switch (hdr->ih_comp) {
659 case IH_COMP_NONE:
660 break;
661 case IH_COMP_GZIP:
662 do_uncompress = 1;
663 break;
664 default:
665 fprintf(stderr,
666 "Unable to load u-boot images with compression type %d\n",
667 hdr->ih_comp);
668 goto out;
669 }
670
671 if (ep) {
672 *ep = hdr->ih_ep;
673 }
674
675 /* TODO: Check CPU type. */
676 if (is_linux) {
677 if (hdr->ih_os == IH_OS_LINUX) {
678 *is_linux = 1;
679 } else {
680 *is_linux = 0;
681 }
682 }
683
684 break;
685 case IH_TYPE_RAMDISK:
686 address = *loadaddr;
687 break;
688 default:
689 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
690 goto out;
691 }
692
693 data = g_malloc(hdr->ih_size);
694
695 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
696 fprintf(stderr, "Error reading file\n");
697 goto out;
698 }
699
700 if (do_uncompress) {
701 uint8_t *compressed_data;
702 size_t max_bytes;
703 ssize_t bytes;
704
705 compressed_data = data;
706 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
707 data = g_malloc(max_bytes);
708
709 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
710 g_free(compressed_data);
711 if (bytes < 0) {
712 fprintf(stderr, "Unable to decompress gzipped image!\n");
713 goto out;
714 }
715 hdr->ih_size = bytes;
716 }
717
718 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
719
720 ret = hdr->ih_size;
721
722 out:
723 g_free(data);
724 close(fd);
725 return ret;
726 }
727
728 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
729 int *is_linux,
730 uint64_t (*translate_fn)(void *, uint64_t),
731 void *translate_opaque)
732 {
733 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
734 translate_fn, translate_opaque, NULL);
735 }
736
737 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
738 int *is_linux,
739 uint64_t (*translate_fn)(void *, uint64_t),
740 void *translate_opaque, AddressSpace *as)
741 {
742 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
743 translate_fn, translate_opaque, as);
744 }
745
746 /* Load a ramdisk. */
747 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
748 {
749 return load_ramdisk_as(filename, addr, max_sz, NULL);
750 }
751
752 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
753 AddressSpace *as)
754 {
755 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
756 NULL, NULL, as);
757 }
758
759 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
760 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
761 uint8_t **buffer)
762 {
763 uint8_t *compressed_data = NULL;
764 uint8_t *data = NULL;
765 gsize len;
766 ssize_t bytes;
767 int ret = -1;
768
769 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
770 NULL)) {
771 goto out;
772 }
773
774 /* Is it a gzip-compressed file? */
775 if (len < 2 ||
776 compressed_data[0] != 0x1f ||
777 compressed_data[1] != 0x8b) {
778 goto out;
779 }
780
781 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
782 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
783 }
784
785 data = g_malloc(max_sz);
786 bytes = gunzip(data, max_sz, compressed_data, len);
787 if (bytes < 0) {
788 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
789 filename);
790 goto out;
791 }
792
793 /* trim to actual size and return to caller */
794 *buffer = g_realloc(data, bytes);
795 ret = bytes;
796 /* ownership has been transferred to caller */
797 data = NULL;
798
799 out:
800 g_free(compressed_data);
801 g_free(data);
802 return ret;
803 }
804
805 /* Load a gzip-compressed kernel. */
806 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
807 {
808 int bytes;
809 uint8_t *data;
810
811 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
812 if (bytes != -1) {
813 rom_add_blob_fixed(filename, data, bytes, addr);
814 g_free(data);
815 }
816 return bytes;
817 }
818
819 /*
820 * Functions for reboot-persistent memory regions.
821 * - used for vga bios and option roms.
822 * - also linux kernel (-kernel / -initrd).
823 */
824
825 typedef struct Rom Rom;
826
827 struct Rom {
828 char *name;
829 char *path;
830
831 /* datasize is the amount of memory allocated in "data". If datasize is less
832 * than romsize, it means that the area from datasize to romsize is filled
833 * with zeros.
834 */
835 size_t romsize;
836 size_t datasize;
837
838 uint8_t *data;
839 MemoryRegion *mr;
840 AddressSpace *as;
841 int isrom;
842 char *fw_dir;
843 char *fw_file;
844 GMappedFile *mapped_file;
845
846 bool committed;
847
848 hwaddr addr;
849 QTAILQ_ENTRY(Rom) next;
850 };
851
852 static FWCfgState *fw_cfg;
853 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
854
855 /*
856 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
857 * rom_add_elf_program())
858 */
859 static void rom_free_data(Rom *rom)
860 {
861 if (rom->mapped_file) {
862 g_mapped_file_unref(rom->mapped_file);
863 rom->mapped_file = NULL;
864 } else {
865 g_free(rom->data);
866 }
867
868 rom->data = NULL;
869 }
870
871 static void rom_free(Rom *rom)
872 {
873 rom_free_data(rom);
874 g_free(rom->path);
875 g_free(rom->name);
876 g_free(rom->fw_dir);
877 g_free(rom->fw_file);
878 g_free(rom);
879 }
880
881 static inline bool rom_order_compare(Rom *rom, Rom *item)
882 {
883 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
884 (rom->as == item->as && rom->addr >= item->addr);
885 }
886
887 static void rom_insert(Rom *rom)
888 {
889 Rom *item;
890
891 if (roms_loaded) {
892 hw_error ("ROM images must be loaded at startup\n");
893 }
894
895 /* The user didn't specify an address space, this is the default */
896 if (!rom->as) {
897 rom->as = &address_space_memory;
898 }
899
900 rom->committed = false;
901
902 /* List is ordered by load address in the same address space */
903 QTAILQ_FOREACH(item, &roms, next) {
904 if (rom_order_compare(rom, item)) {
905 continue;
906 }
907 QTAILQ_INSERT_BEFORE(item, rom, next);
908 return;
909 }
910 QTAILQ_INSERT_TAIL(&roms, rom, next);
911 }
912
913 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
914 {
915 if (fw_cfg) {
916 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
917 }
918 }
919
920 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
921 {
922 void *data;
923
924 rom->mr = g_malloc(sizeof(*rom->mr));
925 memory_region_init_resizeable_ram(rom->mr, owner, name,
926 rom->datasize, rom->romsize,
927 fw_cfg_resized,
928 &error_fatal);
929 memory_region_set_readonly(rom->mr, ro);
930 vmstate_register_ram_global(rom->mr);
931
932 data = memory_region_get_ram_ptr(rom->mr);
933 memcpy(data, rom->data, rom->datasize);
934
935 return data;
936 }
937
938 int rom_add_file(const char *file, const char *fw_dir,
939 hwaddr addr, int32_t bootindex,
940 bool option_rom, MemoryRegion *mr,
941 AddressSpace *as)
942 {
943 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
944 Rom *rom;
945 int rc, fd = -1;
946 char devpath[100];
947
948 if (as && mr) {
949 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
950 "not valid when loading a rom\n");
951 /* We haven't allocated anything so we don't need any cleanup */
952 return -1;
953 }
954
955 rom = g_malloc0(sizeof(*rom));
956 rom->name = g_strdup(file);
957 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
958 rom->as = as;
959 if (rom->path == NULL) {
960 rom->path = g_strdup(file);
961 }
962
963 fd = open(rom->path, O_RDONLY | O_BINARY);
964 if (fd == -1) {
965 fprintf(stderr, "Could not open option rom '%s': %s\n",
966 rom->path, strerror(errno));
967 goto err;
968 }
969
970 if (fw_dir) {
971 rom->fw_dir = g_strdup(fw_dir);
972 rom->fw_file = g_strdup(file);
973 }
974 rom->addr = addr;
975 rom->romsize = lseek(fd, 0, SEEK_END);
976 if (rom->romsize == -1) {
977 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
978 rom->name, strerror(errno));
979 goto err;
980 }
981
982 rom->datasize = rom->romsize;
983 rom->data = g_malloc0(rom->datasize);
984 lseek(fd, 0, SEEK_SET);
985 rc = read(fd, rom->data, rom->datasize);
986 if (rc != rom->datasize) {
987 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
988 rom->name, rc, rom->datasize);
989 goto err;
990 }
991 close(fd);
992 rom_insert(rom);
993 if (rom->fw_file && fw_cfg) {
994 const char *basename;
995 char fw_file_name[FW_CFG_MAX_FILE_PATH];
996 void *data;
997
998 basename = strrchr(rom->fw_file, '/');
999 if (basename) {
1000 basename++;
1001 } else {
1002 basename = rom->fw_file;
1003 }
1004 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1005 basename);
1006 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1007
1008 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1009 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1010 } else {
1011 data = rom->data;
1012 }
1013
1014 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1015 } else {
1016 if (mr) {
1017 rom->mr = mr;
1018 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1019 } else {
1020 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1021 }
1022 }
1023
1024 add_boot_device_path(bootindex, NULL, devpath);
1025 return 0;
1026
1027 err:
1028 if (fd != -1)
1029 close(fd);
1030
1031 rom_free(rom);
1032 return -1;
1033 }
1034
1035 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1036 size_t max_len, hwaddr addr, const char *fw_file_name,
1037 FWCfgCallback fw_callback, void *callback_opaque,
1038 AddressSpace *as, bool read_only)
1039 {
1040 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1041 Rom *rom;
1042 MemoryRegion *mr = NULL;
1043
1044 rom = g_malloc0(sizeof(*rom));
1045 rom->name = g_strdup(name);
1046 rom->as = as;
1047 rom->addr = addr;
1048 rom->romsize = max_len ? max_len : len;
1049 rom->datasize = len;
1050 g_assert(rom->romsize >= rom->datasize);
1051 rom->data = g_malloc0(rom->datasize);
1052 memcpy(rom->data, blob, len);
1053 rom_insert(rom);
1054 if (fw_file_name && fw_cfg) {
1055 char devpath[100];
1056 void *data;
1057
1058 if (read_only) {
1059 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1060 } else {
1061 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1062 }
1063
1064 if (mc->rom_file_has_mr) {
1065 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1066 mr = rom->mr;
1067 } else {
1068 data = rom->data;
1069 }
1070
1071 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1072 fw_callback, NULL, callback_opaque,
1073 data, rom->datasize, read_only);
1074 }
1075 return mr;
1076 }
1077
1078 /* This function is specific for elf program because we don't need to allocate
1079 * all the rom. We just allocate the first part and the rest is just zeros. This
1080 * is why romsize and datasize are different. Also, this function takes its own
1081 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1082 */
1083 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1084 size_t datasize, size_t romsize, hwaddr addr,
1085 AddressSpace *as)
1086 {
1087 Rom *rom;
1088
1089 rom = g_malloc0(sizeof(*rom));
1090 rom->name = g_strdup(name);
1091 rom->addr = addr;
1092 rom->datasize = datasize;
1093 rom->romsize = romsize;
1094 rom->data = data;
1095 rom->as = as;
1096
1097 if (mapped_file && data) {
1098 g_mapped_file_ref(mapped_file);
1099 rom->mapped_file = mapped_file;
1100 }
1101
1102 rom_insert(rom);
1103 return 0;
1104 }
1105
1106 int rom_add_vga(const char *file)
1107 {
1108 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1109 }
1110
1111 int rom_add_option(const char *file, int32_t bootindex)
1112 {
1113 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1114 }
1115
1116 static void rom_reset(void *unused)
1117 {
1118 Rom *rom;
1119
1120 /*
1121 * We don't need to fill in the RAM with ROM data because we'll fill
1122 * the data in during the next incoming migration in all cases. Note
1123 * that some of those RAMs can actually be modified by the guest on ARM
1124 * so this is probably the only right thing to do here.
1125 */
1126 if (runstate_check(RUN_STATE_INMIGRATE))
1127 return;
1128
1129 QTAILQ_FOREACH(rom, &roms, next) {
1130 if (rom->fw_file) {
1131 continue;
1132 }
1133 if (rom->data == NULL) {
1134 continue;
1135 }
1136 if (rom->mr) {
1137 void *host = memory_region_get_ram_ptr(rom->mr);
1138 memcpy(host, rom->data, rom->datasize);
1139 } else {
1140 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1141 rom->data, rom->datasize);
1142 }
1143 if (rom->isrom) {
1144 /* rom needs to be written only once */
1145 rom_free_data(rom);
1146 }
1147 /*
1148 * The rom loader is really on the same level as firmware in the guest
1149 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1150 * that the instruction cache for that new region is clear, so that the
1151 * CPU definitely fetches its instructions from the just written data.
1152 */
1153 cpu_flush_icache_range(rom->addr, rom->datasize);
1154 }
1155 }
1156
1157 int rom_check_and_register_reset(void)
1158 {
1159 hwaddr addr = 0;
1160 MemoryRegionSection section;
1161 Rom *rom;
1162 AddressSpace *as = NULL;
1163
1164 QTAILQ_FOREACH(rom, &roms, next) {
1165 if (rom->fw_file) {
1166 continue;
1167 }
1168 if (!rom->mr) {
1169 if ((addr > rom->addr) && (as == rom->as)) {
1170 fprintf(stderr, "rom: requested regions overlap "
1171 "(rom %s. free=0x" TARGET_FMT_plx
1172 ", addr=0x" TARGET_FMT_plx ")\n",
1173 rom->name, addr, rom->addr);
1174 return -1;
1175 }
1176 addr = rom->addr;
1177 addr += rom->romsize;
1178 as = rom->as;
1179 }
1180 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1181 rom->addr, 1);
1182 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1183 memory_region_unref(section.mr);
1184 }
1185 qemu_register_reset(rom_reset, NULL);
1186 roms_loaded = 1;
1187 return 0;
1188 }
1189
1190 void rom_set_fw(FWCfgState *f)
1191 {
1192 fw_cfg = f;
1193 }
1194
1195 void rom_set_order_override(int order)
1196 {
1197 if (!fw_cfg)
1198 return;
1199 fw_cfg_set_order_override(fw_cfg, order);
1200 }
1201
1202 void rom_reset_order_override(void)
1203 {
1204 if (!fw_cfg)
1205 return;
1206 fw_cfg_reset_order_override(fw_cfg);
1207 }
1208
1209 void rom_transaction_begin(void)
1210 {
1211 Rom *rom;
1212
1213 /* Ignore ROMs added without the transaction API */
1214 QTAILQ_FOREACH(rom, &roms, next) {
1215 rom->committed = true;
1216 }
1217 }
1218
1219 void rom_transaction_end(bool commit)
1220 {
1221 Rom *rom;
1222 Rom *tmp;
1223
1224 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1225 if (rom->committed) {
1226 continue;
1227 }
1228 if (commit) {
1229 rom->committed = true;
1230 } else {
1231 QTAILQ_REMOVE(&roms, rom, next);
1232 rom_free(rom);
1233 }
1234 }
1235 }
1236
1237 static Rom *find_rom(hwaddr addr, size_t size)
1238 {
1239 Rom *rom;
1240
1241 QTAILQ_FOREACH(rom, &roms, next) {
1242 if (rom->fw_file) {
1243 continue;
1244 }
1245 if (rom->mr) {
1246 continue;
1247 }
1248 if (rom->addr > addr) {
1249 continue;
1250 }
1251 if (rom->addr + rom->romsize < addr + size) {
1252 continue;
1253 }
1254 return rom;
1255 }
1256 return NULL;
1257 }
1258
1259 /*
1260 * Copies memory from registered ROMs to dest. Any memory that is contained in
1261 * a ROM between addr and addr + size is copied. Note that this can involve
1262 * multiple ROMs, which need not start at addr and need not end at addr + size.
1263 */
1264 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1265 {
1266 hwaddr end = addr + size;
1267 uint8_t *s, *d = dest;
1268 size_t l = 0;
1269 Rom *rom;
1270
1271 QTAILQ_FOREACH(rom, &roms, next) {
1272 if (rom->fw_file) {
1273 continue;
1274 }
1275 if (rom->mr) {
1276 continue;
1277 }
1278 if (rom->addr + rom->romsize < addr) {
1279 continue;
1280 }
1281 if (rom->addr > end) {
1282 break;
1283 }
1284
1285 d = dest + (rom->addr - addr);
1286 s = rom->data;
1287 l = rom->datasize;
1288
1289 if ((d + l) > (dest + size)) {
1290 l = dest - d;
1291 }
1292
1293 if (l > 0) {
1294 memcpy(d, s, l);
1295 }
1296
1297 if (rom->romsize > rom->datasize) {
1298 /* If datasize is less than romsize, it means that we didn't
1299 * allocate all the ROM because the trailing data are only zeros.
1300 */
1301
1302 d += l;
1303 l = rom->romsize - rom->datasize;
1304
1305 if ((d + l) > (dest + size)) {
1306 /* Rom size doesn't fit in the destination area. Adjust to avoid
1307 * overflow.
1308 */
1309 l = dest - d;
1310 }
1311
1312 if (l > 0) {
1313 memset(d, 0x0, l);
1314 }
1315 }
1316 }
1317
1318 return (d + l) - dest;
1319 }
1320
1321 void *rom_ptr(hwaddr addr, size_t size)
1322 {
1323 Rom *rom;
1324
1325 rom = find_rom(addr, size);
1326 if (!rom || !rom->data)
1327 return NULL;
1328 return rom->data + (addr - rom->addr);
1329 }
1330
1331 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1332 {
1333 Rom *rom;
1334
1335 QTAILQ_FOREACH(rom, &roms, next) {
1336 if (rom->mr) {
1337 monitor_printf(mon, "%s"
1338 " size=0x%06zx name=\"%s\"\n",
1339 memory_region_name(rom->mr),
1340 rom->romsize,
1341 rom->name);
1342 } else if (!rom->fw_file) {
1343 monitor_printf(mon, "addr=" TARGET_FMT_plx
1344 " size=0x%06zx mem=%s name=\"%s\"\n",
1345 rom->addr, rom->romsize,
1346 rom->isrom ? "rom" : "ram",
1347 rom->name);
1348 } else {
1349 monitor_printf(mon, "fw=%s/%s"
1350 " size=0x%06zx name=\"%s\"\n",
1351 rom->fw_dir,
1352 rom->fw_file,
1353 rom->romsize,
1354 rom->name);
1355 }
1356 }
1357 }
1358
1359 typedef enum HexRecord HexRecord;
1360 enum HexRecord {
1361 DATA_RECORD = 0,
1362 EOF_RECORD,
1363 EXT_SEG_ADDR_RECORD,
1364 START_SEG_ADDR_RECORD,
1365 EXT_LINEAR_ADDR_RECORD,
1366 START_LINEAR_ADDR_RECORD,
1367 };
1368
1369 /* Each record contains a 16-bit address which is combined with the upper 16
1370 * bits of the implicit "next address" to form a 32-bit address.
1371 */
1372 #define NEXT_ADDR_MASK 0xffff0000
1373
1374 #define DATA_FIELD_MAX_LEN 0xff
1375 #define LEN_EXCEPT_DATA 0x5
1376 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1377 * sizeof(checksum) */
1378 typedef struct {
1379 uint8_t byte_count;
1380 uint16_t address;
1381 uint8_t record_type;
1382 uint8_t data[DATA_FIELD_MAX_LEN];
1383 uint8_t checksum;
1384 } HexLine;
1385
1386 /* return 0 or -1 if error */
1387 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1388 uint32_t *index, const bool in_process)
1389 {
1390 /* +-------+---------------+-------+---------------------+--------+
1391 * | byte | |record | | |
1392 * | count | address | type | data |checksum|
1393 * +-------+---------------+-------+---------------------+--------+
1394 * ^ ^ ^ ^ ^ ^
1395 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1396 */
1397 uint8_t value = 0;
1398 uint32_t idx = *index;
1399 /* ignore space */
1400 if (g_ascii_isspace(c)) {
1401 return true;
1402 }
1403 if (!g_ascii_isxdigit(c) || !in_process) {
1404 return false;
1405 }
1406 value = g_ascii_xdigit_value(c);
1407 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1408 if (idx < 2) {
1409 line->byte_count |= value;
1410 } else if (2 <= idx && idx < 6) {
1411 line->address <<= 4;
1412 line->address += g_ascii_xdigit_value(c);
1413 } else if (6 <= idx && idx < 8) {
1414 line->record_type |= value;
1415 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1416 line->data[(idx - 8) >> 1] |= value;
1417 } else if (8 + 2 * line->byte_count <= idx &&
1418 idx < 10 + 2 * line->byte_count) {
1419 line->checksum |= value;
1420 } else {
1421 return false;
1422 }
1423 *our_checksum += value;
1424 ++(*index);
1425 return true;
1426 }
1427
1428 typedef struct {
1429 const char *filename;
1430 HexLine line;
1431 uint8_t *bin_buf;
1432 hwaddr *start_addr;
1433 int total_size;
1434 uint32_t next_address_to_write;
1435 uint32_t current_address;
1436 uint32_t current_rom_index;
1437 uint32_t rom_start_address;
1438 AddressSpace *as;
1439 } HexParser;
1440
1441 /* return size or -1 if error */
1442 static int handle_record_type(HexParser *parser)
1443 {
1444 HexLine *line = &(parser->line);
1445 switch (line->record_type) {
1446 case DATA_RECORD:
1447 parser->current_address =
1448 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1449 /* verify this is a contiguous block of memory */
1450 if (parser->current_address != parser->next_address_to_write) {
1451 if (parser->current_rom_index != 0) {
1452 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1453 parser->current_rom_index,
1454 parser->rom_start_address, parser->as);
1455 }
1456 parser->rom_start_address = parser->current_address;
1457 parser->current_rom_index = 0;
1458 }
1459
1460 /* copy from line buffer to output bin_buf */
1461 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1462 line->byte_count);
1463 parser->current_rom_index += line->byte_count;
1464 parser->total_size += line->byte_count;
1465 /* save next address to write */
1466 parser->next_address_to_write =
1467 parser->current_address + line->byte_count;
1468 break;
1469
1470 case EOF_RECORD:
1471 if (parser->current_rom_index != 0) {
1472 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1473 parser->current_rom_index,
1474 parser->rom_start_address, parser->as);
1475 }
1476 return parser->total_size;
1477 case EXT_SEG_ADDR_RECORD:
1478 case EXT_LINEAR_ADDR_RECORD:
1479 if (line->byte_count != 2 && line->address != 0) {
1480 return -1;
1481 }
1482
1483 if (parser->current_rom_index != 0) {
1484 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1485 parser->current_rom_index,
1486 parser->rom_start_address, parser->as);
1487 }
1488
1489 /* save next address to write,
1490 * in case of non-contiguous block of memory */
1491 parser->next_address_to_write = (line->data[0] << 12) |
1492 (line->data[1] << 4);
1493 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1494 parser->next_address_to_write <<= 12;
1495 }
1496
1497 parser->rom_start_address = parser->next_address_to_write;
1498 parser->current_rom_index = 0;
1499 break;
1500
1501 case START_SEG_ADDR_RECORD:
1502 if (line->byte_count != 4 && line->address != 0) {
1503 return -1;
1504 }
1505
1506 /* x86 16-bit CS:IP segmented addressing */
1507 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1508 ((line->data[2] << 8) | line->data[3]);
1509 break;
1510
1511 case START_LINEAR_ADDR_RECORD:
1512 if (line->byte_count != 4 && line->address != 0) {
1513 return -1;
1514 }
1515
1516 *(parser->start_addr) = ldl_be_p(line->data);
1517 break;
1518
1519 default:
1520 return -1;
1521 }
1522
1523 return parser->total_size;
1524 }
1525
1526 /* return size or -1 if error */
1527 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1528 size_t hex_blob_size, AddressSpace *as)
1529 {
1530 bool in_process = false; /* avoid re-enter and
1531 * check whether record begin with ':' */
1532 uint8_t *end = hex_blob + hex_blob_size;
1533 uint8_t our_checksum = 0;
1534 uint32_t record_index = 0;
1535 HexParser parser = {
1536 .filename = filename,
1537 .bin_buf = g_malloc(hex_blob_size),
1538 .start_addr = addr,
1539 .as = as,
1540 };
1541
1542 rom_transaction_begin();
1543
1544 for (; hex_blob < end; ++hex_blob) {
1545 switch (*hex_blob) {
1546 case '\r':
1547 case '\n':
1548 if (!in_process) {
1549 break;
1550 }
1551
1552 in_process = false;
1553 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1554 record_index ||
1555 our_checksum != 0) {
1556 parser.total_size = -1;
1557 goto out;
1558 }
1559
1560 if (handle_record_type(&parser) == -1) {
1561 parser.total_size = -1;
1562 goto out;
1563 }
1564 break;
1565
1566 /* start of a new record. */
1567 case ':':
1568 memset(&parser.line, 0, sizeof(HexLine));
1569 in_process = true;
1570 record_index = 0;
1571 break;
1572
1573 /* decoding lines */
1574 default:
1575 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1576 &record_index, in_process)) {
1577 parser.total_size = -1;
1578 goto out;
1579 }
1580 break;
1581 }
1582 }
1583
1584 out:
1585 g_free(parser.bin_buf);
1586 rom_transaction_end(parser.total_size != -1);
1587 return parser.total_size;
1588 }
1589
1590 /* return size or -1 if error */
1591 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1592 {
1593 gsize hex_blob_size;
1594 gchar *hex_blob;
1595 int total_size = 0;
1596
1597 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1598 return -1;
1599 }
1600
1601 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1602 hex_blob_size, as);
1603
1604 g_free(hex_blob);
1605 return total_size;
1606 }